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Abstract

In this study, multispectral satellite data from Landsat 4-5 TM and Landsat 8 OLI/TIRS was
used to analyse Land Use Land Cover (LULC) change detection and to retrieve environmental
parameters. The LULC change detection was done between 2007 and 2021. This study
used the supervised classification-maximum likelihood approach in ArcGIS 10.3 software
to detect LULC in Loha Taluka, Maharashtra. The taluka was classified into four major
LULC classes, viz. water, vegetation, settlement and barren-land. Changes in LULC directly
or indirectly will also induce a change in the environmental parameters. Environmental
parameters (water surface temperature, chlorophyll-a concentration and total suspended
solids) were analysed for Limboti Reservoir. Data were predicted for next two years (2022
and 2023) using multiplicative seasonal decomposition and Holt-Winter's multiplicative
method and trends of each parameter were analysed using Mann-Kendall trend method. For
both years, vegetative land was the most extensive LC in Loha Taluka, accounting for more
than 60% of the total land area. However, throughout these years, urbanisation was rampant
and vegetative land was converted to settlement. In these years, open water resources such
as reservoirs, lakes and rivers covered a very small percentage of the total area, which is a
serious threat to the ecosystem. As a result, proper water body management is essential;
otherwise, these resources will be destroyed and will no longer be able to contribute to the
area’s socioeconomic growth.
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e Introduction These changes will impact interannual and
seasonal streamflow variability (Li and Jin,
With large variations in precipitation, ~ 2017) leading to changes in regional water

surface temperature and other climatic
factors, global climate change has emerged
as a serious danger to water resources
(Bhadoriya et al, 2020). Climate change is
expected to have animpact on the hydrology
of most regions of the world by influencing
temperature, rainfall, evapotranspiration
(IPCC, 2007) and eventually runoff, as
well as the planning characteristics (e.g.,
capacity) and performance (reliability,
resilience, vulnerability and sustainability)
of water resources infrastructures such
as, reservoirs (Soundharajan et al, 2016).
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availability. The negative environmental
and socio-political impacts of climate
change will intensify, particularly in poor
and developing countries including India
(NAPCC, 2008; DARA, 2012). Increased
water temperatures, decreasing dissolved
oxygen levels and increased toxicity
of contaminants are all expected to be
prevalent effects of climate change on
freshwater systems (Ficke et al, 2007).
It may become extremely difficult to
manage reservoirs to achieve conflicting
and competing purposes optimally in the
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future due to uncertain water availability and demand (Bhadoriya
et al, 2020). India is a country with many reservoirs, large, medium
and small. These reservoirs were crucial in the development of
India's culture and settlements in villages, towns and cities. They
supply water for irrigation, bathing, washing, fisheries and other
recreational activities and any impact on reservoirs is bound to
impact Indian society significantly.

There are various roles of geospatial technologies for monitoring
and assessing the climatic and environmental parameters and
land use land cover (LULC) change detection. Geospatial systems
include thematic mapping, the Global Positioning System (GPS),
remote sensing (RS) and Geographic Information Systems (GIS)
(USGS, 2000). Remote sensing is the process of collecting data and
knowledge about a phenomenon or a region without coming into
direct contact with it and is alternative to in situ observations (Zaidi,
2012). Recent advancements in remote sensing techniques have
enabled the acquisition of water quality data at geographical and
temporal resolutions that are beyond the capability of infrequent
and point scale in situ measurements (Zaidi, 2012). GIS technology
allows researchers to analyse and process large amounts of data
at high speed and in less time and remote sensing systems provide
uniform measurements with high-speed for large areas in the
digital form (Tayari et al, 2015). Remote sensing has been used
to classify and map land cover and land use changes with different
techniques and data sets (Butt et al,, 2015). Conventional methods
for assessing and monitoring water quality need a lot of time, data
and money, which is often out of reach for developing countries
(Zaidi, 2012; Karunakaran et al, 2019). Using the geographic
capabilities of RS and GIS techniques to address these difficulties is
a cost-effective and quality research solution for large areas (Zaidi,
2012; Karunakaran et al,, 2019). Most of the research has been on
optically active factors like temperature, chlorophyll-a (chl-a) and
total suspended solids. Chlorophyll-a is measured to detect the
algal growth in a water body, as excessive algal growth can indicate
the risk of eutrophication (Boucher et al,, 2018).

Land cover relates to the physical aspects of the natural
environment, including vegetation, settlements, water bodies,
forests and agricultural areas. Land use on the other hand,
describes how a settlement’s territory is utilised by people, such as
for housing or other human activities (Chaudhary et al,, 2008). LULC
has become a critical component in measuring and monitoring
environmental changes as well as managing natural resources
(Kaul and Sopan, 2012). Data from Earth sensing satellites has
been increasingly important in mapping the Earth's features
and infrastructures, managing natural resources and analysing
environmental change in recent years (Zubair, 2006). Land use
land cover change detection based on remote sensing data is
an important source of information for various decision support
systems. Data generated from the change detection in land use
and land cover, aid land conservation, sustainable development
and water resource management (Tewabe and Fentahun, 2020).
Remote sensing and Geographic Information Systems (GIS) are
powerful and cost-effective methods for analysing the spatial and
temporal change of LULC.

Remote sensing and GIS are critical tools for determining the factors
driving LULC changes as well as understanding their relationship
with the water quality of lakes and reservoirs (Fukushima et al,
2007; Wei et al., 2020). Because of their time and cost-effectiveness
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over broad areas as well as remote sites, these techniques make
monitoring and analysis of LULC change and eutrophication more
efficient than ground-based observations. In this regard, the Landsat
Program, which consists of a succession of satellite missions,
has the potential to monitor and quantify reservoir water quality
parameters and LULC change at a scale that allows natural and
human-induced causes to be distinguished (Gémez et al, 2016),
due to its extensive history and reasonably high spatial resolution.

Progress in water quality monitoring

Application of remote sensing and research in water quality
monitoring have progressed from the early stages of identifying
water quality indicators to remote monitoring, mapping and
forecasting. The spectral features of the waterbody are determined
mainly by the water body’'s material composition and a variety of
water conditions. The key factors that affect water quality include
suspended particles in water (turbidity), algae (Chlorophyll,
Carotenoids), chemicals (nutrients, insecticides, metals), dissolved
organic matter, heat emissions, pathogens and oil compounds
(Fengyun, 2010). Water surface temperature, sea surface
temperature, total dissolved solids, total suspended solids, water
transparency, Chlorophyll a concentration, dissolved organic matter,
the vertical attenuation coefficient of water incident and outgoing
lightand some integrated pollution indexes such as nutritional status
index are all water quality parameters that can be monitored using
remote sensing (Hendrata and Umbro, 2019; Adjovu et al,, 2023).
Overall, in the use of remote sensing techniques for monitoring
water quality, extracting the concentrations of suspended matter
in water and chlorophyll represents a more advanced technology.

Existing problems in water quality monitoring

Remote sensing and GIS are two new technologies for monitoring
water quality. On various spatial and temporal scales, remote
sensing can offer the essential information for quantifying and
analysing water properties and landscape features. It offers
exciting opportunities to investigate fluvial patterns and processes
by utilising wavelengths invisible to the naked eye, such as
variations in infrared light reflected by different vegetation species.
Although there has been significant improvement in water quality
studies using remote sensing technologies, there are still several
issues such as: (1) The ideal spectral resolution, time resolution,
and geographical resolution for water quality monitoring are
still unknown for water quality remote sensing; (2) Monitoring
accuracy is low, and present techniques are almost empirical and
semi-empirical in nature; (3) Existing algorithms are partial, localised
and seasonal, as well as having limited applicability and adaptability;
(4) Water quality can be evaluated via remote sensing technology,
with floating sediment, chlorophyll, clarity, turbidity, and other
metrics being the most common and (5) As the band utilised in
water quality monitoring is very sluggish and concentrated mainly in
the visible and near-infrared ranges, microwave and hyperspectral
remote sensing data are less commonly used in water quality
quantitative remote sensing inversion applied research.

The primary aim of this study was to use GIS and remote sensing
techniques to determine the extent of LULC changes in the Loha
Taluka, Maharashtra, India, over 14 years and to analyse the
temporal variations in the environmental parameters of Limboti
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Reservoir. The specific aims included distinguishing and delineating
different LULC categories in Loha Taluka from 2007 to 2027,
determining the shift in LULC classes through LULC mapping and
change detection; retrieving all water quality parameters using RS
and GIS techniques and analysing the temporal variation of trend
and pattern of environmental as well as climatic parameters.

Materials and methods

Study area

The study region is located in the western portion of Nanded
District, Maharashtra, India (Fig. 1). The Limboti Reservoir, located
in Limboti Village of Loha Taluka (18.947388°N; 77.115440°E),
Nanded District, is a small reservaoir constructed on the Manyad
River, completed in 2007. This reservoir lies near the border
of Nanded and the Latur districts (Hussain et al, 2012), with
the major part of the reservoir situated in Nanded District. The
temperature ranges typically from 14 to 43°C throughout the year,
with temperatures rarely falling below 10.5°C or rising over 45°C.
From 29 March to 07 June, it is hot season, with an average daily
high temperature of over 40°C. May is the hottest month in Nanded,
with average highs of 42.2°C and lows of 27.2°C. From 05 July to

B¢ Nanded district map
S : «

y
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S

01.7535 7 10.5 14 Miles
Fig. 1. Map of the study area

Table 1. Data sources

26 January, it is cold season, with an average daily high temperature
of less than 32.8°C. December is the coldest month in Nanded, with
an average low of 14°C and high of 30°C. The rainy season starts
around 27 May and lasts for 4.3 months, ending around 04 October.
In Nanded, the cloudiest month of the year is July, when the sky is
overcast or mostly cloudy during 89% of the time.

Data collection

Satellite images were used for the land use/land cover LULC
and environmental parameter analysis. Landsat 8 OLI/TIRS and
Landsat 4-5 TM satellites were selected for this purpose. Images
were selected, downloaded and retrieved from the United States
Geological ~ Survey-Earth  Explorer  (https://earthexplorer.usgs.
gov/). In particular, Landsat images have been very helpful in
the larger-scale classification of various landscape components
(Ozesmi and Bauer, 2002). Many of the current studies have been
built from data retrieved by the Landsat satellite series, which
has produced an extensive record of earth observation spanning
more than 40 years (Flood, 2017). For the LULC study, two images
were collected, one from Landsat 4-5 TM and one from Landsat
8 OLI/TIRS. Both the images were Tier-1, Level-1 data from USGS's
repository. Multispectral images from 2013 to 2021 were used for
environmental parameter retrieval. For the analysis of climatic
parameters, data of the Nanded District were collected from 1975
to 2021 from the Indian Meteorological Department (IMD). The
details of the images and data are shown in Table 1.

In addition to Loha Taluka, other regions were visible in the Landsat
images obtained from the USGS. The images were clipped using
ArcGIS Pro using a shapefile to extract the study region. Fig. 2
shows the shapefile overlaid on the Landsat image for 2021 while
Fig. 3 displays the study area for the year 2021 after clipping.

Methodology
LULC classification and change detection

Image pre-processing and classification

Prior to the identification of change, satellite image pre-processing
is critical, with the primary goal of building a more direct link
between the recorded data and biophysical phenomena (Coppin
etal, 2004). The stages of image pre-processing are: detection and
restoration of bad lines, geometric rectification or co-registration,
absolute methods such as atmospheric and radiometric calibration,
comparative methods such as topographic correction for rugged
terrain and cloud masking if necessary. All satellite data were
analysed by assigning per-pixel signatures and categorising the
study area into four classes based on the Digital Number (DN) value
of various landscape characteristics. Bands 1, 2, 3, 4, 5 and 7 and

Data Date Bands/colour Source
Data for LULC analysis Landsat 4-5TM 27-09-2007 Multispectral USGS- Earth Explorer
Landsat 8 OLI/TIRS C1 Level-1 12-05-2021 Multispectral USGS- Earth Explorer
Data for retrieval of environmental parameters Landsat 8 OLI/TIRS C1 Level-1 2013 t0 2021 Multispectral USGS- Earth Explorer
Climatic parameters MMAX temperature, MMIN 1975 t0 2021 Indian Meteorological

temperature, TMRF, MWS

Department
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Fig. 2. Extracting study area from Landsat image i.e., Limboti Reservoir (red)
and Loha taluka (yellow)
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Fig. 3. Area of interest after clipping

2,3,4,5,6and 7, which correspond to all visible and infrared bands
for Landsat-5TM and Landsat-8 (OLI), respectively, were combined
for classification using a pixel-based supervised classification
algorithm after pre-processing.

Fig. 4 represents the composite band for bands 1 to 7 for Loha Taluka,
2027 and the colour infrared (vegetation) band combination was
used to classify all classes. The classifier was trained by drawing
255 polygons for the year 2007 and 286 for 2021. To classify the
images based on their spectral characteristics, Maximum likelihood
classifier (MLC) was used. The delineated classes were water
bodies, vegetation, settlements and barren land (Table 2).

Assessment of LULC changes in Maharashtra

Table 2. Classes delineated on the basis of supervised classification

Class name Description
Water body River, open water, lakes, ponds and reservoirs
Vegetation Crop fields, forests and mixed forest lands
Settlement Residential, commercial, industrial, transportation,
roads, mixed urban
Barren land Barren area with no vegetation
N

Legend

Loha Taluka
Composite band
RGB

I Red: Band_5
[ Green: Band_4

I GIe: Band 3

Fig. 4. Colour Infrared (Vegetation) band combination
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LULC change detection

The study used ArcGIS 10.3 to execute a post-classification change
detection approach. The overlay method was used to acquire
changes in land cover/land use throughout the selected time
period. The implementation of this approach yielded a two-way
cross-matrix, which was utilised to describe the primary forms of
change in the research area. Cross-tabulation analysis on a pixel-
by-pixel basis was used to determine the number of conversions
from one land cover category to another, as well as their related
area, across the evaluated time. As a result, these two classified
maps Yielded a new thematic layer with various combinations of
“from-to” shift classes.

Retrieval of environmental parameters (Chl-a, WST
and TSS)

Chlorophyll-a concentration is a well-known indicator of ecological
health of an aquatic environment and it has long been used to assess
water quality and trophic condition. Satellite remote sensing is a
strong instrument for monitoring and managing water quality that
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has the advantages of being cost-effective, time-efficient, offering
synoptic coverage and having a relatively high temporal resolution
(Le et al,, 2013). Retrieval of Chl-a from the satellite sensors over
the study region involves four steps viz., (1) Obtaining absolute
TOA Reflectance from scaled DN values in the case of Landsat-8
OLI, (2) Conversion of TOA Reflectance to SURFACE REFlectance,
(3) Conversion of the Surface Reflectance to corresponding Remote
Sensing Reflectance (Rrs) at these bands and finally (4) Retrieval
of the water quality parameters from Rrs utilising the proposed
empirical multivariate regression model (EMRM). The model used
for the assessment of Chlorophyll-a concentration from satellite
images is based on Zhou et al. (2020).

DN to Radiance

Each pixel has a numerical value known as a digital number (DN)
that records the strength of electromagnetic energy. Radiance is
the radiant flux that a particular surface emits, reflects, transmits,
or receives per unit solid angle per unit projected area.

Gain and bias method

DN to radiance conversion formula utilising gain and bias values is:
L, = gain x DN + Bias

L, is the cell value as radiance; DN is the cell value digital number;
gain is the gain value for a specific band; Bias is the bias value for
a particular band.

Spectral radiance scaling method

The formula used in this process is as follows:
] LMAX, - LMIN,
" (QCALMAX-QCALMIN

) % (QCAL- QCALMIN) + LMIN,

L, is the cell value as radiance; QCAL is digital number; LMIN, is
spectral radiance scales to QCALMIN; LMAX, is spectral radiance
scales to QCALMAX; QCALMIN is the minimum quantised calibrated
pixel value (typically = 1); QCALMAX is the maximum guantised
calibrated pixel value (usually = 255)

Radiance to ToA Reflectance

- mxL,xd?
" ESUN, x cos 6,

P, = Unitless planetary reflectance; L, = spectral radiance (from
earlier step); d = Earth-Sun distance in astronomical units; ESUN
= mean solar exoatmospheric irradiances; 6, = solar zenith angle.

A

Processing: Processing of the imagery was done using ESA-SNAP
software.

ESA-SNAP: All Sentinel Toolboxes use the Sentinel Application
Platform (SNAP), a shared software program designed for seamless
data processing. The following technological breakthroughs make
SNAP well suited for Earth observation (EO) processing and
analysis: extensibility, portability, a modular rich client platform,
tiled memory management, and a graph processing architecture.
In addition to supporting Sentinel sensors, SNAP and the individual

Sentinel Toolboxes also accommodate a variety of other sensor
types.

Water surface temperature is a significant driver in ecology,
biodiversity and species distribution and it is an essential variable
for understanding the Earth's climate. Water surface temperature
(WST) satellite remote sensing has many applications in aquatic
ecological research. Retrieval of WST from the satellite sensors
over the study region involves eight step viz, calculation of
(1) Reflectance value (Ref); (2) MNDWI; (3) ToA (Top of
Atmospheric) spectral radiance; (4) ToA to Brightness Temperature
conversion (BT); (5) Proportion of vegetation P ; (6) Emissivity (e);
(7) combining both BT, and BT, , using the cell statistics tool and
(8) water surface temperature (Vanhellemont 2020; Dadarao et al,
2023).

Reflectance value

REF = ML x Qcal + AL

ML is Band specific multiplicative rescaling factor from the metadata
(REFLECTANCE_MULT_BAND_x, where x is the band number); Qcal
is quantised calibrated pixel value, corresponds to extracted band
using extract by mask in ArcMap; AL is band-specific additive
rescaling factor from the metadata (REFLECTANCE_ADD_BAND_x,
where x is the band number).

MNDWI

(Green - SWIR)

MNDWI= Green + SWIR)

Greenis band 3 (Visible green); SWIR is band 6 (Short wave infrared);
MNDWI (The Modified Normalised Difference Water Index) uses
green and SWIR bands for the enhancement of open water features.
It also decreases built-up area features that are often correlated
with open water in other indices.

ToA (Top of Atmospheric) spectral radiance
ToA =ML x Qcal + AL

ToA to Brightness Temperature conversion (BT)

BT=[ - 27315

[In(kw/Lz) +1] }

K1 is Band-specific thermal conversion constant from the metadata
(K1_CONSTANT_BAND_x, where x is the thermal band number);
is Band-specific thermal conversion constant from the metadata
(K2_CONSTANT_BAND_x, where x is the thermal band number); L is
ToA. The radiant temperature is changed by adding absolute zero
(about -273.15°C) to get the data in Celsius.

Proportion of vegetation P,

MNDWI - MNDWI_ ]

P =Square|] ——————
! [MNDWIW- MNDWI .

n
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Usually, the maximum and minimum values of MNDWI image can
be displayed directly within the image itself in softwares such as
ArcGIS, QGIS, ENVI and Erdas Imagine. If this option is not available,
these values can be accessed by opening the properties of the
raster layer.

Emissivity (g)

£=0.004xP, +0.986

Water Surface Temperature (WST)

BT

WST =
|:1 N <0.001 156X BT> y In(s)]

1.4388

Total suspended solids (TSS)

Total suspended solids (TSS) are essential carriers of organic matter
like nitrogen and phosphorus and their movement and migration are
crucial to the global material cycling and change process (Bianchi
and Allison, 2009). TSS directly influences the primary productivity
of the water body by regulating the distribution of dispersed light in
the water body (Zhang et al., 2014), which affects the transparency
and oxygen content of the water body and plays a key role in the
aquatic ecological environment. To retrieve TSS concentration, the
reflectance value of bands 3 and 4 is used, and the methods to find
reflectance value are the same as for WST.

R R
TSS=172.191x Inz(ﬁ—190.809 In (Ta) +67.6 (Dadarao et al, 2023
4

4

Trendline prediction of environmental parameters

Mann-Kendall Trend test

The correlation between a time series’ ranks and its chronological
order serves as the foundation for the Mann-Kendall trend test
(Mann, 1945; Kendall, 1975). When determining if a time series has
a monotonic upward or downward trend, the Mann-Kendall test is
used. The absence of a trend is the null hypothesis for this test; the
alternative hypothesis, for the two-sided test, is that there is a trend,
and for the one-sided test, that trend is upward (or downward). The
MK Test employs the subsequent statistic for the time series:

n-1 n
S= ZS|gn (x-x,)
i=1 j=kt1
1 iij-x‘>0
where; sign(xj—xk): 0 ifx-x=0
1 ifx-x<0

Normalised test statistics Z is computed as:
S-1

VVAS(S) ifS>0

Z=150 ifS=0

SRl
WAS(S)

Assessment of LULC changes in Maharashtra

The null hypothesis of no trend is rejected at p=0.01if |Z[>2.575 and
at p=0.05, if |Z|>1.96.

It is worth noting that if S > 0, later observations in the time series
tend to be larger than those appearing earlier in the time series,
and if S < 0, the opposite is true. While a low negative value of S
suggests a declining tendency, a large positive value of S indicates
the opposite. If n>10, S is considered generally distributed with
variance as:

S=VAR(S) = 1) (2n+5)- Zt( 1) (2t,+5)

1
7g In(n-
where n = number of data points; g = number of tied groups and is
the number data values in group p.
The Kendall's Tau for two sets of data can be determined as:

(Number of concordant pairs - Numbers of discordant pairs)
n(n-q)/2

Tau =

The Tau value varies between -1 and +1 representing a strong
negative association to a strong positive association between the
data sets.

Multiplicative seasonal decomposition

Time series forecasting methods are a class of methods that can
be utilised for forecasting (Mbuli et al, 2020). Pal and Yadav (2022)
used to analyse a time series, the usual approach is to decompose
it into three components as in the following: Trend, Seasonality and
Irregular component.

The mathematical representation of the decomposition approach
is:

Y, =S xT xE (Alamet al, 2015)

where, Yt is the time series value (actual data) at period t; St is
the seasonal component (index) at period t; Tt is the trend-cycle
component at period t; Et is the irregular (remainder) component
at period t.

Moving average: Four-quarter moving average and
centred moving average

Seasonal adjustment: For multiplicative decomposition, the
seasonally adjusted data are computed by dividing the original
observation by the seasonal component. Seasonal adjustment
allows a reliable comparison of values at different points in time.

Deseasonalising the data allows to quantify seasonality through
seasonal indices. After deseasonalisation of the data, by applying
linear regression to both the deseasonalised data and the total
data points, the coefficients a and b can be determined.

Holt-Winter’'s multiplicative model

By adding a seasonal equation to Holt's equations, Winters (1960)
generalised Holt's (1957) linear technique. Based on the pattern
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revealed by the time plot, it is either additive or multiplicative. Fitting
both additive and multiplicative models is recommended, followed
by selecting the optimal model based on model adequacy checks.
Greater current values are given more weight by the model, while
values from the distant past are given less weight. The additive
model is defined as follows:

+(T-0) (L, +T,.)

tm

Tr =B (TI ° LH) +(1- B) TH

Yt
S.=Y ) +(1-Y)s,,
Fi+1 = (Lt + Tl) St-m+1

where 0 ca<10<B<10<Y< 1.0, B Y are the smoothing
parameters.

Lt is the smoothed level at time t, Tt is the change in the trend at the
time t, St is the seasonal smooth at time t, Ft+7 is the forecasting
within the dataset and m is the number of seasons per year.

Results and discussion

LULC classification and change detection

The classified LULC map of Loha Taluka for the years 2007 and
2021 is given in Fig. 5. The statistics for classification, indicating
the percentage cover and total area in hectares, are tabulated in
Table 3. The land cover/land use practices observed in the taluka
region between 2007 and 20271 are shown as a percentage of
classes based on these results. The results show that a significant
decline with respect to area coverage in Loha Taluka was observed
in the barren land class. In contrast, the area of vegetation, water
body and settlement classes had increased (Fig. 6). There has been
asignificant rise in water bodies (161.3%) and a significant decrease

LULC_2007
Name

oo body

Vegetation
I Sattlement
[ 1 Barren land

0 1.753.5 7 10.5

14
Miles

Fig. 5. Classified LULC map of Loha Taluka;for 2007 (left) and 2021 (right)

in barren land (49.46%). The vegetation area increased from 66.81
t0 80.22%. Vegetation occupies the highest land cover in both 2007
and 2021, which is likely more than half. Settlements accounted
for 1.54% of the entire area, although this figure has since risen to
2.93%. Dhorde et al. (2012) worked on evaluation of LULC in Mula-
Mutha Watershed, Pune and compared the LULC change between
the year 1989 and 2008 and found that there was a huge positive
change in settlement, vegetation and agricultural land and water
body while negative change in barren land. Masroor et al.(2022)
worked on the influence of LULC alteration on climate variability
in Aurangabad District and they compared the LULC change from
1999 to 2019 and found that there was a positive change for the
areas of water body, settlement and barren land but a negative
change in the area of agricultural land.

The comparison of each class from 2007 to 20271 revealed that there
has been a significant change in land use and land cover over the
14 years. Table 4 shows that the total area of Nanded District
changed from 2007 to 2021 is 84708.80 ha. The change from
barren land to vegetation area in Nanded between 2007 and 2021
is significant, that include 18173.93 ha. Settlement area expanded
from 1308.01 to 2485.25 ha between 2007 and 2021, with most
of the increase coming from vegetation area; from which we
can conclude that the conversion of forest and agricultural land
boosted dwelling, road and industrial areas. In 2021, 5791.14 ha of
vegetation land were changed to barren land and many agricultural
lands were converted to unfertile and plotting areas. Due to growing
urbanisation, 1114.34 ha of vegetative land were converted to
settlement class.

Environmental and climatic parameters of Limboti
Reservoir

Landsat-8 multispectral pictures were used to analyse the
environmental parameters of Limboti Reservoir chlorophyll-a
concentration, water surface temperature and total suspended
particles. For each month from 2013 to 2021, data was collected

Legend
LULC_2021
Class_Name

I Water body
[T Vegetation

I Sattlement
0 1.753.5 7 10.5 14
N ——

Miles [ ] Barrenland

© 2024 Indian Council of Agricultural Research | Indian J. Fish., 71 (3), July-September 2024 54



Table 3. Land Use Land Covers Classes for Loha Taluka, Maharashtra
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Land cover types 2007 2021 % Change
Area (Ha) % Area (Ha) %
Water body 341.16 0.04 891.46 1.05 +161.3
Vegetation 56654.07 66.81 68021.8 80.22 +20.06
Settlement 1309.26 1.54 2487.91 2.93 +90.02
Barren land 26490.28 31.24 13386.62 15.79 -49.46
Total 84794.77 99.99 84787.79 99.99
Table 4. Relative change in area (ha) of land cover types between 2007 and 2021
2021
Water body Vegetation Settlement Barren land Total
2007 Water body 221.08 102.36 16.56 0.98 340.98
Vegetation 653.36 49043.95 1114.34 5791.14 56602.79
Settlement 8.24 646.55 546.67 106.55 1308.01
Barren land 5.05 18173.93 807.68 7470.34 26457.01
Total 887.73 67966.79 2485.25 13369.02 84708.80
100 )
80.22 Table 5. Average water quality parameter changes between 2013 to 2021
80 Seasons Chlorophyll-a  Water Surface Total Suspended
60 Temperature Solids
Winter +39.57 +2.35 +14.79
40 Pre-monsoon  +4.24 +2.96 +3.56
20 Monsoon +1.02 +13.09 +28.96
0 0.04 1.05 1.54 2.93 Post-monsoon  -31.23 +20.29 +22.76

Settlement Barren land

Water body

Vegetation
m2007, m 2021

Fig. 6. Class-wise percentage land cover

season-wise: winter (January, February); pre-monsoon (March, April,
May); monsoon (June, July, August, September) and post-monsoon
(October, November, December) (October, November, December).
The average of the collected data was used to determine the
average value for the particular season.

The seasonal values of Chl-a, WST and TSS from 2013 to 2021 are
shown in Fig. 7, chlorophyll-a value was highest (23.72 mg.m?) in
monsoon in 2020 and lowest (2.21 mg.m?) in post-monsoon 2019;
water surface temperature was highest (27.45° C) in pre-monsoon
in 2079 and lowest (19.71°C) in winter in 2018 and total suspended
solid concentration was highest (54.24 mg I') in monsoon in 2021
and lowest (33.26 mg I') in post-monsoon in 2013.

Table 5 shows the average water quality parameter changes from
2013 10 2021. It can be seen that the chl-a concentration increased
from 20713 to 2021 in all seasons except post-monsoon, where we
can clearly see a drastic decrease of about 31%; winter shows a
hike of 39.57%, while pre-monsoon and monsoon show a 4.24 and
1.02% increase, respectively. In terms of water surface temperature,
there is a definite upward trend in all four seasons, with the post-
monsoon season having the most significant increase of 20.29%.
There is a complete increase in total suspended solid concentration
in all four seasons, with the most significant increase of 28.96%
occurring in the monsoon season.

Fig. 8 shows the climatic parameters, ie, mean maximum
temperature, mean minimum temperature and total mean rainfall,

which were collected from IMD. Mean maximum temperature was
highest (42.60°C) in pre-monsoon in 1978 and lowest (28.23°C)
in monsoon 2007, likely mean minimum temperature was highest
(32.5°C) in post-monsoon in 2007 and lowest (11.57°C) in post-
monsoon in 1983 and total mean rainfall was highest (482.2 mm) in
monsoon in 2013 and lowest (0 mm) in winter and post-monsoon
seasons across multiple years.

In Limboti Reservoir, the total mean rainfall has no trend, indicating
an inconsistent pattern in all four seasons. During the post-
monsoon months, the mean maximum temperature increased,
while during the pre-monsoon months, it decreased. In both the
winter and post-monsoon months, the mean minimum temperature
showed an increase. Table 6 presents a year-by-year trend analysis
of climatic factors, demonstrating that mean maximum and
minimum temperatures are increasing. In contrast, rainfall has no
trend indicating an irregular rainfall pattern.

A correlation matrix with six components was built to know the
relationship between environmental and climatic parameters
(Fig. 9). From this it is evident that WST and Chl-a had a positive
relationship. This is because when WST rises, it provides nutrients
to the phatic zones, which leads to greater photosynthesis (Bouffard
et al, 2018). As fast water flow keeps particles suspended rather
than allowing them to settle, there is a positive relationship between
rainfall and TSS. Wind generates turbulence in the water, preventing
solid particles from settling, according to a positive link between
TSS and MWS. MMAX temperature and rainfall have a negative
relationship, indicating that temperatures are high and rainfall is
sparse during the pre-monsoon or summer seasons.
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Fig. 7. Chart showing retrieved value of Chl-a, WST and TSS season wise from 2013-2021

Table 6. Trend analysis of climatic parameters during different seasons in
Limboti Reservoir

Climatic parameters Tau(r)  p-value  Remark
MMAX Temperature 0225  0.028 Significant increasing trend
MMIN Temperature 1 <0.0001 Significant increasing trend
Total Mean Rainfall 0.092 0373 No trend

Prediction of environmental parameters

The water quality metrics (Chl-a, WST and TSS) for the years
2022 and 2023 were predicted using the multiplicative seasonal
decomposition model and Holt-Winter's multiplicative prediction
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40 e 30
— e A — 20
20
10
0 0
DO =N OMODNL O — <~ O
NN ODODDDNDO OO — o — A
SOOI ODOOO OO OO
B S S SRS SR SR
(a)
600

400
200

- Winter,

- Pre-monsoon, - Monsoon,

©)

Fig. 8. Climatic parameters i.e., MMAX temperature (°C), MMIN temperature (°C) and Total mean rain fall (mm) of Limboti Reservoir between 1975-2021

model. Table 7 and 8 shows the expected values for each of the
three parameters by using both models for all four seasons for
the year 2022 and 2023. The root mean square error is used as an
indicator to determine which prediction model is superior for this
data analysis (Table 9). Compared to Holt-Winter's multiplicative
model, the multiplicative seasonal decomposition model had less
inaccuracies. This is due to the presence of a seasonal factor in
this model. Fig. 10 and 11 show the comparison graph for data
between observed and predicted values for multiplicative seasonal
decomposition and Holt-Winter's multiplicative model respectively;
and from those figures, it is clear that there is significant
variation between observed and predicted values in the case of

=
‘\\W‘ -
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Holt-Winter's multiplicative model compared to multiplicative
seasonal decomposition method.

The results of the study through the application of GIS and remote
sensing (RS) tools reveal that the land cover/land use practices in
the study area have undergone significant changes over the 14
years period. The rise in the area of settlement and waterbody class
(90 and 161.3%, respectively) and fall in the area of barren land
(49.46%) was evidence of the LULC change in the study area. The
fact that there has been an increase in vegetation area (20.02%)
as barren lands were converted to vegetation land is surreal; we
can assume that as the settlement grew, people began to engage in
more agricultural activities. In the year 2021, there was a relatively
small amount of water, accounting for only 1% of the entire area.
As a result, the government and policymakers need to take the
appropriate procedures and management methods to expand the
taluka's water holding areas. These changes may have ramifications
for long-term resource management and the well-being of local
society. To avoid unfavourable LULC dynamics in the taluka,
effective land management practices (soil and water conservation),
enhanced agricultural inputs, integrated watershed management
(land use planning and management) and active participation
of the local population should be pursued. In this work, change
detection analysis utilising GIS and remote sensing could provide
vital information for planners and decision-makers to understand
the patterns of land use dynamics, allowing for sustainable land
management planning.

Water quality of the reservoir has deteriorated substantially as
anthropogenic activities and industrial growth has increased. The

Table 7. Multiplicative Seasonal Decomposition model

Assessment of LULC changes in Maharashtra

Table 8. Holt-Winters Multiplicative method

Year  Season Parameters
Chl-a (mg.m?) WST (°C) TSS (mg.I")

2022 Winter 18.52 20.17 44.60
Pre-monsoon 20.08 24.02 47.52
Monsoon 20.03 20.03 43.89
Post-monsoon 20.97 20.97 40.25

2023 Winter 20.18 20.18 45.44
Pre-monsoon 24.03 24.03 48.40
Monsoon 20.04 20.04 44.68
Post-monsoon 20.98 20.98 40.96

Table 9. Error comparison between both the models

Year  Model Error

Chl-a  WST TSS

2022  Multiplicative Seasonal Decomposition 324 115 4.18

Holt-Winters Multiplicative method 1029 595 834
2023  Multiplicative Seasonal Decomposition ~ 3.12  1.09  3.95
Holt-Winters Multiplicative method 968 560 7.85

most effective, less expensive, and more reliable instruments
for monitoring water quality parameters in various waterbodies
(lakes, rivers and groundwater) include remote sensing and GIS.
Environmental parameters (WST, Chl-a concentration and TSS)
were retrieved and evaluated for a period of nine years, from 2013
to 2021 and predictions were made for the years 2022 and 2023.
When compared to Holt-Winter's multiplicative model, multiplicative
seasonality decomposition revealed less inaccuracy, implying
that the presence of a seasonality factor in this data permitted

Year Season Parameters multiplicative seasonal decomposition to be more accurate. Climate
Chi-a(mg.m?) WST(’C)  TSS (mg.I") data such as MMAX temperature, MMIN temperature, and total
2022 Winter 17.14 21.38 4314 mean rainfall were acquired from IMD and analysed to determine
Pre-monsoon 18.16 25.45 45.57 the trend from 1975 to 2021. The data revealed that the MMAX and
Monsoon 15.97 21.70 48.61 MMIN temperatures are increasing and rainfall is unpredictable.
Post-monsoon 9.87 22.32 40.46 Water quality has severely deteriorated as a result of increased
2023 Winter 16.87 2133 43.55 human activity and industrial growth. By 2021, all the changes in
Pre-monsoon 17.73 2536 46.10 land cover and land use patterns had a negative impact on water
Monsoon 1504 2163 4977 quality and accessibility, which could become a limiting factor in
Post-monsoon 10.47 2908 40.90 the future for both urban growth and agricultural practice, as well as
cause furtherloss of already shrinking vegetation cover in watershed

WST Chl-a TSS MMAX MMIN TMRF

Chl-a 0.37593*

TSS 0.4272  0.280111

MMAX -0.15826  0.149875 | 0.472936
MMIN 0.5693*¢  0.376048  0.439884
TMRF -0.3353*  0.197893 0.21248

Fig. 9. Correlation Matrix

0.563544

WST (Water Surface Temperature)
Chl-a (Chlorophyll-a Concentration)
TSS (Total Suspended Solids)

MMAX (Mean Maximum Temperature)
MMIN (Mean Minimum Temperature)
TMRF (Total Mean Rainfall)
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Fig. 11. Comparison between observed and predicted values of Holt-Winter's multiplicative model

areas. Land use and climate change scenarios have enhanced our
understanding and visualisation of their potential impacts on the
hydrology of the Limboti Reservoir. By utilising these scenarios,
we can explore various land use and climate conditions to assess
the reservoir's response. The research provides valuable insights
for stakeholders and policymakers, enabling them to evaluate the
effects of different strategies and to make more informed decisions
for sustainable management.
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