на зади ICA R

Note

Advancement in spawning period of *Labeo dyocheilus* (McClelland, 1839) in the mid Himalayan regions by hormonal manipulation using Ovatide

RAGHVENDRA SINGH¹, N. N. PANDEY², MONIKA GUPTA³ AND A. K. SINGH²

¹ICAR-Directorate of Coldwater Fisheries Research, Experimental Fish Farm, Champawat - 262 523 Uttarakhand. India

²ICAR-Directorate of Coldwater Fisheries Research, Bhimtal - 263 136, Uttarakhand, India ³Allahabad Regional Centre of ICAR-Central Inland Fisheries Research Institute, Allahabad - 211 002

Uttar Pradesh, India e-mail: shakya.raghav@gmail.com

ABSTRACT

An attempt was made to advance the spawning period of *Labeo dyocheilus* (McClelland, 1839) by pretreatment with the synthetic gonadotropin releasing hormone analogue, Ovatide. Total 12 females and 24 males (1: 2 ratio) were used for breeding operations conducted during 30th May to 30th June 2016 comprising six sets. Female fishes of set I to IV were pretreated with intramuscular injection of the ovatide at the rate 0.3 ml kg⁻¹ body weight twice at an interval of two weeks while males were injected @ 0.1 ml kg⁻¹ body weight once before 15 days of induced breeding trial for achieving advance maturity and spawning during prespawning phase. Fishes of set V and VI were not subjected to any pretreatment with ovatide. On 30th of June all the six breeding sets were treated with ovatide for induced spawning. Female and males were injected at 0.7 and 0.3 ml kg⁻¹ of body weight, respectively and left overnight in FRP tanks for spawning. Results indicated that in sets I to IV, fishes successfully spawned and fertilised eggs were collected in morning hours whereas fishes of set V and VI failed to spawn. Fertilisation and survival rates recorded were 79-82 and 67-71%, respectively. Results indicated that treatment of ovatide during prespawning phase is beneficial for advancing the gonadal maturity, successful induced spawning and prolonging the breeding period which may play a key role in production of substantial quantity of seed of *L. dyocheilus*.

Keywords: Advance spawning, Labeo dyocheilus, Mid Himalayas, Ovatide

Labeo dyocheilus (Mcclelland, 1839) is a fast growing, high valued cyprinid species and widely distributed in India (all along the Himalayas, Assam, Uttar Pradesh, Uttarakhand, West Bengal, Bihar), Bangladesh, Nepal (Talwar and Jhingran, 1991), Mekong and Bassac rivers of Mekong Delta, Vietnam (Tung et al., 2006), Pakistan and Afghanistan (Dahanukar, 2010). Over the past 10 years its natural wild stocks have undergone a steady decline through uncontrolled and often indiscriminate fishing, increasing use of river water for irrigation, hydropower generation, municipal and industrial use as well as due to environmental pollution. It is listed among the 82 vulnerable freshwater fish species of India (CAMP, 1998) though IUCN (2013) has listed this species under the 'least concern' category. Recently, there have been efforts to develop controlled artificial reproduction of this species (Sarkar et al., 2001; Pandey et al., 2011; Gupta, 2014). Fecundity of this fish is very high as compared to other cold water fishes (Sarkar et al., 2001, Pandey et al., 2011, Gupta et al., 2013), which reflects the importance of this fish to be incorporated into coldwater aquaculture sector as a new candidate species. Normally the induced breeding of the species is achieved from third week of July to second week of August in mid Himalayan region (Pandey et al., 2011). In this short period, it is a great challenge to produce large quantum of seed to meet the demand for aquaculture of the species. Therefore, advancement of spawning period by hormonal manipulation will be advantageous for increasing its seed production. Kumar et al. (2007) reported advancement in gonadal maturity and spawning through hormonal manipulations in Labeo rohita. Manipulation of reproductive cycle by hormonal application has been tried in fishes using analogue of gonadotropin releasing hormone (GnRHa) alone or in combination with steroidal hormones (Crim, 1991). No attempt has been made so far on induction and advancement of ovulation in L. dyocheilus employing hormonal manipulation. Therefore, the present study was conducted with the objective to advance the spawning period of L. dyocheilus in the mid Himalayan region using the synthetic GnRH analogue, 'Ovatide'.

Healthy fishes of *L. dyocheilus* (200 - 540 g) were collected using cast net during morning hours from

Raghvendra Singh et al. 165

Kosi River near Ramnagar, Uttarakhand (29°29.038'N; 79°08.777'E, 410 m MSL) and transported in live condition to ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Bhimtal (29°21'N; 79°34'E, 1370 m MSL) in Kumoun region of Uttarakhand, India. The fish were disinfected with 5% KMnO₄ solution before stocking and then stocked in two cement tanks @ 0.20 kg m^{-3} in each tank (20 x 4.5 x 1.5 m); with boulders placed at the bottom of the tanks for facilitating growth of periphyton and also to provide hiding place for the fishes. Brood fishes were fed with formulated pelleted carp feed having 28% crude protein. Fishes were fed @ 2-3% of their body weight daily in two split doses (07:00 and 17:00 hrs.) and 50% water was exchanged fortnightly to maintain the water quality parameters under optimum levels for the brood stock.

Six breeding sets of *L. dyocheilus* were arranged during pre-spawning phase for hormonal manipulations as per the schedule given in Table 1. In breeding sets I to IV, two preparatory doses of ovatide was administered intramuscularly to female fish. First preparatory dose was given to female fish on 30 May 2016 while no hormone treatment was given to male fish at this time. On 15 June 2016, both female and males of each breeding set were injected with ovatide. On 30 June 2016, fishes of either sex were injected with the final dose of ovatide. In set V and VI no preparatory hormone doses were given to either sex and the brooders were directly given final hormone dose on 30 June 2016. The hormone doses administered are

provided in Table 1. After hormone administration, both male and female fishes were kept overnight together for spawning, in FRP tanks (2 x 2 x 0.5 m) having continuously flowing water (1-2 l per min). After spawning, the males and females were removed from the spawning tank, eggs were collected by siphoning and incubated in portable FRP carp incubation pool developed by ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Bhubaneswar, Odisha, India. Latency period, fertilisation rate, hatching rate and survival rate were estimated as per Thomas *et al.* (2003).

Fertilisation rate (%) =
$$\frac{\text{No. of fertilised eggs}}{\text{Total no. of eggs}} \times 100$$

Hatching rate (%) = $\frac{\text{No. of hatchings}}{\text{Total no. of fertilised eggs}} \times 100$

Physico-chemical parameters of water in the brood stock tanks were analysed following APHA (2005) during the experiment. Average water temperature, pH, alkalinity, total hardness and dissolved oxygen levels recorded were 18-22°C; 8.0-8.5; 52-58 mg l⁻¹, 65-70 mg l⁻¹ and 6.4 -8.0 mg l⁻¹ respectively.

Breeding performance of all the six breeding sets are presented in Table 2. In the set I to IV, successful spawning was achieved with 79-82% fertilisation rate whereas, no spawning was achieved in set V and set VI. The fertilised eggs were non-adhesive and demersal. Water hardening of the fertilised eggs took place in 4-5 h. Eggs were

Talala 1	Schedule of hormone	a dunimistustion	to the broad febor

Breeding set	Date of hormone administration	Dose of Ovatide (ml kg body weight -1)		Weight of fish (g)		
		Female	Male	Female (2 nos.)	Male (4 nos.)	
	30.05.2016 (1st Preparatory dose)	0.3	-	481 and 462	283; 217;	
	15.06.2016 (2 nd Preparatory dose)	0.3	0.1		253 and 287	
	30.06.2016 (Final dose)	0.7	0.3			
II	30.05.2016 (1st Preparatory dose)	0.3	-	486 and 456	261; 228;	
	15.06.2016 (2 nd Preparatory dose)	0.3	0.1		241 and 272	
	30.06.2016 (Final dose)	0.7	0.3			
III	30.05.2016 (1st Preparatory dose)	0.3	-	406 and 449	201; 219;	
	15.06.2016 (2 nd Preparatory dose)	0.3	0.1		261 and 244	
	30.06.2016 (Final dose)	0.7	0.3			
IV	30.05.2016 (1st Preparatory dose)	0.3	-	448 and 482	227; 269;	
	15.06.2016 (2 nd Preparatory dose)	0.3	0.1		242 and 261	
	30.06.2016 (Final dose)	0.7	0.3			
V	30.05.2016 (1st Preparatory dose)	-	-	381 and 464	214; 251;	
	15.06.2016 (2 nd Preparatory dose)	-	-		219 and 291	
	30.06.2016 (Final dose)	0.7	0.3			
VI	30.05.2016 (1st Preparatory dose)	-	-	473 and 521	264; 234;	
	15.06.2016 (2 nd Preparatory dose)	-	-		301 and 281	
	30.06.2016 (Final dose)	0.7	0.3			

	~ x	•	_				
Breeding set	Latency period (h)	Total eggs	Fertilisation	Incubation	Hatching	Survival (%)	Remarks
		spawned (Nos.)	rate (%)	period (h)	rate (%)		
I	11-13	319200	81±3.5	21-40	94±3.0	69±2.8	Successful spawning
II	12-13	303300	81±4.1	21-40	94 ± 2.6	71 ± 2.5	Successful spawning
III	11-12	296700	79 ± 2.8	21-40	95±1.3	67 ± 3.3	Successful spawning
IV	12-13	298300	82±5.3	21-40	94 ± 3.1	68 ± 4.9	Successful spawning
V	-	-	-	-	-	-	No spawning
VI	-	-	-	-	-	-	No spawning

Table 2. Breeding performance of L. dyocheilus in different breeding sets

transparent and average diameter of the fertilised eggs recorded was 3.8±0.41 mm and the incubation period was 21-40 h. Fishes of sets I, II, III and IV successfully spawned which indicated that the treatment of ovatide during pre-spawning phase not only advanced the gonadal maturity but also facilitated successful induced spawning of L. dyocheilus even during early spawning season. Vardia (1996) reported similar findings on advancement in maturity in Indian major carps using human chorionic gonadotropin (hCG). Similarly, Kumar et al. (2007) reported advancement in gonadal maturity in Labeo rohita with treatment of ovaprim during pre-spawning phase. Chalal et al. (2012) found advancement in ovarian maturity of Schizothorax richardsonii when subjected to treatment of pituitary gland extract (PGE). Gupta (2014) also successfully achieved breeding of L. dyocheilus in early spawning season by pre-treatment with ovaprim.

Fishes of set V and VI failed to spawn which indicated that *L. dyocheilus* was unable to breed in early spawning season without pre-treatment of ovatide during pre-spawning phase. Pandey *et al.* (2011) suggested that *L. dyocheilus* showed complete maturity by the 3rd week of July only and can be bred successfully only after that period. Failure of spawning in fishes of these sets indicated that induced spawning was not possible during early spawning season without hormonal pre-treatment.

The findings of the present study revealed that breeding of *L. dyocheilus* in early spawning season by advancing their maturity is very much beneficial for production of large quantum of seed in mid Himalayan region as it failitates extended breeding period from mid-June to last August as compared to normal breeding period *i.e.*, third week of July to last week of August. Breeding of *L. dyocheilus* in early spawning season may also be beneficial for nursery phase rearing of seed in the region as temperature favours the growth of larvae upto the month of September which otherwise starts to fall from October onwards and results in poor survival of larvae due to low temperature.

Acknowledgements

The authors are thankful to the Director, ICAR-DCFR, Bhimtal, for providing the opportunity to carry out this work along with their valuable guidance, useful suggestions and facilities during the research. Authors are immensely thankful to PCCF (WL), Department of Forest, Govt. of Uttarakhand for granting permission for collection of fish samples.

References

- APHA 2005. Standard methods for the examination of water and wastewater; 21st edn. American Public Health Association, Washington D. C., USA.
- CAMP 1998. Conservation assessment and management plan for freshwater fishes of India. Workshop Report, Zoo Outreach Organization, Coimbatore/CBSG and NBFGR, Lucknow, India, 158 pp.
- Chalal, R. S., Pandey, N. N. and Kumar, P. 2012. Use of PGE for successful spawning of snow trout, *Schizothorax richhardsoni* (Gray), *J. Sustain. Env. Res.*, 1(1): 37-40.
- Crim, L. W. 1991. Hormonal manipulation of fish seasonal reproductive cycles. *Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish*. University of East Angila, Norwich, U.K., p 43-47.
- Dahanukar, N. 2010. *Labeo dyocheilus*. The IUCN Red List of Threatened Species 2010: e.T166625A6249964. http://dx.doi.org/10.2305/IUCN.UK.20104.RLTS. T166625A6249964.en.
- Gupta, M., Pandey, N. N., Tiwari, V. K., Singh, R., Prakash, C. and Chaturvedi, C. S. 2013. Study of gonadosomatic index and fecundity of pond raised *Labeo dyocheilus* in cold water conditions. *Int. J. Adv. Res.*, 1(7): 137-140.
- Gupta, M. 2014. Study on induced breeding and seed production of indigenous carp, Labeo dyocheilus (Mcclelland) in captivity under coldwater conditions. Ph. D., Thesis. ICAR-Central Institute of Fisheries Education, Mumbai, India.
- IUCN 2013. *IUCN Red List of threatened species*. Version 2013.2. www.iucnredlist.org.
- Pandey, N. N., Haldar, R. S., Ali, S., Kumar, P., Patiyal, R. S. and Mahanta, P. C. 2011. Induced spawning of *Labeo dyocheilus* in captivity under cold water condition. *J. Inland Fish Soc. India*, 43(2): 44-48.

Raghvendra Singh et al. 167

Kumar, A., Singh A. K., Singh, I. J. and Ram, R. N. 2007. Advancing gonadal development and maturity by ovaprim in *Labeo rohita* (Ham.). *Indian J. fish.*, 54(1): 85-92.

- Sarkar, U. K., Patiyal, R. S. and Srivastava, S. M. 2001. Successful induced spawning and hatching of hill stream carp, *L. dyocheilus* in Kosi River. *Indian. J. Fish.*, 48(4): 413-416.
- Talwar, P. K. and Jhingran, A. G. 1991. *Inland fishes of India and adjacent countries*, vol. 2. Oxford and IBH Publishing Co., New Delhi, India, 207 pp.
- Thomas, P. C., Rath, S. C. and Mohapatra, K. D. 2003. *Breeding and seed production of finfish and shellfish.* Daya Publishing House, New Delhi, India.
- Tung, N. T., Du, N. N., An, V. V. and Tuan, T. T. 2006.
 Monitoring of fish larvae during the annual flood of the Mekong and Bassac rivers, Mekong Delta, Vietnam. In: Burnhill, T. J. and Warren, T. J. (Eds.), *Proceedings of the 7th Technical Symposium on Mekong Fisheries*. 15 17
 November 2005, MRC Conference Series No. 6, Mekong River Commission, Vientiane, Lao PDR, p. 71-88.
- Vardia, H. E. 1996. Advancement of maturity with HCG in Indian major carps. In: Mohan Joseph, M. and Mohan, C. V. (Eds.), *Proceedings of the Third Indian Fisheries Forum*, 11-14 October 1993, College of Fishery Sciences, Pantnagar, Uttar Pradish, India, p. 50.

Date of Receipt : 30.03.2019 Date of Acceptance : 09.09.2020