Note

First record of Scomber scombrus Linnaeus, 1758 from the central Atlantic coast of Morocco

Nadia Bouzzammit¹, Hammou El Habouz² and Hassan El Ouizgani¹

Laboratory of Aquatic Systems: Marine and Continental Environments, P. O. Box 8106, Faculty of Sciences, Ibn Zohr University Dakhla Avenue, Agadir, Morocco

²Laboratory of Fishing Resources, Regional Center, National Fisheries Research Institute, P.O.B. 80000, Anza, Agadir, Morocco

Abstract

The present study reports a new record of Atlantic mackerel Scomber scombrus Linnaeus, 1758, in the central Atlantic coast of Morocco. While this species is widely distributed on both sides of the North Atlantic, its occurrence in Moroccan waters has not been previously reported and only the species Scomber colias (Gmelin, 1789) has been reported from Atlantic coast of Morocco. In March 2018, 30 specimens of Scomber colias were sampled from the fishing port of Agadir Bay. Among them three individuals were identified as Scomber scombrus. Their otoliths were analysed for morphology and shape using a binocular microscope. The occurrence of S. scombrus in the area may indicate extension of its distribution to the central Atlantic coast of Morocco, possibily linked to spawning migration. This finding highlights the need for more focused research on this species in Moroccan waters.

*Correspondence e-mail:

nadia.bouzzammit@edu.uiz.ac.ma

Keywords:

Agadir, Atlantic coast, Otolith, Scomber colias, Scomber scombrus

> Received: 04.09.2023 Accepted: 23.12.2024

The North-east Atlantic mackerel Scomber scombrus (Linnaeus 1758) is a pelagic and migratory species. It has a large distribution on both sides of the North Atlantic [the North-West Atlantic (NWA) and the North-East Atlantic (NEA)] (ICES, 2011; Jansen and Gislason, 2013). The species widely distributed in Moroccan waters is the chub mackerel Scomber colias (Gmelin, 1789), which is reported to form a single stock occurring on both sides of the Atlantic coast and the Mediterranean Sea (INRH, 2017). The core biomass of S. colias is concentrated in the central and southern Moroccan waters (ICES, 2020). A recent study reported that a single stock of S. colias was recorded in the NEA. especially in Portugal (Matosinhos. Sesimbra and Portimao) and in the Atlantic Oceanic Islands (Azores, Madeira and Canaries) (Correia et al., 2021). This species was previously described as Scomber japonicus (Houttuyn, 1782) in the Atlantic waters; later, genetic studies confirmed that S. colias belongs to the Atlantic and S. japonicus belongs to the Pacific (Infante

et al., 2007; Trucco and Buratti, 2017). Moreover, a recent morphometrical study mentioned that considerable morphological variability was found in the S. scombrus population along the Atlantic coast of Morocco (Bouzzammit and El Ouizgani, 2019). These findings aim to propose probable hypotheses for the distribution and the migration of S. scombrus to the central Atlantic coast of Morocco.

A total of 30 chub mackerel individuals were collected from small traditional purse seine fleets in the fishing port of Agadir, located on the central Atlantic coast of Morocco (Fig. 1). These artisanal fleets mainly target small pelagic species using purse seine gear. These small artisanal boats have a capacity of 3 t or less and the purse seines are deployed at depths ranging from 30 to 40 m. The fishing site is located 7 miles from the port. Each specimen was measured for total length (TL, mm) and total weight (W,, g) and the sex as well as maturity stage were determined (Table 1).

Table 1. Details of samples (TL: Total length; W.: Total weight; W.: Gonadal weight; M.: Males; F: Females) of S. scombrus and S. colias

Samples	Species	Total length TL (mm)	Total weight W _t (g)	Sex	Gondal weight W _g (g)	Maturity stage
Sample 01	S. scombrus	275	168	М	6.03	Actively spawning
Sample 02	S. scombrus	236	116	F	1.03	Actively spawning
Sample 03	S. scombrus	258	240	F	4.33	Actively spawning
Sample 04	S. colias	229	102	F	4.19	Actively spawning
Sample 05	S. colias	260	148	F	0.51	Regressing
Sample 06	S. colias	235	110	F	0.3	Regressing

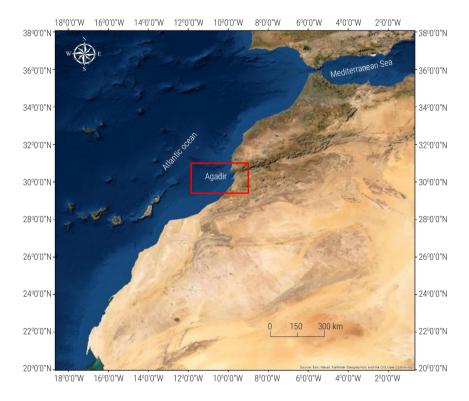


Fig. 1. Map of sampling area indicating Agadir Port on the Atlantic coast of Morocco

The *S. scombrus* species found in the samples were in actively spawning phase. According to standardised terminology established by Brown-Peterson *et al.* (2011), the actively spawning phase refers to the sexually mature individuals that are ready for spawning, while the regressing phase is related to post-spawning. As regards the otoliths, the images were captured using a binocular microscope attached to a camera. Three different pairs of otoliths were recorded while reading the age (Fig. 2). These otoliths differed in shape from those of *S. colias* (Fig. 3) and helped to differentiate the two species.

While it is difficult to distinguish between *S. scombrus* and *S. colias* based on their external morphology, the difference is clearly evident in their otoliths. The results of the study were based on the observation of variation in otolith morphology during the age reading of *S. colias*, with three otoliths differing from all the other *S. colias* otoliths (Fig. 2 and Fig. 3). The identification of *S. scombrus* was based only on otolith morphology, which was confirmed using a scanning electron microscope (Figs. 4 and 5).

The individuals of *S. scombrus* and *S. colias* collected in March 2018 were sexually mature, and most of them were ready for spawning. Therefore, we can hypothesise that the occurrence of *S. scombrus* along the central Atlantic coast of Morocco may be related to spawning migration patterns exhibited by the species. The spawning season is in turn influenced by environmental conditions such as temperature and food availability (Jansen *et al.*, 2012). The geographical distribution of mackerel is also related to water temperature, which can influence migration during the spawning season (Jansen *et al.*, 2012).

The central Atlantic coast of Morocco is characterised by the presence of an upwelling current which may very well influence the migration of *S. scombrus*. This process, where deep cold water rises to the surface, results in cold water currents along the coast that are rich in nutrients. *S. scombrus* is known to occur in the Northern Atlantic at a temperature ranging from 9 to 13°C during its summer feeding migration in North Atlantic waters. The extension of its distribution and its migration to the Southern Atlantic may be explained by the increase in sea surface temperature (SST). Villamor

Fig. 2. Images of S. scombrus otoliths

Fig. 3. Images of S. colias otoliths



Fig. 4. Scanning electron micrgraph of $\it S.$ $\it scombrus$ otolith

et al. (2004) and Martins et al. (2013) suggested that the chub mackerel (S. colias) may be considered the southern congener of the Atlantic mackerel (S. scombrus). Furthermore, both species overlap in the Iberian Peninsula, with S. scombrus being predominant to the north and S. colias to the south of Lisbon (Martins and Cardador,

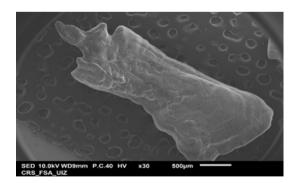


Fig. 5. Scanning electron micrograph of S. colias otolith

1996; Martins *et al.*, 2013). Hence, in addition to the hypothesis of spawning migration, it can also be assumed that the stocks of both, *S. colias* and *S. scombrus* may overlap in Moroccan waters, or both stocks are present along the coast with a very low biomass of *S. scombrus*.

According to Fishery Committee for the Eastern Central Atlantic (CECAF) and acoustic surveys by the National Institute of Fisheries Research (INRH), S. colias is the most abundant species in Moroccan waters. As a result, it has been considered a single stock in both Atlantic and Mediterranean waters. However, the ICES (International Council for the Exploration of the Sea) Workshop on Atlantic chub mackerel (S. colias) concluded that the available information and data about the region extending from the Bay of Biscay to Senegal are insufficient to define the stocks of S. colias. Additionally, the dynamics, stock identity and stock status of Atlantic chub mackerel in European Atlantic waters, as well as its connectivity with populations in Atlantic African waters. are still unknown. Despite the lack of data and consistency to propose an identity for the stock, it is provisionally considered a single stock. The appearance of S. scombrus specimens in the commercial catches of artisanal fisheries at the port of Agadir, with 3 individuals of S. scombrus found in a sample of 30 individuals of S. colias, representing 10% of the total sample, suggests the presence of S. scombrus in Moroccan waters, although with very low abundance. Further studies on this species, with more samples, covering thorough otolith morphometry are necessary to evaluate its presence and estimate its abundance. The present study may thus contribute to the development of alternative approaches for assessing chub mackerel stocks and that of the congener species S. scombrus, in Moroccan waters.

Acknowledgements

The authors express their sincere gratitude to the National Institute of Fisheries Research (INRH), especially, Dr. Abdelbasset Ben-Bani from for providing necessary facilities to carry out the research work.

References

- Brown-Peterson, N. J., Wyanski, D. M., Sabarido-Rey, F., Macewicz, B. J. and Lowerre-Barbieri, S. K. 2011. A standardized terminology for describing reproductive development in fishes. *Mar. Coast Fish: Dynamics, Management and Ecosystem Science*, 3: 52-70. https://doi.org/10.1080/19425120.2011
- Bouzzammit, N. and El Ouizgani, H. 2019. Morphometric and meristic variation in the Atlantic chub mackerel *Scomber colias* Gmelin, 1789 from the Moroccan coast. *Indian J. Fish.*, 66: 8-15. https://doi.org/10.21077/ijf.2019.66.2.78488-02.

- Correia, A. T., Moura, A., Triay-Portella, R., Santos, P. T., Pinto, E., Almeida, A. A., Sial, A. N. and Muniz, A. A. 2021. Population structure of the chub mackerel (*Scomber colias*) in the NE Atlantic inferred from otolith elemental and isotopic signatures. *Fish. Res.*, 234: 105785. https://doi.org/10.1016/j.fishres.2020.105785.
- ICES 2011. Report of the Working Group on Widely Distributed Stocks (WGWIDE). ICES CM 2011/ACOM:15.
- ICES 2020. Workshop on Atlantic chub mackerel (*Scomber colias*) (WKCOLIAS). *ICES Scient. Rep.*, 2(20): 283. http://doi.org/10.17895/ices.pub.5970).
- Infante, C., Blanco, E., Zuasti, E., Crespo, A. and Manchado, M. 2007. Phylogenetic differentiation between Atlantic Scomber colias and Pacific Scomber japonicus based on nuclear DNA sequences. Genetica, 130: 1-8. https://doi.org/10.1007/s10709-006-0014-5.
- INRH 2017. Annual report on the state of Moroccan stocks and fisheries. Synthesis 2018, National Institute for Fisheries Research, Casablanca, Morocco, 91 p. (in French).
- Jansen, T., Campbell, A., Kelly, C., Hatun, H. and Payne, M. R. 2012. Migration and fisheries of North-East Atlantic mackerel (*Scomber scombrus*) in autumn and winter. *PLoS One*, 7(12): e51541. https://doi.org/10.1371/ journal.pone.0051541.
- Jansen, T. and Gislason, H. 2013. Population structure of Atlantic mackerel (Scomber scombrus). PLoS One 8(5): e64744. https://doi.org/10.1371/ journal.pone.0064744
- Martins, M. M. and Cardador, F. 1996. Abundance and distribution pattern of Spanish mackerel (S. japonicus) and mackerel (Scomber scombrus L.) in the Portuguese continental waters (ICES Div. IXa), ICES Document CM 1996/H, p 21.
- Martins, M., Skagen, D., Marques, V., Zwolinski, J. and Silva, A. 2013. Changes in the abundance of Atlantic chub mackerel (*Scomber colias*) in the pelagic ecosystems of Portugal. *Sci. Mar.*, 77: 551-563. https://doi. org/10.3989/scimar.03861.07B.
- Trucco, M. I. and Buratti, C. C. 2017. Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis. Mol. Biol. Res. Commun., 6: 141-152. https://doi.org/10.22099/mbrc. 2017.25981.1276.
- Villamor, B., Abaunza, P. and Fariña, A. C. 2004. Growth variability of mackerel (*Scomber scombrus*) off north and north-west Spain and a comparative review of the growth patterns in the north-east Atlantic. *Fish. Res.*, 69: 107-121. https://doi.org/10.1016/i.fishres.2004.02.005.