
Abstract
In this study, multispectral satellite data from Landsat 4-5 TM and Landsat 8 OLI/TIRS was 
used to analyse Land Use Land Cover (LULC) change detection and to retrieve environmental 
parameters. The LULC change detection was done between 2007 and 2021. This study 
used the supervised classification-maximum likelihood approach in ArcGIS 10.3 software 
to detect LULC in Loha Taluka, Maharashtra. The taluka was classified into four major 
LULC classes, viz. water, vegetation, settlement and barren-land. Changes in LULC directly 
or indirectly will also induce a change in the environmental parameters. Environmental 
parameters (water surface temperature, chlorophyll-a concentration and total suspended 
solids) were analysed for Limboti Reservoir. Data were predicted for next two years (2022 
and 2023) using multiplicative seasonal decomposition and Holt-Winter’s multiplicative 
method and trends of each parameter were analysed using Mann-Kendall trend method. For 
both years, vegetative land was the most extensive LC in Loha Taluka, accounting for more 
than 60% of the total land area. However, throughout these years, urbanisation was rampant 
and vegetative land was converted to settlement. In these years, open water resources such 
as reservoirs, lakes and rivers covered a very small percentage of the total area, which is a 
serious threat to the ecosystem. As a result, proper water body management is essential; 
otherwise, these resources will be destroyed and will no longer be able to contribute to the 
area’s socioeconomic growth.
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Introduction
With large variations in precipitation, 
surface temperature and other climatic 
factors, global climate change has emerged 
as a serious danger to water resources 
(Bhadoriya et al., 2020). Climate change is 
expected to have an impact on the hydrology 
of most regions of the world by influencing 
temperature, rainfall, evapotranspiration 
(IPCC, 2007) and eventually runoff, as 
well as the planning characteristics (e.g., 
capacity) and performance (reliability, 
resilience, vulnerability and sustainability) 
of water resources infrastructures such 
as, reservoirs (Soundharajan et al., 2016). 

These changes will impact interannual and 
seasonal streamflow variability (Li and Jin, 
2017) leading to changes in regional water 
availability. The negative environmental 
and socio-political impacts of climate 
change will intensify, particularly in poor 
and developing countries including India 
(NAPCC, 2008; DARA, 2012). Increased 
water temperatures, decreasing dissolved 
oxygen levels and increased toxicity 
of contaminants are all expected to be 
prevalent effects of climate change on 
freshwater systems (Ficke et al., 2007). 
It may become extremely difficult to 
manage reservoirs to achieve conflicting 
and competing purposes optimally in the 
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future due to uncertain water availability and demand (Bhadoriya 
et al., 2020). India is a country with many reservoirs, large, medium 
and small. These reservoirs were crucial in the development of 
India’s culture and settlements in villages, towns and cities. They 
supply water for irrigation, bathing, washing, fisheries and other 
recreational activities and any impact on reservoirs is bound to 
impact Indian society significantly. 

There are various roles of geospatial technologies for monitoring 
and assessing the climatic and environmental parameters and 
land use land cover (LULC) change detection. Geospatial systems 
include thematic mapping, the Global Positioning System (GPS), 
remote sensing (RS) and Geographic Information Systems (GIS) 
(USGS, 2000). Remote sensing is the process of collecting data and 
knowledge about a phenomenon or a region without coming into 
direct contact with it and is alternative to in situ observations (Zaidi, 
2012). Recent advancements in remote sensing techniques have 
enabled the acquisition of water quality data at geographical and 
temporal resolutions that are beyond the capability of infrequent 
and point scale in situ measurements (Zaidi, 2012). GIS technology 
allows researchers to analyse and process large amounts of data 
at high speed and in less time and remote sensing systems provide 
uniform measurements with high-speed for large areas in the 
digital form (Tayari et al., 2015). Remote sensing has been used 
to classify and map land cover and land use changes with different 
techniques and data sets (Butt et al., 2015). Conventional methods 
for assessing and monitoring water quality need a lot of time, data 
and money, which is often out of reach for developing countries 
(Zaidi, 2012; Karunakaran et al., 2019). Using the geographic 
capabilities of RS and GIS techniques to address these difficulties is 
a cost-effective and quality research solution for large areas (Zaidi, 
2012; Karunakaran et al., 2019). Most of the research has been on 
optically active factors like temperature, chlorophyll-a (chl-a) and 
total suspended solids. Chlorophyll-a is measured to detect the 
algal growth in a water body, as excessive algal growth can indicate 
the risk of  eutrophication (Boucher et al., 2018).

Land cover relates to the physical aspects of the  natural 
environment, including vegetation, settlements, water bodies, 
forests and agricultural areas. Land use on the other hand, 
describes how a settlement’s territory is utilised by people, such as 
for housing or other human activities (Chaudhary et al., 2008). LULC 
has become a critical component in measuring and monitoring 
environmental changes as well as managing natural resources 
(Kaul and Sopan, 2012). Data from Earth sensing satellites has 
been increasingly important in mapping the Earth’s features 
and infrastructures, managing natural resources and analysing 
environmental change in recent years (Zubair, 2006). Land use 
land cover change detection based on remote sensing data is 
an important source of information for various decision support 
systems. Data generated from the change detection in land use 
and land cover, aid land conservation, sustainable development 
and water resource management (Tewabe and Fentahun, 2020). 
Remote sensing and Geographic Information Systems (GIS) are 
powerful and cost-effective methods for analysing the spatial and 
temporal change of LULC.

Remote sensing and GIS are critical tools for determining the factors 
driving LULC changes as well as understanding their relationship 
with the water quality of lakes and reservoirs (Fukushima et al., 
2007; Wei et al., 2020). Because of their time and cost-effectiveness 

over broad areas as well as remote sites, these techniques make 
monitoring and analysis of LULC change and eutrophication more 
efficient than ground-based observations. In this regard, the Landsat 
Program, which consists of a succession of satellite missions, 
has the potential to monitor and quantify reservoir water quality 
parameters and LULC change at a scale that allows natural and 
human-induced causes to be distinguished (Gómez et al., 2016), 
due to its extensive history and reasonably high spatial resolution.

Progress in water quality monitoring
Application of remote sensing and research in water quality 
monitoring have progressed from the early stages of identifying 
water quality indicators to remote monitoring, mapping and 
forecasting. The spectral features of the waterbody are determined 
mainly by the water body’s material composition and a variety of 
water conditions. The key factors that affect water quality include 
suspended particles in water (turbidity), algae (Chlorophyll, 
Carotenoids), chemicals (nutrients, insecticides, metals), dissolved 
organic matter, heat emissions, pathogens and oil compounds 
(Fengyun, 2010). Water surface temperature, sea surface 
temperature, total dissolved solids, total suspended solids, water 
transparency, Chlorophyll a concentration, dissolved organic matter, 
the vertical attenuation coefficient of water incident and outgoing 
light and some integrated pollution indexes such as nutritional status 
index are all water quality parameters that can be monitored using 
remote sensing (Hendrata and Umbro, 2019; Adjovu et al., 2023). 
Overall, in the use of remote sensing techniques for  monitoring 
water quality, extracting the concentrations of suspended matter 
in water and chlorophyll represents a more advanced technology.

Existing problems in water quality monitoring
Remote sensing and GIS are two new technologies for monitoring 
water quality. On various spatial and temporal scales, remote 
sensing can offer the essential information for quantifying and 
analysing water properties and landscape features. It offers 
exciting opportunities to investigate fluvial patterns and processes 
by utilising wavelengths invisible to the naked eye, such as 
variations in infrared light reflected by different vegetation species. 
Although there has been significant improvement in water quality 
studies using remote sensing technologies, there are still several 
issues such as: (1) The ideal spectral resolution, time resolution, 
and geographical resolution for water quality monitoring are 
still unknown for water quality remote sensing; (2) Monitoring 
accuracy is low, and present techniques are almost empirical and  
semi-empirical in nature; (3) Existing algorithms are partial, localised 
and seasonal, as well as having limited applicability and adaptability;  
(4) Water quality can be evaluated via remote sensing technology, 
with floating sediment, chlorophyll, clarity, turbidity, and other 
metrics being the most common and (5) As the band utilised in 
water quality monitoring is very sluggish and concentrated mainly in 
the visible and near-infrared ranges, microwave and hyperspectral 
remote sensing data are less commonly used in water quality 
quantitative remote sensing inversion applied research.

The primary aim of this study was to use GIS and remote sensing 
techniques to determine the extent of LULC changes in the Loha 
Taluka, Maharashtra, India, over 14 years and to analyse the 
temporal variations in the  environmental parameters of Limboti 
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Reservoir. The specific aims included distinguishing and delineating 
different LULC categories in Loha Taluka from 2007 to 2021; 
determining the shift in LULC classes through LULC mapping and 
change detection; retrieving all water quality parameters using RS 
and GIS techniques and analysing the temporal variation of trend 
and pattern of environmental as well as climatic parameters.

Materials and methods

Study area
The study region is located in the western portion of Nanded 
District, Maharashtra, India (Fig. 1). The Limboti Reservoir, located 
in Limboti Village of Loha Taluka (18.947388°N; 77.115440°E), 
Nanded District, is a small reservoir constructed on the Manyad 
River, completed in 2007. This reservoir lies near the border 
of Nanded and the Latur districts (Hussain et al., 2012), with 
the major part of the reservoir situated in Nanded District. The 
temperature ranges typically from 14 to 43°C throughout the year, 
with temperatures rarely falling below 10.5°C or rising over 45°C. 
From 29 March to 01 June, it is hot season, with an average daily 
high temperature of over 40°C. May is the hottest month in Nanded, 
with average highs of 42.2°C and lows of 27.2°C. From 05 July to  
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Fig. 1. Map of the study area

26 January, it is cold season, with an average daily high temperature 
of less than 32.8°C. December is the coldest month in Nanded, with 
an average low of 14°C and high of 30°C. The rainy season starts 
around 27 May and lasts for 4.3 months, ending around 04 October. 
In Nanded, the cloudiest month of the year is July, when the sky is 
overcast or mostly cloudy during 89% of the time.

Data collection
Satellite images were used for the land use/land cover  LULC 
and environmental parameter analysis. Landsat 8 OLI/TIRS and 
Landsat 4-5 TM satellites were selected for this purpose. Images 
were selected, downloaded and retrieved from the United States 
Geological Survey-Earth Explorer (https://earthexplorer.usgs.
gov/). In particular, Landsat images have been very helpful in 
the larger-scale classification of various landscape components 
(Ozesmi and Bauer, 2002). Many of the current studies have been 
built from data retrieved by the Landsat satellite series, which 
has produced an extensive record of earth observation spanning 
more than 40 years (Flood, 2017). For the LULC study, two images 
were collected, one from Landsat 4-5 TM and one from Landsat  
8 OLI/TIRS. Both the images were Tier-1, Level-1 data from USGS’s 
repository. Multispectral images from 2013 to 2021 were used for 
environmental parameter retrieval. For the analysis of climatic 
parameters, data of the Nanded District were collected from 1975 
to 2021 from the Indian Meteorological Department (IMD). The 
details of the images and data are shown in Table 1.

In addition to Loha Taluka, other regions were visible in the Landsat 
images obtained from the USGS. The  images were clipped using 
ArcGIS Pro using a shapefile to extract the study region. Fig. 2 
shows the shapefile overlaid on the Landsat image for 2021 while  
Fig. 3  displays the study area for the year 2021 after clipping.

Methodology

LULC classification and change detection

Image pre-processing and classification
Prior to the identification of change, satellite image pre-processing 
is critical, with the primary goal of building a more direct link 
between the recorded data and biophysical phenomena (Coppin  
et al., 2004). The stages of image pre-processing are: detection and 
restoration of bad lines, geometric rectification or co-registration, 
absolute methods such as atmospheric and radiometric calibration, 
comparative methods such as topographic correction for rugged 
terrain and  cloud masking if necessary. All satellite data were 
analysed by assigning per-pixel signatures and categorising the 
study area into four classes based on the Digital Number (DN) value 
of various landscape characteristics. Bands 1, 2, 3, 4, 5 and 7 and 

Table 1. Data sources
Data Date Bands/colour Source

Data for LULC analysis Landsat 4-5 TM 27-09-2007 Multispectral USGS- Earth Explorer
Landsat 8 OLI/TIRS C1 Level-1 12-05-2021 Multispectral USGS- Earth Explorer

Data for retrieval of environmental parameters Landsat 8 OLI/TIRS C1 Level-1 2013 to 2021 Multispectral USGS- Earth Explorer
Climatic parameters MMAX temperature, MMIN 

temperature, TMRF, MWS
1975 to 2021 Indian Meteorological 

Department
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Fig. 2. Extracting study area from Landsat image i.e., Limboti Reservoir (red) 
and  Loha taluka (yellow)
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Fig. 3. Area of interest after clipping

2, 3, 4, 5, 6 and 7, which correspond to all visible and infrared bands 
for Landsat-5TM and Landsat-8 (OLI), respectively, were combined 
for classification using a pixel-based supervised classification 
algorithm after pre-processing.

Fig. 4 represents the composite band for bands 1 to 7 for Loha Taluka, 
2021 and the colour infrared (vegetation) band combination was 
used to classify all classes. The classifier was trained by drawing 
255 polygons for the year 2007 and 286 for 2021. To classify the 
images based on their spectral characteristics, Maximum likelihood 
classifier (MLC) was used. The delineated classes were water 
bodies, vegetation, settlements and barren land (Table 2). 

LULC change detection
The study used ArcGIS 10.3 to execute a post-classification change 
detection approach. The overlay method was used to acquire 
changes in land cover/land use throughout the selected time 
period. The implementation of this approach yielded a two-way 
cross-matrix, which was utilised to describe the primary forms of 
change in the research area. Cross-tabulation analysis on a pixel-
by-pixel basis was used to determine the number of conversions 
from one land cover category to another, as well as their related 
area, across the evaluated time. As a result, these two classified 
maps yielded a new thematic layer with various combinations of 
“from-to” shift classes.

Retrieval of environmental parameters (Chl-a, WST 
and TSS)
Chlorophyll-a concentration is a well-known indicator of ecological 
health of an aquatic environment and it has long been used to assess 
water quality and trophic condition. Satellite remote sensing is a 
strong instrument for monitoring and managing water quality that 

Class name Description
Water body River, open water, lakes, ponds and reservoirs
Vegetation Crop fields, forests and mixed forest lands
Settlement Residential, commercial, industrial, transportation,  

roads, mixed urban
Barren land Barren area with no vegetation

Table 2. Classes delineated on the basis of supervised classification

0  1.753.5                7        10.5            14  Miles

Legend

Loha Taluka
Composite band 
RGB

Red: Band_5
Green: Band_4
Blue: Band_3

Fig. 4. Colour Infrared (Vegetation) band combination
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has the advantages of being cost-effective, time-efficient, offering 
synoptic coverage and having a relatively high temporal resolution 
(Le et al., 2013). Retrieval of Chl-a from the satellite sensors over 
the study region involves four steps viz., (1) Obtaining absolute 
TOA Reflectance from scaled DN values in the case of Landsat-8 
OLI, (2) Conversion of TOA Reflectance to SURFACE REFlectance,  
(3) Conversion of the Surface Reflectance to corresponding Remote 
Sensing Reflectance (Rrs) at these bands and finally (4) Retrieval 
of the water quality parameters from Rrs utilising the proposed 
empirical multivariate regression model (EMRM). The model used 
for the assessment of Chlorophyll-a concentration from satellite 
images is based on Zhou et al. (2020).

DN to Radiance
Each pixel has a numerical value known as a digital number (DN) 
that records the strength of electromagnetic energy. Radiance is 
the radiant flux that a particular surface emits, reflects, transmits, 
or receives per unit solid angle per unit projected area.

Gain and bias method
DN to radiance conversion formula utilising gain and bias values is:
Lλ = gain x DN + Bias

Lλ is the cell value as radiance; DN is the cell value digital number; 
gain is the gain value for a specific band; Bias is the bias value for 
a particular band.

Spectral radiance scaling method
The formula used in this process is as follows:

Lλ = 
LMAXλ - LMINλ

QCALMAX - QCALMIN
x (QCAL - QCALMIN) + LMINλ(                        )

Lλ is the cell value as radiance; QCAL is digital number; LMINλ is 
spectral radiance scales to QCALMIN; LMAXλ is spectral radiance 
scales to QCALMAX; QCALMIN is the minimum quantised calibrated 
pixel value (typically = 1); QCALMAX is the maximum quantised 
calibrated pixel value (usually = 255)

Radiance to ToA Reflectance

Pλ = 
π x Lλ x d2

ESUNλ x cos θs

Pλ = Unitless planetary reflectance; Lλ = spectral radiance (from 
earlier step); d = Earth-Sun distance in astronomical units; ESUNλ 
= mean solar exoatmospheric irradiances; θs = solar zenith angle.

Processing: Processing of the imagery was done using ESA-SNAP 
software.

ESA-SNAP: All Sentinel Toolboxes use the Sentinel Application 
Platform (SNAP), a shared software program designed for seamless 
data processing. The following technological breakthroughs make 
SNAP well suited for Earth observation (EO) processing and 
analysis: extensibility, portability, a modular rich client platform, 
tiled memory management, and a graph processing architecture. 
In addition to supporting Sentinel sensors, SNAP and the individual 

Sentinel Toolboxes also accommodate a variety of other sensor 
types. 

Water surface temperature is a significant driver in ecology, 
biodiversity and species distribution and it is an essential variable 
for understanding the Earth’s climate. Water surface temperature 
(WST) satellite remote sensing has many applications in aquatic 
ecological research. Retrieval of WST from the satellite sensors 
over the study region involves eight step viz., calculation of  
(1) Reflectance value (Ref); (2) MNDWI; (3) ToA (Top of 
Atmospheric) spectral radiance; (4) ToA to Brightness Temperature 
conversion (BT); (5) Proportion of vegetation Pv; (6) Emissivity (ε);  
(7) combining both BT10 and BT11, using the cell statistics tool and  
(8) water surface temperature (Vanhellemont 2020; Dadarao et al., 
2023).

Reflectance value

REF = ML x Qcal + AL
ML is Band specific multiplicative rescaling factor from the metadata 
(REFLECTANCE_MULT_BAND_x, where x is the band number); Qcal 
is quantised calibrated pixel value, corresponds to extracted band 
using extract by mask in ArcMap; AL is band-specific additive 
rescaling factor from the metadata (REFLECTANCE_ADD_BAND_x, 
where x is the band number).

MNDWI

MNDWI =
(Green - SWIR)
(Green + SWIR)

Green is band 3 (Visible green); SWIR is band 6 (Short wave infrared); 
MNDWI (The Modified Normalised Difference Water Index) uses 
green and SWIR bands for the enhancement of open water features. 
It also decreases built-up area features that are often correlated 
with open water in other indices.

ToA (Top of Atmospheric) spectral radiance
ToA = ML x Qcal + AL

ToA to Brightness Temperature conversion (BT)

BT =
K2 

[In(k1/L) + 1][             ]- 273.15

K1 is Band-specific thermal conversion constant from the metadata 
(K1_CONSTANT_BAND_x, where x is the thermal band number); 
is Band-specific thermal conversion constant from the metadata  
(K2_CONSTANT_BAND_x, where x is the thermal band number); L is 
ToA. The radiant temperature is changed by adding absolute zero 
(about -273.15°C) to get the data in Celsius.

Proportion of vegetation Pv

[                 ]Pv = Square
MNDWI - MNDWImin

MNDWImax - MNDWImin
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Usually, the maximum and minimum values of MNDWI image can 
be displayed directly within the image itself in softwares such as 
ArcGIS, QGIS, ENVI and Erdas Imagine. If this option is not available, 
these values can be accessed by opening the properties of the 
raster layer.

Emissivity (ε)
ε = 0.004 x Pv + 0.986

Water Surface Temperature (WST)                                                                            

The null hypothesis of no trend is rejected at p=0.01 if |Z|>2.575 and 
at p=0.05, if |Z|>1.96. 

It is worth noting that if S > 0, later observations in the time series 
tend to be larger than those appearing earlier in the time series, 
and if S < 0, the opposite is true. While a low negative value of S 
suggests a declining tendency, a large positive value of S indicates 
the opposite. If n>10, S is considered generally distributed with 
variance as:

[             ]WST =
                BT

0.00115 X BT
1.4388

1 + (        ) x In(ε)

Total suspended solids (TSS)
Total suspended solids (TSS) are essential carriers of organic matter 
like nitrogen and phosphorus and their movement and migration are 
crucial to the global material cycling and change process (Bianchi 
and Allison, 2009). TSS directly influences the primary productivity 
of the water body by regulating the distribution of dispersed light in 
the water body (Zhang et al., 2014), which affects the transparency 
and oxygen content of the water body and plays a key role in the 
aquatic ecological environment. To retrieve TSS concentration, the 
reflectance value of bands 3 and  4 is used, and the methods to find 
reflectance value are the same as for WST.

TSS = 172.191x In2 (      )-190.809 In (      ) + 61.6 (Dadarao et al., 2023  
R3

R4

R3

R4

Trendline prediction of environmental parameters

Mann-Kendall Trend test
The correlation between a time series’ ranks and its chronological 
order serves as the foundation for the Mann-Kendall trend test 
(Mann, 1945; Kendall, 1975). When determining if a time series has 
a monotonic upward or downward trend, the Mann-Kendall test is 
used. The absence of a trend is the null hypothesis for this test; the 
alternative hypothesis, for the two-sided test, is that there is a trend, 
and for the one-sided test, that trend is upward (or downward). The 
MK Test employs the subsequent statistic for the time series:

S = ∑  ∑ sign (xj - xk) 
n-1

i=1 j=k+1

n

Normalised test statistics Z is computed as:

where; sign (xj - xk) = {
1
0

-1

if xj - xi> 0
if xj - xi = 0
if xj - xi < 0

Z = {
S - 1

√VAS(S)

S + 1
√VAS(S)

0
if S > 0
if S = 0
if S < 0

S = VAR (S) = [n(n - 1) (2n + 5) - ∑ tp(tp - 1) (2tp + 5)1
18

q

p=1

where n = number of data points; q = number of tied groups and is 
the number data values in group p.

The Kendall’s Tau for two sets of data can be determined as:

Tau =
(Number of concordant pairs - Numbers of discordant pairs)

n (n - q)/2

The Tau value varies between -1 and +1 representing a strong 
negative association to a strong positive association between the 
data sets.

Multiplicative seasonal decomposition
Time series forecasting methods are a class of methods that can 
be utilised for forecasting (Mbuli et al., 2020). Pal and Yadav (2022) 
used to analyse a time series, the usual approach is to decompose 
it into three components as in the following: Trend, Seasonality and 
Irregular component.

The mathematical representation of the decomposition approach 
is:

Yt = St x Tt x Et (Alam et al., 2015)

where, Yt is the time series value (actual data) at period t; St is 
the seasonal component (index) at period t; Tt

 

is the trend-cycle 
component at period t; Et is the irregular (remainder) component 
at period t.

Moving average: Four-quarter moving average and 
centred moving average
Seasonal adjustment: For multiplicative decomposition, the 
seasonally adjusted data are computed by dividing the original 
observation by the seasonal component. Seasonal adjustment 
allows a reliable comparison of values at different points in time.

St x Et

Yt

Tt

Deseasonalising the data allows to quantify seasonality through 
seasonal indices. After deseasonalisation of the data, by applying 
linear regression to both the  deseasonalised data  and the total 
data points, the  coefficients a and b can be determined.

Holt-Winter’s multiplicative model
By adding a seasonal equation to Holt’s equations, Winters (1960) 
generalised Holt’s (1957) linear technique. Based on the pattern 
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revealed by the time plot, it is either additive or multiplicative. Fitting 
both additive and multiplicative models is recommended, followed 
by selecting the optimal model based on model adequacy checks. 
Greater current values are given more weight by the model, while 
values from the distant past are given less weight. The additive 
model is defined as follows:

Lt = α Yt
St-m

+ (1 - α) (Lt-1 + Tt-1)

St = Y Yt
Lt

+ (1 - Y) St-m 

Ft+1 = (Lt + Tt) St-m+1 

Tt = β (Tt - Lt-1) + (1 - β) Tt-1

where 0 ≤ α ≤ 1,0 ≤ β ≤ 1,0 ≤ Y ≤  1: α, β, Y are the smoothing 
parameters.

Lt is the smoothed level at time t, Tt is the change in the trend at the 
time t, St is the seasonal smooth at time t, Ft+1 is the forecasting 
within the dataset and m is the number of seasons per year.

Results and discussion

LULC classification and change detection
The classified LULC map of Loha Taluka for the years 2007 and 
2021 is given in Fig. 5. The statistics for classification, indicating 
the percentage cover and total area in hectares, are tabulated in  
Table 3. The land cover/land use practices observed in the taluka 
region between 2007 and 2021 are shown as a percentage of 
classes based on these results. The results show that a significant 
decline with respect to area coverage in Loha Taluka was observed 
in the barren land class. In contrast, the area of vegetation, water 
body and settlement classes had increased (Fig. 6). There has been 
a significant rise in water bodies (161.3%) and a significant decrease 

in barren land (49.46%). The vegetation area increased from 66.81 
to 80.22%. Vegetation occupies the highest land cover in both 2007 
and 2021, which is likely more than half. Settlements accounted 
for 1.54% of the entire area, although this figure has since risen to 
2.93%. Dhorde et al. (2012) worked on evaluation of LULC in Mula-
Mutha Watershed, Pune and compared the LULC change between 
the year 1989 and 2008 and found that there was a huge positive 
change in settlement, vegetation and agricultural land and water 
body while negative change in barren land. Masroor et al.(2022) 
worked on the influence of LULC alteration on climate variability 
in Aurangabad District and they compared the LULC change from 
1999 to 2019 and found that there was a positive change for the 
areas of water body, settlement and barren land but a negative 
change in the area of agricultural land.

The comparison of each class from 2007 to 2021 revealed that there 
has been a significant change in land use and land cover over the  
14 years. Table 4 shows that the total area of Nanded District 
changed from 2007 to 2021 is 84708.80 ha. The change from 
barren land to vegetation area in Nanded between 2007 and 2021 
is significant, that include 18173.93 ha. Settlement area expanded 
from 1308.01 to 2485.25 ha between 2007 and 2021, with most 
of the increase coming from vegetation area; from which we 
can conclude that the conversion of forest and agricultural land 
boosted dwelling, road and industrial areas. In 2021, 5791.14 ha of 
vegetation land were changed to barren land  and many agricultural 
lands were converted to unfertile and plotting areas. Due to growing 
urbanisation, 1114.34 ha of vegetative land were converted to 
settlement class. 

Environmental and climatic parameters of Limboti 
Reservoir
Landsat-8 multispectral pictures were used to analyse the 
environmental parameters of Limboti Reservoir chlorophyll-a 
concentration, water surface temperature and total suspended 
particles. For each month from 2013 to 2021, data was collected 

Legend
LULC_2007
Name

Legend
LULC_2021
Class_Name

Water body 
Vegetation
Sattlement
Barren land

Water body 
Vegetation
Sattlement
Barren land

Fig. 5. Classified LULC map of Loha Taluka;for  2007 (left) and  2021 (right)
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Table 5. Average water quality parameter changes between 2013 to 2021
Seasons Chlorophyll-a Water Surface  

Temperature
Total Suspended  
Solids

Winter +39.57 +2.35 +14.79
Pre-monsoon +4.24 +2.96 +3.56
Monsoon +1.02 +13.09 +28.96
Post-monsoon -31.23 +20.29 +22.76

Table 3. Land Use Land Covers Classes for Loha Taluka, Maharashtra

Land cover types
                         2007                          2021

% Change
Area (Ha) % Area (Ha) %

Water body 341.16 0.04 891.46 1.05 +161.3
Vegetation 56654.07 66.81 68021.8 80.22 +20.06
Settlement 1309.26 1.54 2487.91 2.93 +90.02
Barren land 26490.28 31.24 13386.62 15.79 -49.46
Total 84794.77 99.99 84787.79 99.99

100
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0 0.04 1.05 1.54 2.93

31.24

15.79

80.22
66.81

Water body           Vegetation        Settlement         Barren land

2007,        2021

Fig. 6. Class-wise percentage land cover

Table 4. Relative change in area (ha) of land cover types between 2007 and 2021
                                             2021

Water body Vegetation Settlement Barren land Total
2007 Water body 221.08 102.36 16.56 0.98 340.98

Vegetation 653.36 49043.95 1114.34 5791.14 56602.79
Settlement 8.24 646.55 546.67 106.55 1308.01
Barren land 5.05 18173.93 807.68 7470.34 26457.01
Total 887.73 67966.79 2485.25 13369.02 84708.80

season-wise: winter (January, February); pre-monsoon (March, April, 
May); monsoon (June, July, August, September) and post-monsoon 
(October, November, December) (October, November, December). 
The average of the collected data was used to determine the 
average value for the particular season.

The seasonal values of Chl-a, WST and TSS from 2013 to 2021 are 
shown in Fig. 7, chlorophyll-a value was highest (23.72 mg.m-3) in 
monsoon in 2020 and lowest (2.21 mg.m-3) in post-monsoon 2019; 
water surface temperature was highest (27.45o C) in pre-monsoon 
in 2019 and lowest (19.71oC) in winter in 2018 and total suspended 
solid concentration was highest (54.24 mg l-1) in monsoon in 2021 
and lowest (33.26 mg l-1) in post-monsoon in 2013. 

Table 5 shows the average water quality parameter changes from 
2013 to 2021. It can be seen that the chl-a concentration increased 
from 2013 to 2021 in all seasons except post-monsoon, where we 
can clearly see a drastic decrease of about 31%; winter shows a 
hike of 39.57%, while pre-monsoon and monsoon show a 4.24 and 
1.02% increase, respectively. In terms of water surface temperature, 
there is a definite upward trend in all four seasons, with the post-
monsoon season having the most significant increase of 20.29%. 
There is a complete increase in total suspended solid concentration 
in all four seasons, with the most significant increase of 28.96% 
occurring in the monsoon season.

Fig. 8 shows the climatic parameters, i.e., mean maximum 
temperature, mean minimum temperature and total mean rainfall, 

which were collected from IMD. Mean maximum temperature was 
highest (42.60oC) in pre-monsoon in 1978 and lowest (28.23oC) 
in monsoon 2007, likely mean minimum temperature was highest 
(32.5oC) in post-monsoon in 2007 and lowest (11.57oC) in post-
monsoon in 1983 and total mean rainfall was highest (482.2 mm) in 
monsoon in 2013 and lowest (0 mm) in winter and post-monsoon 
seasons across multiple years.

In Limboti Reservoir, the total mean rainfall has no trend, indicating 
an inconsistent pattern in all four seasons. During the post-
monsoon months, the mean maximum temperature increased, 
while during the pre-monsoon months, it decreased. In both the 
winter and post-monsoon months, the mean minimum temperature 
showed an increase. Table 6 presents a year-by-year trend analysis 
of climatic factors, demonstrating that mean maximum and 
minimum temperatures are increasing. In contrast, rainfall has no 
trend indicating an irregular rainfall pattern. 

A correlation matrix with six components was built to know the 
relationship between environmental and climatic parameters 
(Fig. 9). From this it is evident that WST and Chl-a had a positive 
relationship. This is because when WST rises, it provides nutrients 
to the photic zones, which leads to greater photosynthesis (Bouffard 
et al., 2018). As fast water flow keeps particles suspended rather 
than allowing them to settle, there is a positive relationship between 
rainfall and TSS. Wind generates turbulence in the water, preventing 
solid particles from settling, according to a positive link between 
TSS and MWS. MMAX temperature and rainfall have a negative 
relationship, indicating that temperatures are high and rainfall is 
sparse during the pre-monsoon or summer seasons.
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Fig. 7. Chart showing retrieved value of Chl-a, WST and TSS season wise from 2013-2021
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Fig. 8. Climatic parameters i.e., MMAX temperature (°C), MMIN temperature (°C) and Total mean rain fall (mm) of Limboti Reservoir between 1975-2021

model. Table 7 and 8 shows the expected values for each of the 
three parameters by using both models for all four seasons for 
the year 2022 and 2023. The root mean square error is used as an 
indicator to determine which prediction model is superior for this 
data analysis (Table 9). Compared to Holt-Winter’s multiplicative 
model, the multiplicative seasonal decomposition model had less 
inaccuracies. This is due to the presence of a seasonal factor in 
this model. Fig. 10 and 11 show the comparison graph for data 
between observed and predicted values for multiplicative seasonal 
decomposition and Holt-Winter’s multiplicative model respectively; 
and from those figures, it is clear that there is significant 
variation between observed and predicted values in the case of  

Prediction of environmental parameters 
The water quality metrics (Chl-a, WST and TSS) for the years 
2022 and 2023 were predicted using the multiplicative seasonal 
decomposition model and Holt-Winter’s multiplicative prediction 

Table 6. Trend analysis of climatic parameters during different seasons in 
Limboti Reservoir
Climatic parameters Tau(𝜏) p-value Remark
MMAX Temperature 0.225 0.028 Significant increasing trend
MMIN Temperature 1 <0.0001 Significant increasing trend
Total Mean Rainfall 0.092 0.373 No trend
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Holt-Winter’s multiplicative model compared to multiplicative 
seasonal decomposition method.

The results of the study through the application of GIS and remote 
sensing (RS) tools reveal that the land cover/land use practices in 
the study area have undergone significant changes over the  14 
years period. The rise in the area of settlement and waterbody class 
(90 and 161.3%, respectively) and fall in the area of barren land 
(49.46%) was evidence of the LULC change in the study area. The 
fact that there has been an increase in vegetation area (20.02%) 
as barren lands were converted to vegetation land is surreal; we 
can assume that as the settlement grew, people began to engage in 
more agricultural activities. In the year 2021, there was a relatively 
small amount of water, accounting for only 1% of the entire area. 
As a result, the government and policymakers need to take the 
appropriate procedures and management methods to expand the 
taluka’s water holding areas. These changes may have ramifications 
for long-term resource management and the well-being of local 
society. To avoid unfavourable LULC dynamics in the taluka, 
effective land management practices (soil and water conservation), 
enhanced agricultural inputs, integrated watershed management 
(land use planning and management) and active participation 
of the local population should be pursued. In this work, change 
detection analysis utilising GIS and remote sensing could provide 
vital information for planners and decision-makers to understand 
the patterns of land use dynamics, allowing for sustainable land 
management planning. 

Water quality of the reservoir has deteriorated substantially as 
anthropogenic activities and industrial growth has increased. The 

WST

Chl-a

TSS

MMAX

MMIN

TMRF

WST                Chl-a                 TSS              MMAX             MMIN           TMRF

WST (Water Surface Temperature)
Chl-a (Chlorophyll-a Concentration)
TSS (Total Suspended Solids)
MMAX (Mean Maximum Temperature)
MMIN (Mean Minimum Temperature)
TMRF (Total Mean Rainfall)

1

0.37593*

0.4272

-0.15826

0.5693**

-0.3353*

1

0.280111

0.149875

0.376048

0.197893

1

0.472936

0.439884

0.21248

1

0.563544

-0.53902

1

-0.6949 1

Fig. 9. Correlation Matrix

most effective, less expensive, and more reliable instruments 
for monitoring water quality parameters in various waterbodies 
(lakes, rivers and groundwater) include remote sensing and GIS. 
Environmental parameters (WST, Chl-a concentration and TSS) 
were retrieved and evaluated for a period of nine years, from 2013 
to 2021 and predictions were made for the years 2022 and 2023. 
When compared to Holt-Winter’s multiplicative model, multiplicative 
seasonality decomposition revealed less inaccuracy, implying 
that the presence of a seasonality factor in this data permitted 
multiplicative seasonal decomposition to be more accurate. Climate 
data such as MMAX temperature, MMIN temperature, and total 
mean rainfall were acquired from IMD and analysed to determine 
the trend from 1975 to 2021. The data revealed that the MMAX and 
MMIN temperatures are increasing and rainfall is unpredictable. 
Water quality has severely deteriorated as a result of increased 
human activity and industrial growth. By 2021, all the changes in 
land cover and land use patterns had a negative impact on water 
quality and accessibility, which could become a limiting factor in 
the future for both urban growth and agricultural practice, as well as 
cause further loss of already shrinking vegetation cover in watershed 

Table 7. Multiplicative Seasonal Decomposition model

Year Season
                      Parameters
Chl-a (mg.m-3) WST (oC) TSS (mg.l-1)

2022 Winter 17.14 21.38 43.14
Pre-monsoon 18.16 25.45 45.57
Monsoon 15.97 21.70 48.61
Post-monsoon 9.87 22.32 40.46

2023 Winter 16.87 21.33 43.55
Pre-monsoon 17.73 25.36 46.10
Monsoon 15.94 21.63 49.77
Post-monsoon 10.47 22.08 40.90

Table 8. Holt-Winters Multiplicative method

Year Season
                             Parameters
Chl-a (mg.m-3) WST (oC) TSS (mg.l-1)

2022 Winter 18.52 20.17 44.60
Pre-monsoon 20.08 24.02 47.52
Monsoon 20.03 20.03 43.89
Post-monsoon 20.97 20.97 40.25

2023 Winter 20.18 20.18 45.44
Pre-monsoon 24.03 24.03 48.40
Monsoon 20.04 20.04 44.68
Post-monsoon 20.98 20.98 40.96

Table 9. Error comparison between both the models
Year Model                Error

Chl-a WST TSS
2022 Multiplicative Seasonal Decomposition 3.24 1.15 4.18

Holt-Winters Multiplicative method 10.29 5.95 8.34
2023 Multiplicative Seasonal Decomposition 3.12 1.09 3.95

Holt-Winters Multiplicative method 9.68 5.60 7.85
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Fig. 10. Comparison between observed and predicted values of Multiplicative seasonal decomposition metho
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Fig. 11. Comparison between observed and predicted values of Holt-Winter’s multiplicative model

areas. Land use and climate change scenarios have enhanced our 
understanding and visualisation of their potential impacts on the 
hydrology  of the Limboti Reservoir. By utilising these scenarios, 
we can explore various land use and climate conditions to assess 
the reservoir’s response. The research provides valuable insights 
for stakeholders and policymakers, enabling them to evaluate the 
effects of different strategies and to make more informed decisions 
for sustainable management.  

References
Adjovu, G. E., Stephen, H., James, D. and Ahmad, S. 2023. Measurement 

of total dissolved solids and total suspended solids in water 
systems: A review of the issues, conventional, and remote sensing 
techniques. Remote Sens., 15(14): 3534.

Bhadoriya, U. P. S., Mishra, A., Singh, R. and Chatterjee, C. 2020. Implications 
of climate change on water storage and filling time of a multipurpose 
reservoir in India. J. Hydrol., 590: 125542. https://doi.org/10.1016/j.
jhydrol.2020.125542.

Bianchi, T. S. and Allison, M. A. 2009. Large-river delta-front estuaries as 
natural “recorders” of global environmental change. Proc. Natl. Acad. 
Sci., 106(20): 8085-8092. https://doi.org/10.1073/pnas.0812878106.

Bonansea, M., Bazan, R., German, A., Ferral, A., Beltramone, G., Cossavella, A. 
and Pinotti, L. 2021. Assessing land use and land cover change in 
Los Molinos reservoir watershed and the effect on the reservoir water 
quality. J. S. Am. Earth Sci., 108: 103243. https://doi.org/10.1016/j.
jsames.2021.103243.

Boucher, J., Weathers, K. C., Norouzi, H. and Steele, B. 2018. Assessing the 
effectiveness of Landsat 8 chlorophyll a retrieval algorithm for regional 
freshwater monitoring. Ecol. Appl., 28(4): 1044-1054. https://doi.
org/10.1002/eap.1708.

Butt, A., Shabbir, R., Ahmad, S. S. and Aziz, N. 2015. Land use change 
mapping and analysis using Remote Sensing and GIS: A case study of 
Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space 
Sci., 18(2): 251-259.

Chaudhary, B. S., Saroha, G. P. and Yadav, M. 2008. Human induced land 
use/land cover changes in northern part of Gurgaon district, Haryana, 
India: natural resources census concept. J. Hum. Ecol., 23(3): 243-252. 
https://doi.org/10.1080/09709274.2008.11906077.

Dadarao, W. S., Yadav, V. K., Patro, K. S. K., Meharoof, M. and Sharma, A. 
2023. Temporal dynamics of LULC with environmental and climatic 
parameter assessment using remote sensing and GIS: A case study in 
Dimbe Reservoir, Ambegaon Taluk, Maharashtra, India: Use of remote 
sensing and GIS for LULC assessment. J. Inland Fish. Soc. India, 55(1): 75-93.

Dhorde, A., Das, S. and Dhorde, A. 2012. Evaluation of Land Use/Land Cover 
Change in Mula-Mutha Watershed, Pune Urban Agglomeration, Maharashtra, 
India, based on remote sensing data. Earth Sci. India, 5(3): 108-121.

Fengyun, M. 2010, March. Progress in water quality monitoring based on 
remote sensing and GIS. IEEE, 2: 208-211. https://doi.org/10.1109/
CESCE.2010.246.

Ficke, A. D., Myrick, C. A. and Hansen, L. J. 2007. Potential impacts of global 
climate change on freshwater fisheries. Rev. Fish Biol. Fish., 17(4):  
581-613. https://doi.org/10.1007/s11160-007-9059-5.

Flood, N. 2017. Comparing Sentinel-2A and Landsat 7 and 8 using surface 
reflectance over Australia. Remote Sens., 9(7): 659.

Fukushima, T., Takahashi, M., Matsushita, B. and Okanishi, Y. 2007. Land 
use/cover change and its drivers: A case in the watershed of Lake 
Kasumigaura, Japan. Landsc. Ecol. Eng., 3(1): 21-31.

Gomez, C., White, J. C. and Wulder, M. A. 2016. Optical remotely sensed 
time series data for land cover classification: A review. ISPRS  
J. Photogramm. Remote Sens., 116: 55-72. https://doi.org/10.1016/j.
isprsjprs.2016.03.008.



© 2024 Indian Council of Agricultural Research | Indian J. Fish., 71 (3),  July-September 2024� 59

Assessment of LULC changes in Maharashtra

Hendrata, W. and Umbro, L. 2019. Analysis of sea surface temperature 
with total suspended solid algorithm based on satellite images data. In: 
Proceedings of the International Seminar of Research month science and 
technology for people empowerment, 23rd November 2018. Surabaya, 
Indonesia, p. 322-332.

Hussaina, S., Maneb, V., Pradhanc, V. and Farooqui, M. 2012. Physico-chemical 
analysis of Limboti Dam water, Dist. Nanded, Maharashtra.  
J. Adv. Sci. Res., 3(01): 55-57.

Karunakaran, D., Kumar Sahu, S., Pandit, A. and Sharma, A. P. 2019. 
Assessment of chlorophyll and water quality using remote sensing 
and GIS imagery in the Cauvery watershed of Karnataka, India. Indian  
J. Fish., 66(2): 43-48.

Kaul, H. A. and Sopan, I. 2012. Land use land cover classification and change 
detection using high resolution temporal satellite data. J. Environ., 1(4): 
146-152.

Li, Z. and Jin, J. 2017. Evaluating climate change impacts on streamflow 
variability based on a multisite multivariate GCM downscaling method 
in the Jing River of China. Hydrol. Earth Syst. Sci., 21(11): 5531-5546. 
https://doi.org/10.5194/hess-21-5531-2017.

Masroor, M., Avtar, R., Sajjad, H., Choudhari, P., Kulimushi, L. C., Khedher, K. M., 
Komolafe, A. A., Yunus, A. P. and Sahu, N. 2022. Assessing the influence 
of land use/land cover alteration on climate variability: An analysis in the 
Aurangabad District of Maharashtra State, India. Sustainability, 14(2): 642.

Mbuli, N., Mathonsi, M., Seitshiro, M. and Pretorius, J. H. C. 2020. 
Decomposition forecasting methods: A review of applications in power 
systems. Energy Rep., 6: 298-306.

Ozesmi, S. L. and Bauer, M. E. 2002. Satellite remote sensing of 
wetlands. Wetl. Ecol. Manag., 10: 381-402.

Soundharajan, B. S., Adeloye, A. J. and Remesan, R. 2016. Evaluating the 
variability in surface water reservoir planning characteristics during 
climate change impacts assessment. J. Hydrol., 538: 625-639. https://
doi.org/10.1016/j.jhydrol.2016.04.051.

Tayari, E., Jamshid, A. R. and Goodarzi, H. R. 2015. Role of GPS and GIS in 
precision agriculture. J. Sci. Res. Dev., 2(3): 157-162.

Tewabe, D. and Fentahun, T. 2020. Assessing land use and land cover change 
detection using remote sensing in the Lake Tana Basin, Northwest 
Ethiopia. Cogent Environ. Sci., 6(1): 1778998. https://doi.org/10.1080/2
3311843.2020.1778998.

Vanhellemont, Q. 2020. Automated water surface temperature retrieval from 
Landsat 8/TIRS. Remote Sensing of Environment, 237: 111518.

Wei, W., Gao, Y., Huang, J. and Gao, J. 2020. Exploring the effect of basin 
land degradation on lake and reservoir water quality in China. J. Clean. 
Prod., 268: 122249. https://doi.org/10.1016/j.jclepro.2020.122249.

Zaidi, A. Z. 2012. Water quality management using GIS and RS tools. 
In: Proceedings of the World Environmental and Water Resources 
Congress 2012: Crossing Boundaries, pp. 842-848.

Zhang, Y., Wu, Z., Liu, M., He, J., Shi, K., Wang, M. and Yu, Z., 2014. Thermal 
structure and response to long‐term climatic changes in Lake Qiandaohu, a deep 
subtropical reservoir in China. Limnol. Oceanogr., 59(4): 1193-1202. 
https://doi.org/10.4319/lo.2014.59.4.1193.

Zhou, X., Zhang, J., Chen, D., Huang, Y., Kong, W., Yuan, L., Ye, H. and Huang, W. 
2020. Assessment of leaf chlorophyll content models for winter 
wheat using Landsat-8 multispectral remote sensing data. Remote 
Sens., 12(16): 2574.

Zubair, A. O. 2006. Change detection in land use and Land cover using remote 
sensing data and GIS: A case study of Ilorin and its environs in Kwara 
State. M. Sc. Dissertation University of Ibadan, Nigeria, pp. 1-54.


