Fishery and population dynamics of Asian leaf fish Nandus nandus (Hamilton, 1822) for sustainable management implications: Insights from West Bengal, India

Suman Kumari¹, Lianthuamluaia Lianthuamluaia¹, Sanjeet Debnath¹, Gunjan Karnatak¹, Mishal Puthiyottil¹, Uttam Kumar Sarkar², Bandana Das Ghosh¹ and Basanta Kumar Das¹*

¹ICAR-Central Inland Fisheries Research Institute, Barrackpore - 700 120, West Bengal, India ²ICAR-National Bureau of Fish Genetic Recourses, Lucknow - 226 002, Uttar Pradesh, India

Abstract

The Asian leaf fish Nandus nandus (Hamilton, 1822), a crucial small indigenous freshwater species of the Nandidae family, plays a pivotal role in supporting the livelihoods of fishers reliant on subsistence and marginal fisheries across India and neighbouring countries. There is only limited quantitative data on its exploitable status. Length frequency based growth and mortality dynamics of this species was studied from monthly samples collected from the wetlands of West Bengal during 2020-2021. Parameters of the length-weight relationship (a = 0.00892, b = 3.244 and $r^2 = 0.9364$) indicated positive allometric growth. The von Bertalanffy growth parameters were estimated as $L_m = 18.38$ cm TL and K = 1.2 y⁻¹. Mortality estimation indicated total mortality $Z = 2.89 \text{ y}^{-1}$, with natural mortality $M = 2.33 \text{ y}^{-1}$ and fishing mortality F = 0.56 y^{-1} . The growth performance index (ϕ) was 2.69. Length at capture (Lc_{so}) was determined to be 14.3 cm TL, with current exploitation rate (E_{soc}) of 0.19, underscoring an opportunity to enhance fishing efforts and reduce natural mortality. of 0.41. With $E_{0.1}$ at 0.35 and E_{our} at 0.19, it is evident that the species is underexploited and there is scope to increase the effort to achieve maximum economic yield.

*Correspondence e-mail: basantakumard@gmail.com

Keywords:

Exploitation rate, Recruitment dynamics, Sustainable fisheries management, Wetland fisheries

> Received: 26.12.2024 Accepted: 18.09.2025

Introduction

The Asian leaf fish Nandus nandus (Hamilton, 1822), also known as the Gangetic leaf fish, or mud perch is a freshwater and brackishwater species belonging to the family Nandidae. It is widely distributed across the Indian subcontinent, including countries like Bangladesh, India, Malaysia, Myanmar, Pakistan, Thailand, and Vietnam. This benthopelagic and omnivorous species typically inhabits slow-moving or stagnant waters found in streams, rivers, pools, lakes, canals and reservoirs (Talwar and Jhingran. 1991; Rainboth, 1996; Froese and Pauly, 2000). It is valued both as a food fish and for the aguarium trade. At any given time, the market value of this fish is 20% higher than any of the Indian major carps due to its taste and nutritional value. According to the International Union for Conservation of Nature (IUCN, 2021), the Asian leaf fish is classified under the category of Lower Risk Least Concern. However, recent reports suggest that populations in rivers and wetlands are declining due to indiscriminate fishing, unplanned construction of bridge and flood protection embankments, use up of low land water for irrigation, residual effect of pesticides or insecticides, habitat degradation, siltation, and the effects of climate change driven by anthropogenic activities (Hossain, 2014; Hossain et al., 2015, 2017; Sharmin et al., 2016; Saikia et al., 2021). Mredul et al. (2021) noted the widespread distribution of N. nandus in the Indian subcontinent, particularly in wetlands and deep pools affected by inundation. As the omnivorous feeding

habit of this species includes a wide variety of food (Debnath and Saikia, 2020), the fish has increased demand in the commercial culture system in West Bengal. Known as a significant source of dietary nutrition, *N. nandus* has been reported to contain 52.5% protein, 2% fat, 0.21% carbohydrates and 5.7% minerals (Ray and Dhar, 2012). The declining population of *N. nandus* in aquatic ecosystems (Chakraborty, 2021) highlights the urgent need for conservation efforts.

Information on population parameters such as the length-weight relationship, growth and mortality parameters of this species are limited. Available studies focus primarily on the length-weight relationship and condition factor (Table 1). As the temporal ecology of floodplain wetlands is diverse, their association with the fish assemblage is not stable (Kumari et al., 2023). The evaluation of length at maturity/asymptotic length (Lm/L ratio) using the von Bertalanffy growth model function can be utilised for wild fish resource management purposes (Kumari et al., 2018). Studies have assessed the likelihood of fish escapement based on body length and depth (Kumari et al., 2019). Historically, a few studies were done regarding the biology (Gupta, 2018; Goswami and Dasgupta, 2004; Sarkar et al., 2009) and the vulnerability of this species under the changing climate (Lianthuamluaia et al., 2023) in the West Bengal. Other studies on Nandus sp. conducted in India and Bangladesh at the same ecoregion i.e., the lower Gangetic floodplain regions are summarised in Table 1. However, comprehensive data on growth and mortality parameters are scanty for systematic assessment and monitoring of its natural population and reproductive biology. Understanding these population dynamics; specifically growth, recruitment and mortality, is imperative for implementing sustainable management strategies and achieving effective conservation outcomes. Therefore, the objective of the present study was to investigate the population dynamics of *N. nandus* in the floodplain wetlands of West Bengal, India.

Materials and methods

Study site and sampling

Samples were collected from commercial catches in floodplain wetlands across three distinct regions: Murshidabad (Katiganga), Nadia (Bhomra) and Bardhman (Purbasthali) districts of West Bengal (Fig. 1). The wetlands selected for sampling, *viz.*, Katiganga (22 ha), Bhomra (46 ha) and Purbasthali (219 ha), served as the primary locations for monthly sample collection from August 2020 to July 2021. Fish specimens were collected using gillnets and drag nets, chosen randomly based on their size range from various landing sites. Each fish was identified using standard literature and its length was measured with a vernier caliper to an accuracy of 0.01 cm. The weight of each specimen was recorded to the nearest 0.1 g. The length-weight relationship for pooled data (comprising both male and female specimens) was assessed using the equation

Table 1. Review of previous studies on N. nandus in lower Gangetic floodplain regions

Authors	Description of study	Location	Habitat
Parameswaran et al. (1971)	Induced breeding	Assam, India	Fish farm
Das and Zamal (2000)	Developing a suitable rearing technique	Mymensingh, Bangladesh	Lab condition
Das et al. (2002)	Study of early developmental stages	Mymensingh, Bangladesh	Lab condition
Pal et al. (2003)	Induced breeding	Mymensingh, Bangladesh	Lab condition
Goswami and Dasgupta (2004)	Analysis of morphometric and meristic characteristics	West Bengal, India	Floodplain wetlands
Ng and Jaafar (2008)	Description of a new species	West Bengal, India	River
Sarkar <i>et al.</i> (2009)	Induced spawning	Malda, West Bengal, India	River
Zohora <i>et al.</i> (2010)	Morphological and allozyme variation in fish populations	Bangladesh	Floodplain wetlands and rivers
Sarder <i>et al</i> . (2012)	Development of cryopreservation protocol for fish sperm	Mymensingh, Bangladesh	Floodplain wetlands and river
Begum <i>et al.</i> (2017)	Developing a standard protocol for brood development, induced breeding and larval rearing	Gopalganj, Bangladesh	Floodplain wetlands
Islam <i>et al.</i> (2017)	Length-weight relationship and condition factor	Dinajpur, Bangladesh	River
Sharmin <i>et al.</i> (2017)	Effect of different food on the growth and survival	Bogra, Bangladesh	Floodplain wetlands
Gupta (2018)	Compilation of the overall biology of the fish from published sources	India	-
Kapuri <i>et al.</i> (2020)	Description of a new fish species	West Bengal, India	River
Mredul <i>et al.</i> (2021)	Reproductive and biometric features	Gopalganj, Bangladesh	Floodplain wetlands
Rahman <i>et al.</i> (2023)	Observations on reproductive biology and gonadal cycle	Gazipur, Bangladesh	Floodplain wetlands
ianthuamluaia <i>et al</i> . (2023)	Reproductive vulnerability under changing climate	Assam and West Bengal, India	Floodplain wetlands
Tasnim <i>et al</i> . (2023)	Review of biological features, distribution and conservation	Bangladesh	-
Haque <i>et al.</i> (2023)	Effect of stocking densities on growth and production performance	Bogura, Bangladesh	Pond
Kawsar <i>et al.</i> (2023)	Estimation of well-being status of wild fish	Moulvibazar, Bangladesh	Floodplain wetlands

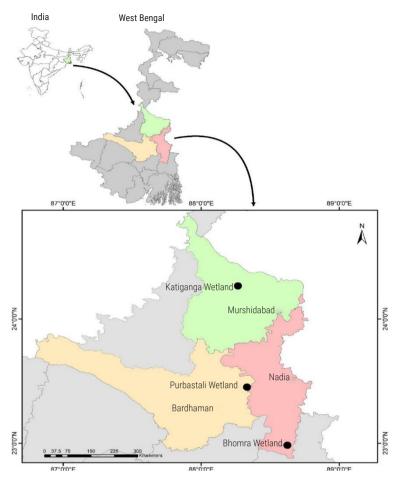


Fig. 1. Study area map showing three wetlands from where N. nandus were sampled

 $W=aL^b$, where 'W' is the total weight of the fish, 'L' is the total length (measured from the tip of the snout to the tip of the caudal fin), 'a' is the constant (intercept value) and 'b' is the allometric coefficient (slope). Regression analysis of log-log plots for the length and weight of pooled data was conducted after excluding outliers, following recommendations by Froese (2006). Length-frequency data were collected for 585 specimens during the study and grouped into 10 mm class intervals for growth analysis.

Data analysis

The parameters of von Bertalanffy's growth model, specifically the asymptotic length (L_{∞}) and growth coefficient (K), were estimated using the ELEFAN-I (Electronic Length Frequency Analysis) module within the FiSAT-II software program. This software, developed by Gayanilo *et al.* (1995), is part of the FAO-ICLARM Stock Assessment Tools. The growth performance index (ϕ ') was estimated according to the method described by Munro and Pauly (1983), as detailed below:

$$\phi$$
 = Log₁₀ (K)+ 2 X Log₁₀ (L_m)

The MPA (Model Progression Analysis) was conducted to further refine the growth parameters obtained from ELEFAN-I. The monthly composition of the length frequency distribution was

segmented into different cohorts based on the method outlined by Bhattacharya (1967). The instantaneous total mortality coefficient (Z) was estimated using the length-converted catch curve method (Pauly 1983). The natural mortality rate (M) was estimated using Pauly's empirical formula (1980), as depicted below:

$$log(M) = -0.0066 - 0.279 log(L\infty) + 0.6543 log(K) + 0.4634 log(T)$$

where, L_{∞} in cm, K in year⁻¹ and T is the mean annual ambient temperature (°C).

Fishing mortality (F) was estimated using the formula:

$$F = Z-M$$

The current exploitation rate ($\rm E_{cur}$) was estimated from the following formula (Ricker, 1975):

$$E_{cur} = F/Z$$

The Asian leaf fish is exploited using both selective and non-selective gears. To assess the relative Yield-per-Recruit (Y/R) and Biomass-per-Recruit (B/R) of *N. nandus*, the knife-edge selection procedure of FiSAT II was used. The input parameters for this analysis were the estimated $L_{\rm sn}/L_{\rm m}$ and M/K values.

Results

Length-weight relationship

Length-Frequency Distribution (LFD) analysis of *N. nandus* specimens collected from West Bengal revealed sizes ranging from 4.6-17.5 cm in total length (TL), with body weights (BW) ranging from 1.51-76.17 g. The parameters of the length-weight relationship were estimated as, a = 0.00892, b = 3.244 and $r^2 = 0.9364$ (Fig. 2). The exponent 'b' (slope coefficient) in this equation indicated positive allometric growth, where weight increases faster than length. The length-weight relationship is crucial in fisheries and ecological studies as it provides insights into the growth and condition of fish populations, influencing management and conservation strategies.

Growth and mortality parameters

The growth parameters of *N. nandus* were crucially estimated to gain a comprehensive understanding of its life history and population dynamics. By determining parameters such as asymptotic length (L_{∞}) and growth coefficient (K), researchers aimed to evaluate the growth rates, maximum potential size and variability among individuals and populations of *N. nandus*. These insights are fundamental for effective fisheries management and conservation strategies. The growth parameters were assessed using Model Progression Analysis (MPA) through ELEFAN-1. The growth parameters, asymptotic length (L_{∞}) and growth coefficient (K) were estimated as 18.38 cm TL and 1.2 y^{-1} respectively (Fig. 3).

The growth performance index (ϕ) was estimated as 2.69 (Fig. 4) indicating that *N. nandus* exhibits favourable growth relative to its potential under the prevailing conditions.

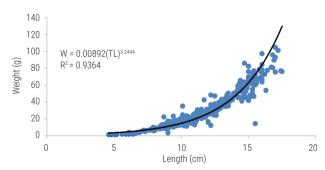


Fig. 2. Length-weight relationship of N. nandus (sexes pooled data) (n = 585)

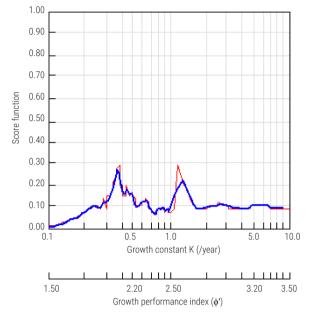


Fig. 4. Length frequency-based growth performance index (ϕ) of *N. nandus*

The instantaneous natural mortality rate (M) was estimated at 2.33 y⁻¹ using Pauly's empirical formula. The instantaneous total mortality rate (Z) was estimated at 2.89 y1 using the lengthconverted catch curve method. The instantaneous fishing mortality rate was computed as 0.56 y⁻¹ (Fig. 5). These mortality rates indicate that 80% of the stock reduction is due to natural mortality, such as predation, diseases, or other survival factors, while the remaining 20% is due to fishing mortality. The M/K ratio was 1.94, indicating that the natural mortality rate is relatively high in relation to the growth rate. This ratio falls within the range of 1.0-2.5 suggested by Beverton and Holt (1956), which is considered typical for many fish species. A higher M/K ratio suggests that the species experiences significant natural mortality, likely due to factors such as predation, diseases and environmental conditions and that it grows quickly to offset these losses. The fishing mortality (F) in the present study is lower compared to natural mortality (M). The current exploitation rate ($E_{cur} = 0.19$) is less than the optimum exploitation rate (E_{opt}). The length-based cohort analysis shows that natural mortality (M) is higher in adults compared to juveniles and the maximum fishing mortality (F) was observed when the fish attained a length of 10.5 cm (Fig. 6).

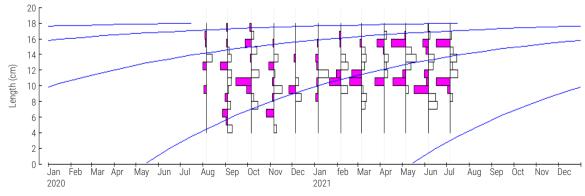


Fig. 3. The von Bertalanffy growth curve of N. nandus superimposed over the reconstructed length-frequency data (n = 585)

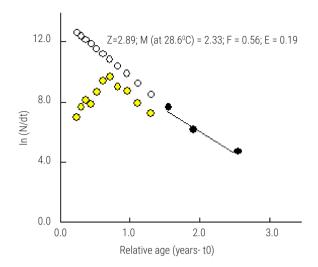


Fig. 5. Length-converted catch curve for estimation of mortality parameters of N. nandus

Gear selectivity and recruitment

The length at capture (Lc_{50}), or the length at which 50% of the fish in the stock become vulnerable to fishing gear, was estimated at 13.88 cm TL (Fig. 7). The L_{25} and L_{75} values for the species were estimated at 9.9 and 15.45 cm TL, respectively. The recruitment pattern revealed that the juveniles are recruited to the fishery year-round, with a peak during July, followed by May and August (Fig. 8). The estimated $L_{\rm r}/L_{\infty}$ was 0.37 and the length at recruitment ($L_{\rm r}$) for the species was estimated at 6.8 cm TL. The estimated length at capture (Lc_{50}) of 13.88 cm TL was higher than the $L_{\rm r}$.

Relative yield per recruit

The analysis using the estimated L_{50}/L_{∞} (0.75) and M/K (1.94) values as input parameters revealed that the exploitation rate that maximises yield per recruit ($E_{\rm max}$) is 0.42, indicating the potential for increasing the current exploitation rate (Fig. 9). The $E_{0.5}$ value,

which represents the exploitation rate at which B/R is reduced by 50% compared to the virgin stock, was estimated at 0.27. The study suggests that maintaining the optimum biomass of Asian leaf fish can be achieved at the $E_{\rm 0.5}$ level. However, the current exploitation rate ($E_{\rm cur}$) was estimated at 0.19, which is lower than $E_{\rm 0.5}$. This indicates that there is room to increase fishing effort to maximise surplus production while still maintaining sustainable stock levels.

Discussion

The Asian leaf fish faces equal demand as both a food fish and an ornamental fish. However, it contributes minimally to the overall fish catch in wetlands, likely because it is not specifically targeted for food. Understanding the life history parameters of *N. nandus* is crucial for the effective conservation and sustainable utilisation of this species. In this study, the smallest fish observed measured 4.6 cm TL, which may be attributed to gear selectivity, highlighting potential biases in sampling methods. The maximum size (17.5 cm TL) observed exceeds that reported from Bangladesh (Hossain *et al.*, 2017) but falls short of the maximum reported length (20 cm TL) by Talwar and Jhingran (1991). The length-weight relationship is pivotal

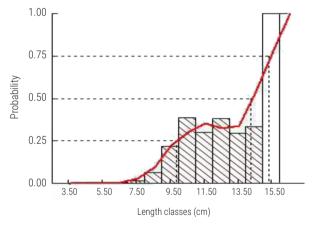


Fig. 7. Length at capture (Lc50) of N. nandus

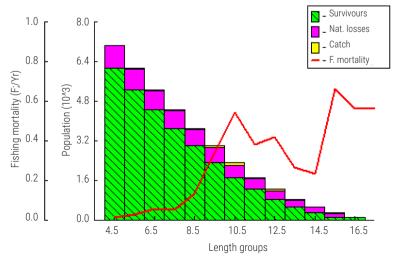


Fig. 6. Length-frequency based Virtual Population Analysis of N. nandus

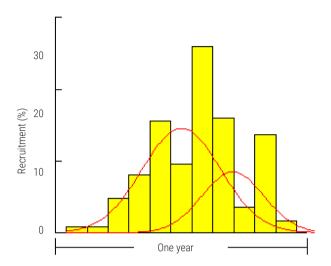


Fig. 8. Recruitment pattern of N. nandus

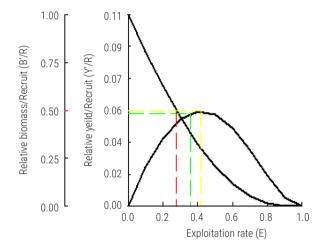


Fig. 9. Stock status of N. nandus using Beverton and Holt's Y/R model

in fisheries and ecological studies as it offers valuable insights into the growth patterns and overall condition of fish populations. For tropical fish species like N. nandus, the 'b' value in LWR is typically expected to fall within the range of 2.5-3.5 (Froese, 2006). However, detailed size-specific growth parameter data, particularly the 'b' value, for Asian leaf fish from India are scant in the literature, which complicates direct comparisons across studies based on lengthspecific analyses. The present study revealed 'b' values exceeding 3 across various size categories and habitats, consistent with the general trend observed in tropical fish species. These growth parameters provide critical insights into the ecological niche of N. nandus, including its interactions with prey and predators, and its overall contribution to ecosystem dynamics. The pooled sample analysis yielded a 'b' value of 3.244, which aligns closely with findings from previous research conducted from Bangladesh waters. ranging from 3.04 to 3.22 (Hossain et al., 2017). This consistency across different geographical locations underscores the robustness of the observed growth patterns and suggests that environmental factors and habitat characteristics play significant

roles in shaping these parameters. Comparative analysis of growth parameters across populations or regions helps identify factors influencing growth variability, such as environmental conditions, habitat quality and fishing pressure. Such insights are crucial for developing informed management and conservation strategies that aim to sustainably exploit and protect *N. nandus* populations in their natural habitats.

The Asian leaf fish, integral to several wetland ecosystems, is currently experiencing population decline across its range. Recent studies suggest that factors such as predation, diseases, and other natural causes significantly contribute to this decline (Kawsar et al., 2023). It is imperative to generate information on the estimated value of asymptotic length (Lm) and growth coefficient (K) for effective fisheries management and conservation (Lianthuamluaia et al., 2023). Ahamed et al. (2024) reported that N. nandus exhibits an isometric growth pattern, with an asymptotic length estimated at approximately 17.95 cm TL and a growth coefficient K of 1.3 v⁻¹. The present study indicates a slightly higher 'Lm', and a lower 'K' value compared to the observations of Ahamed et al. (2024). The 'K' value influences the age and size distribution within the population. A higher 'K' typically means individuals grow faster and reach maturity sooner, affecting population structure and recruitment patterns. The growth performance index (GPI) for the species observed by Ahamed et al. (2024) is comparable with our findings, indicating good growth potential. A higher GPI (ϕ) often correlates with good nutritional status and health in fish, suggesting that N. nandus is likely to obtain sufficient food and nutrients to support growth and maintain overall fitness. Despite its wide geographical distribution in South-east Asian countries, the stock of N. nandus is declining due to several anthropogenic interferences. Fisheries of this species are solely capture-based, with landings reflecting natural population levels.

Natural mortality influences life histories and characteristics through natural selection, reflecting the outcomes of organisms' behavioural and life history strategies (Jørgensen and Holt, 2013). This underscores the need for comprehensive studies and conservation efforts with a focus on mitigating the factors contributing to natural mortality. Understanding natural mortality is crucial for assessing the resilience of N. nandus populations to natural mortality pressures and for predicting population sustainability. In the present study, natural mortality was higher than fishing mortality, and the optimum exploitation rate (E_{opt}) was lower than the current exploitation rate (E_{cur}). The decline in the stock of Asian leaf fish is predominantly attributed to elevated natural mortality rates rather than fishing mortality. The gear used for fishing N. nandus might not be very efficient at targeting this species, resulting in lower fishing mortality. Gear selectivity can influence the amount and size of fish captured, affecting the overall fishing mortality. Tasnim et al. (2023) concluded that environmental degradation is the most significant cause of declining stock and rising natural mortality. The species has been reported to be declining in stock due to natural mortality in several wetlands in different regions (Jørgensen and Holt, 2013; Tasnim et al., 2023; Hossain et al., 2017). According to local fishers, the main reason for increased natural mortality is the drying of wetland channels, leading to habitat alteration. Other significant factors include the introduction of invasive species (Kamal et al., 2022). Reproductive and population vulnerability assessment of this species by Patt et al. (2008) and Lianthuamluaia et al. (2023) emphasise the need for developing guidelines and policy changes for conservation and management. Several studies found that N. nandus, although widespread, is less resilient due to low fecundity and life history threats from ecological alterations caused by climate change (Wood et al., 2014). This benthopelagic species faces significant vulnerability due to the high exposure and susceptibility of wetland habitats (Lianthuamluaia et al., 2023). Long-standing destructive fishing practices combined with habitat alterations have posed serious threats to its population (Denechaud et al., 2020). While numerous studies have explored the impacts of climate change scenarios, few have specifically assessed the vulnerability of fisheries, including N. nandus (Cochrane et al., 2009; Olusanya and van Zyll de Jong, 2018). This gap underscores the need for targeted research to inform effective conservation strategies for this sensitive species. The Y/R and B/R analysis in the present study highlights the potential for increasing the exploitation rate of N. nandus to achieve higher yields. However, it is essential to monitor and manage this increase carefully to avoid overfishing and ensure the long-term sustainability of the species. Further studies and continuous monitoring are recommended to adjust management strategies as needed, ensuring that fishing practices remain sustainable and effective in maintaining healthy fish populations.

Understanding the growth, mortality, and recruitment dynamics of N. nandus is essential for sustainable fisheries management, given its dual significance as both a food source and an ornamental fish. Balancing exploitation rates is critical to maintaining stock resilience and ensuring long-term viability. The present study underscores the importance of periodic assessments of population parameters and the implementation of adaptive management strategies to optimise yields while preserving biodiversity and ecosystem integrity. An E_{0.1} value of 0.35 indicates that the particular fishery has not yet reached maximum economic yield, and there is scope to enhance fishing efforts and reduce natural mortality. This approach can increase economic returns and support the livelihoods of local fishers through responsible management practices. A recommended adaptation strategy involves restoring connectivity in wetland habitats and linking them to the main river channels, which would facilitate migration and dispersal of the species. Integrating habitat restoration with fisheries management offers a balanced approach that promotes both conservation goals and economic benefits. ensuring the sustainable use of N. nandus resources for future generations.

Acknowledgments

The authors are thankful to the National Innovations on Climate Resilient Agriculture (NICRA), Indian Council of Agricultural Research (ICAR), New Delhi, for providing financial assistance to carry out the study. The authors also express their sincere gratitude to the Director, ICAR-CMFRI, Kochi, India, for the support and encouragement.

References

Ahamed, F., Akter, T., Shamim, M. H., Chakma, U., Shajib, M. M. H., Fatema, M. and Ahmed, Z. F. 2024. Estimation of life history parameters of the Gangetic Leaffish, *Nandus nandus* from Southern Coastal Waters of Bangladesh: Implications for Sustainable management. *Heliyon*, 19:10(18): e38167. https://doi.org/10.1016/j.heliyon.2024.e38167. eCollection 2024 Sep 30.

- Begum, N., Pramanik, M. M. H. and Mahmud, Y. 2017. Growth and survival rate of *Nandus nandus* (Hamilton 1822) larvae on some selected supplemental feeds in cistern. *Asian J. Med. Biol. Res*, 3(1): 114-119. https://doi.org/10.3329/aimbr.v3i1.32046.
- Bhattacharya, C. G. 1967. A simple method of resolution of a distribution into Gaussian components. *Biometrics*, 1:115-135.
- Chakraborty S. 2021. Population dynamics and conservation of *Nandus nandus* in aquatic ecosystems. *J. Aquat. Ecol.*, 10: 45-57.
- Das, M. and Zamal, N. 2000. Domestication of an endangered fish species *Nandus nandus* (Ham.). Pt. 1. Laboratory rearing of young fish up to sexual maturity. *Bangladesh J. Fish. Res.*, 4: 135-140.
- Das, M., Tarafder, M. A. K. and Pal, S. 2002. Early developmental stages of *Nandus nandus* (Ham.). *Bangladesh J. Fish. Res.*, 6: 11-18.
- Debnath, S., and Saikia, S. K. 2020. Characterisation of amylase and protease activity in the digestive tract of two teleosts (*Labeo rohita* and *Anabas testudineus*) with different feeding habits. *Acta Biol. Szeged.*, 64: 173-179. https://doi.org/10.14232/abs.2020.2.173-179.
- Denechaud, C., Smoliński, S., Geffen, A.J., Godiksen, J. A. and Campana, S. E. 2020. A century of fish growth in relation to climate change, population dynamics and exploitation. *Glob. Change Biol.*, 26: 5661-5678. https://doi.org/10.1111/gcb.15298.
- Froese, R. and Pauly, D. 2000. FishBase 2000: concepts designs and data sources, Vol. 1594. WorldFish.
- Froese R. 2006. Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. *J. Appl. Ichthyol.*, 22: 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x.
- Goswami, S., and Dasgupta, M. 2004. Biology of *Nandus nandus* (Hamilton) from fish genetic resource centre at new alluvial zone of West Bengal and its natural habitat. *Indian J. Fish.*, 51: 193-198. https://epubs.icar.org.in/index.php/IJF/article/view/7187.
- Gupta S. 2018. Biology of gangetic leaf fish, Nandus nandus (Hamilton, 1822): A review. J. Biodiv. Endangered Species. 6: 96. http://dx.doi.org/10.4172/2332-2543.1000221.
- Haque, R., Das, D. R., Sarkar, R., Begum, N., Pandit, D., and Jaman, A. 2023. Effect of stocking densities on growth and production performance of Bheda (*Nandus nandus*) in pond aquaculture. *Aquat. Sci. Eng.*, 38(2): 97-105. https://doi.org/10.26650/ASE20231247849.
- Hossain, M. Y., Mosaddequr Rahman, M., Ahamed, F., Ahmed, Z. F. and Ohtomi, J. 2014. Length-weight and length-length relationships and form factor of three threatened fishes from the Ganges River (NW Bangladesh). J. Appl. Ichthyol., 30: 221-224. https://doi.org/10.1111/ jai.12251.
- Hossain, M. Y., Hossen, M. A., Khatun, D., Nawer, F., Parvin, M. F., Rahman, O. and Hossain, M. A. 2017. Growth, condition, maturity and mortality of the Gangetic leaf fish *Nandus nandus* (Hamilton, 1822) in the Ganges River (northwestern Bangladesh). *Jordan J. Biol. Sci.*, 10: 57-62. https://jjbs.hu.edu.jo/files/v10n1/Paper%20number%2010.pdf.
- Hossain, M. Y., Hossen, M. A., Pramanik, M. N. U., Ahmed, Z. F., Yahya, K., Rahman, M. M. and Ohtomi, J. 2015. Threatened fishes of the world: *Anabas testudineus* (Bloch, 1792) (Perciformes: Anabantidae). *Croat. J. Fish*, 73: 128-131. https://doi.org/10.14798/73.3.838.
- Islam, M. R., Azom, M. G., Faridullah, M., and Mamun, M. 2017. Length-weight relationship and condition factor of 13 fish species collected from the Atrai and Brahmaputra rivers, Bangladesh. *J. Biodivers. Environ. Sci.*, 10(3): 123-133.
- IUCN. 2021 The IUCN Red List of Threatened Species. https://www.iucnredlist.org.

- Jorgensen, C. and Holt, R. E. 2013. Natural mortality: its ecology, how it shapes fish life histories and why it may be increased by fishing. *J. Sea Res.*, 75: 8-18. https://doi.org/10.1016/j.seares.2012.04.003.
- Kamal, M. A. H. M., Kawsar, M. A., Pandit, D., Kunda, M., Tabassum, K. and Alam, M. T. 2022. Fish Biodiversity at Kawadighi Haor of Northeastern Bangladesh: Addressing Fish Diversity, Production and Conservation Status. Aquat. Sci. Eng., 37: 151-160. https://doi.org/10.26650/ASE20 2221065255.
- Kapuri, R., Sinha, A. K., De, P., Roy, R. and Bhakat, S. 2020. A new species of leaf fish, *Nandus banshlaii* (Perciformes: Nandidae) from West Bengal, India. *bioRxiv*, 2020-08. https://doi.org/10.1101/2020.08.02.232751.
- Kawsar, M. A., Hossain, M. A., Pandit, D., Kabir, M. A. and Alam, M. T. 2023. Evaluation of well-being status of near-threatened Gangetic leaf fish Nandus nandus (Hamilton, 1822) in the Kawadighi Haor: Implications to Haor Fishery Management in the Northeastern Bangladesh. Conservation, 2023: 175-190. https://doi.org/10.3390/ conservation3010013.
- Kumari, S., Sadhya, K. M., Karnatak, G., Sarkar, U. K., Panda, D. and Mishal, P. 2019. Length-weight relationship and condition factor of *Gudusia chapra* (Hamilton, 1822) from Panchet Reservoir, Jharkhand, India. *Indian J. Fish.*, 66: 136-139. https://doi.org/10.21077/ijf.2019.66.3.81017-18.
- Kumari, S., Debnath, S., Sarkar, U. K., Lianthuamluaia, L., Puthiyottil, M., Karnatak, G., Kumar, D. B., Ghosh, B. D. and Das, A. 2023. Fishery livelihoods and an adaptation to climate change-induced threats at the Bhomra wetland: A case study through a stakeholder-driven approach. J. Water Clim. Change, 14: 1600-1619. https://doi.org/10.2166/wcc. 2023 481
- Kumari, S., Sarkar, U. K., Karnatak, G., Mandhir, S. K., Lianthuamluaia, L., Kumar, V. and Puthiyottil, M. 2018. Studies on the growth and mortality of Indian River shad, *Gudusia chapra* (Hamilton, 1822) from Panchet reservoir, India. *Environ. Sci. Pollut. Res.*, 25: 33768-33772. https://doi. org/10.1007/s11356-018-3232-3.
- Lianthuamluaia, L., Kumari, S., Sarkar, U. K., Borah, S., Puthiyottil, M., Karnatak, G., Das, B. K., Ghosh, B. D., Das, A., Debnath, S., Ray, A. and Johnson, C. 2023. Improving approaches and modeling framework for assessing vulnerability of Asian leaf fish in the major river basin floodplains of India in changing climate. *Ecol. informat.*, 73: 101926. https://doi.org/10.1016/j.ecoinf.2022.101926.
- Mredul, M. M. H., Alam, M. R., Akkas, A. B., Sharmin, S., Pattadar, S. N. and Ali, M. L. 2021 Some reproductive and biometric features of the endangered Gangetic Leaf Fish, *Nandus nandus* (Hamilton, 1822): Implication to the baor fisheries management in Bangladesh. *Aquac. Fish.*, 6: 634-641. https://doi.org/10.1016/j.aaf.2020.10.007.
- Ng, H. H. and Jaafar, Z. 2008. A new species of leaf fish, Nandus andrewi (Teleostei: Perciformes: Nandidae) from northeastern India. Zootaxa, 1731: 24-32.
- Olusanya, H. O., and van Zyll de Jong, M. 2018. Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador. PLoS ONE 13: e0208182. https://doi.org/10.1371/journal.pone.0208182.
- Pal, S., Rashid, H., Tarafder, M. A. K., Narejo, N. T. and Das, M. 2003. First record of artificial spawning of *Nandus nandus* (Hamilton) in Bangladesh using carp pituitary gland: An endangered species bred in captivity. *Pakistan J. Biol. Sci.*, 6: 1621-1625.
- Parameswaran, S., Radhakrishnan, S. and Selvaraj, C. 1971. Some observations on the biology and life-history of *Nandus nandus* (Hamilton). *Proc. Indian Acad. Sci.*, 73(3):132-147.

- Patt, A. G., Schröter, D., de la Vega-Leinert, A. C. and Klein, R. J. 2008. Vulnerability research and assessment to support adaptation and mitigation: common themes from the diversity of approaches. In Patt, A. G., Schroter, D., de la Vega-Leinert, A. C. and Klein, R. J. T. (Eds.), Environmental vulnerability assessment, London: Earthscan, pp. 1-25.
- Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. Food and Agriculture Organisation of the United Nations, Rome, Italy.
- Rahman, M. L., Mallik, M. K. M., Sinha, A. C., Rashid, I., and Salam, M. A. 2023. Observations of reproductive biology and the gonadal cycle of endangered *Nandus nandus* (Hamilton, 1822). *Asian J. Biol.* 17(3): 17-28. https://doi.org/10.9734/AJOB/2023/v17i3324.
- Rainboth, W. J. 1996. Fishes of the Cambodian Mekong. FAO Species Identification Field Guide for Fishery Purposes, Food and Agriculture Organisation of the United Nations, Rome, Italy, 265 p.
- Ray, N. and Dhar, B. 2012. Study of bioenergetics, proximate composition and microbiological status of leaf fish *Nandus nandus* (Ham. 1822). *Keanean J. Sci.*, 1: 76-82.
- Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. *Bull. Fish. Res. Board Canada*, 191. https://wavesvagues.dfo-mpo.gc.ca/librarybibliotheque/1485.pdf.
- Saikia, H., Abujam, S. K. and Biswas, S. P. 2021 Reproductive Biology of Gangetic leaf fish *Nandus nandus* (Hamilton 1822) at Borsola Beel, Jorhat, Assam. *Int. J. Environ. Sci.*, 47: 243-250.
- Sarder, M. R. I., Sarker, M. M., and Saha, S. K. 2012 Cryopreservation of sperm of an indigenous endangered fish species *Nandus nandus* (Hamilton, 1822) for ex-situ conservation. *Cryobiology*, 65(3): 202-209. https://doi.org/10.1016/j.cryobiol.2012.06.004.
- Sarkar, U. K., Deepak, P. K., Negi, R. S. and Lakra, W. S. 2009. Captive breeding of a Gangetic leaf fish *Nandus nandus* (Hamilton-Buchanan) with three commercial GnRH preparations. *J. Appl. Aquac.*, 21: 263-272. https://doi. org/10.1080/10454430903320736.
- Sharmin, S., Das, D. R., Halim, M. A., and Sarwer, M. G. 2017. Study on growth and survival rate of (*Nandus nandus*; Hamilton 1822) Spawn on some selected supplemental feeds in cistern condition. *J. Entomol. Zool. Stud.*, 5: 1733-1736.
- Sharmin, M. S., Sarwer, M. G., Das, D. R., Rahman, M. M. and Chowdhury, A. K. J. 2016. Induced spawning and larval rearing of endangered species Nandus nandus (Hamilton) in cemented cistern using pituitary hormone injection. Int. J. Fish Aquat. Stud., 4: 109-113.
- Talwar, P. K. and Jhingran, A. G. 1991. *Inland fishes of India and adjacent countries*. Oxford-IBH Publishing Co Pvt Ltd, New Delhi, India
- Tasnim, N., Munny, F. J. and Kawsar, M. A. 2023. Biological features, distribution, and conservation of the near-threatened Gangetic leaf fish *Nandus nandus* (Hamilton, 1822): A review. *Heliyon*. https://doi. org/10.1016/j.heliyon.2023.e19484.
- Wood, J. L., Belmar-Lucero, S., Hutchings, J. A., and Fraser, D. J. 2014. Relationship of population size to habitat variability in a stream fish. *Ecological Applications*, 24: 1085-1100. https://doi.org/10.1890/13-1647.1.
- Zohora, N., Khan, M. M. R., Ahammad, A. K. S. and Hasan, M. 2010. Morphological and allozyme variation of three wild meni (*Nandus nandus*, Hamilton) populations in Bangladesh. *Int. J. Bio-resour. Stress Manag.*, 1: 33-40.