Quality characteristics of chicken sausages prepared with addition of beetroot powder stored at refrigerated temperature

CHIRAG SINGH, PRAMILA UMARAW*, AKHILESH K. VERMA, V. P. SINGH AND VARSHA VIHAN

Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut-250110, (Uttar Pradesh), India

(Received on September 12, 2023; accepted for publication on October 13, 2024)

ABSTRACT

Singh, C., Umaraw, P., Verma, A.K., Singh, V.P. and Vihan, V. 2024. Quality characteristics of chicken sausages prepared with addition of beetroot powder stored at refrigerated temperature. Indian Journal of Poultry Science, 59(3): 321-328

The present study explored preservative potential of beetroot powder (BP) in chicken sausages as natural preservative. Beetroot powder was added at three different levels i.e. T1 (1.5% of BP w/w of meat emulsion), T2 (3.0% of BP w/w of meat emulsion), T3 (4.5% of BP w/w of meat emulsion) in the preparation of chicken sausage and was compared with control (C without BP) chicken sausage which were aerobically packaged. The samples were examined for physico-chemical parameter (pH, cooking yield, emulsion stability), proximate composition, Total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Storage stability of these chicken sausages were also evaluated on the basis of pH, oxidative stability (peroxide value, thiobarbituric acid reactive substances), microbiological analysis (total plate count, psychrophilic counts, coliforms and yeast and mould count) and sensory evaluation for 12 days at refrigeration storage. The results indicated that incorporation of BP significantly improved the cooking yield, emulsion stability, ash content, fibre, DPPH radical scavenging activity and total plate count. During storage restricted fat oxidation, microbial proliferation and better maintained sensorial characteristics were observed in treatments. Therefore, outcomes of the study suggested that beetroot could be used as natural preservative for extension of shelf-life of chicken sausages.

Keywords: Chicken sausage, Beetroot, Antioxidant, Lipid oxidation, Sensory attributes

INTRODUCTION

Food deterioration and spoilage is one of the major global issues and hurdles for the sustainable development. According to United Nations (UN), globally food spoilage or food losses from harvest to retail are about 14%, whereas about 17% of food is wasted thereafter of which 11% is lost at household level, 5% at the food service level and 2% at the retail level (United Nation Environmental Programme, 2021). Shelf-life extension of perishable food items with natural preservatives can be a promising approach for preventing spoilage and food wastage.

Meat is a highly nutritious and perishable food item which accounts for around 7% of total food mass providing 11% of global food energy and 21% of global protein in terms of nutrient availability (Smith *et al.*, 2022). Various factors affect the quality and shelf life of meat products during storage. The deterioration of quality of meat products are associated with products safety and purchasing behaviour of consumers. Fat oxidation and microbial proliferation are the principal factors of food products spoilage Verma *et al.* 2023. Therefore, the food processors use preservatives, either natural or synthetic, to prolong the shelf life of meat products as well as to lower microbial growth and lipid oxidation. Additionally, consumers are moving towards natural food

preservatives and avoiding synthetic or artificial ones due to health concerns.

Vegetables are sources of myriads of active components that might be used for food processing industry imparting functionalities viz. anti-oxidant, antimicrobial actions etc. Because of its high nitrate content and global availability, Beetroot (*Beta vulgaris L.*) stands out among all vegetable sources. Beta vulgaris is high in phenolic acids, vitamins, and antioxidants. Presence of phenolic compounds and betalains in red beet makes it a good source of natural colourants and antioxidants (Ravichandran et al., 2012; Chhikara et al., 2019; Panghal et al., 2017). They also have a chemo-preventive effect against free radicals and oxidative stress (Lechner and Stoner, 2019). Betalains and anthocyanins are two active components found in beetroot. In addition to all of the health benefits, beetroot improves gut health, has oxidative stress inhibitory effects, optimises lipid metabolism, and has a lipid peroxidation effect (De et al., 2021; Babarykin et al., 2019). Thus, the goal of this study is to prolong the storage stability of chicken sausages with addition of beetroot powder at different levels over a 12 days storage period.

MATERIALS AND METHODS

Chicken meat and goat intestine for casing making and other ingredients such as spices, condiment, soya, refined oil, gram dal and packaging material low density

^{*}Corresponding author E mail: pramila1303@gmail.com

polyethylene (LDPE) were purchased from local market while freeze-dried beetroot powder (excellent foods) was purchased from online market. Analytical reagents and bacteriological media were obtained from standard firms Hi-media, SRL and CDH.

Preparation of casings

Freshly slaughtered goat small intestine was procured from the local market. Through cleaning of small intestine with clean water was carried out in meat processing lab of Department of Livestock Products Technology (LPT), COVAS, SVPUAT, Meerut. Sliming with 10% saline solution was done for 10 hours to swell out the different layers of intestine. Careful scrapping of small intestine was done to remove all the layers of intestine except sub-mucosa. Further cleaning of casings was done with clean water and stored in saline solution at refrigeration temperature until further usage.

Preparation of sausage

Fresh chicken was purchased from market after that carcass was cleaned, deboned and minced in the meat processing laboratory of Department of LPT, COVAS, SVPUAT, Meerut. The meat was minced twice using (6 mm) plate in a meat mincer. Table salt, sodium nitrite, sodium tripolyphosphate refined vegetable oil, slush ice, chana dal, textured soya, spice mixture, condiment and beetroot powder were incorporated to weighed meat according to formulation (Table 1). Meat emulsion for preparation of chicken sausage was made in Inalsa food processor. Initially, minced meat was blended with table salt, sodium nitrite, sodium tripolyphosphate (STPP) and slush ice for 1.5 min. followed by incorporation of refined vegetable oil and mixed for another 1 min. Later, addition of other ingredients including beet root powder in treatments was followed by blending for further 2 min. After preparation of meat emulsion, it was stuffed into the goat casings using a manual stuffer along-with linking/tying at regular intervals. Prepared sausages were cooked in hot water at 85°C for 25 minutes followed by grilling in an oven at 160°C for 15 minutes. Cooled cooked sausages were packaged in low-density poly ethylene (LDPE) pouch and kept at refrigeration temperature for further analysis.

Table1: Formulation of chicken sausage prepared with incorporation of beetroot powder

interpolation of occupant political				
С	T1	T2	Т3	
68.7	67.2	65.7	64.2	
-	1.5	3.0	4.5	
3.0	3.0	3.0	3.0	
3.0	3.0	3.0	3.0	
3.0	3.0	3.0	3.0	
2.0	2.0	2.0	2.0	
2.0	2.0	2.0	2.0	
	68.7 - 3.0 3.0 3.0 2.0	C T1 68.7 67.2 - 1.5 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0	C T1 T2 68.7 67.2 65.7 - 1.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0	

Sodium tripolyphosphate (%)	0.3	0.3	0.3	0.3
Slush ice (%)	8.0	8.0	8.0	8.0
Oil(%)	10.0	10.0	10.0	10.0
Sodium nitrite (ppm)	120	120	120	120

C: Control chicken sausage without beetroot powder; T1: chicken sausage with 1.5% beetroot powder; T2: chicken sausage with 3.0% beetroot powder; T3: chicken sausage with 4.5% beetroot powder.

Physico-chemical analysis

The cooking yield of samples were estimated by measuring the weight of the raw sausages previously and after cooking and estimated as ratio of cooked weight to raw weight and expressed in percentage. Emulsion stability of sausage emulsion was determined by the method given by Townsend *et al.* (1968). Moisture, protein, fat, fiber and ash percentage of chicken sausages were determined according to the AOAC (1995) procedures. The changes in pH of cooked sausages during storage were measured by digital pH meter following the technique of Troutt *et al.* (1992).

Total phenolic content (µg GAE/100g)

Total phenolic content of chicken sausages was measured using the Folin Ciocalteu method, as Zhang *et al.* (2006) proposed. Sample extract (0.6 mL) and 0.3 mL of 0.2 N Folin-phenol Ciocalteu's reagent were mixed in a test tube. After that, 2.4 mL of a sodium carbonate (20%) solution was added to the mixture, which was then left at room temperature for 10 minutes. Absorbance at 730 nm was measured after filtering the content. *DPPH* (1, 1-diphenyl-2-picrylhydrazyl)% inhibition

With little modifications, the (DPPH) activities of product samples were determined using the technique given by Kato *et al.* (1988). The 10 mL of ethanol and methanol (1:1) were used to triturate 2.5 g of product sample for 2–3 min. The blended samples were filtered and stored. A test tube was filled with 3.9 ml of the DPPH reagent (250 M), 1 ml of the 0.1 M Tris-HCl buffer (pH 7.4) and 0.1 ml of the sample filtrate. A UV Spectrophotometer was used to measure absorbency at 517 nm.

Lipid oxidation

Lipid stability was estimated by using thiobarbituric acid reactive substances (TBARS) test as given by Witte *et al.* (1970) with suitable modification. The Peroxide value (PV) content was estimated following the method as elaborated by Koniecko (1979).

Microbial analysis

Total plate count (TPC), psychrophilic count, coliform count and yeast and mould count in chicken sausage were measured as per the method given by APHA (1992).

Sensory evaluation

Experienced panel of judges with seven members from College of Veterinary and Animal Sciences, SVPUAT, Meerut, India evaluated the chicken sausages

for appearance and colour, flavour, texture, juiciness and overall acceptability using 9-point hedonic scale, where 9=extremely desirable and 1=extremely undesirable. The sensory evaluation was conducted on all days of evaluation and the whole experiment was replicated thrice (n=21). Before analysis, the chicken sausages were warmed in a microwave oven for 20 sec and then presented to the evaluators in coded form. Tap water was also provided for cleansing the palate during evaluation.

Statistical analysis

Data were analysed using statistical package social science (SPSS) version 22. Means of treatment showing significant difference ($p \le 0.05$) were subjected to Duncan's multiple range test.

RESULTS AND DISCUSSION

Cooking yield and emulsion stability of chicken meat emulsion added with beetroot powder

The cooking yield of sausages were considerably (p \leq 0.05) affected by addition of beetroot powder (Table 2) and increased significantly (p \leq 0.05) in treatments. The effect was more prominent (p \leq 0.05) in T1 and T2 as increasing the BP content from 3% to 4.5% did not significantly affect the cooking yield. Comparable results were also reported by Zaini *et al.* (2020) for the incorporation of banana peel powder in chicken sausages. The increase in cooking yield among treatments might be attributed to the ability of dietary fibres to prevent moisture migration during cooking. Similarly, Verma *et al.* (2015) and Rani *et al.* (2021) also confirmed that addition of pumpkin pulp and pumpkin seed powder in chicken patties and nuggets considerably improved the cooking yield.

The meat emulsion prepared for sausage making evinced significant (p \leq 0.05) differences in their stability (Table 2). Addition of beetroot powder significantly (p \leq 0.05) increased the emulsion stability in treatments which increased notably (p \leq 0.05) at each level. This increase in emulsion stability could be due to the increase in dietary fibre content of beetroot powder, which retains more water and oil in the product. Kohajdová *et al.* (2018) reported high dietary fibres (65.7%) and good hydration in beetroot powder as incorporation of it significantly increased the water absorption and improved dough stability of baking rolls. Similar results were also reported by Patel *et al.* (2021) for meat nuggets formulated with addition of whey protein concentrate.

Proximate composition of beetroot powder added chicken sausage

Incorporation of beetroot powder significantly (p \leq 0.05) affected the proximate composition of chicken sausages (Table 2). The moisture content of T2 and T3 sausages were significantly (p \leq 0.05) higher than control which might be attributed to the better hydration and

superior water retaining properties of beetroot. However, the incorporation of beetroot reduced the percent protein content of the chicken sausages significantly (p \leq 0.05) at higher levels (T2 and T3). This decrease might be due to the low protein content in beetroot and to the fact that meat was replaced by beetroot powder in treatments. Contrarily, Choe *et al.* (2011) observed insignificant effect on protein content of emulsified sausage incorporated with goldenrod leaf and stem powder at 1 and 2% level. Similarly, Jin *et al.* (2014) reported no significant increase in protein content with addition of beetroot powder at 0.5% and 1% in emulsified pork sausage.

The variations in fat content of sausages were similar to that of protein (Table 2). The fat content decreased significantly (p \leq 0.05) with the increasing level of beetroot powder except that at 0.5% level. Park *et al.* (2012) observed that on incorporation of makgeolli fiber the fat content of meat sausages decreased. Similar decrease in fat content was also observed by Verma *et al.* (2016) in chicken meat balls incorporated with cabbage. However, the ash content evinced the significant (p \leq 0.05) increase at each level of beetroot incorporation in treatments. Similar trend of increased ash content was observed by Jin *et al.* (2014) in pork sausages added with beetroot powder.

The fibre content escalated significantly (p \leq 0.05) with increase in beetroot powder incorporation. Highest (p \leq 0.05) fibre content was recorded in T3 which had 4.5% beetroot powder (Table 2). Beetroot powder is a good source of dietary fibres. The freeze-dried red beet contains about 17.2-21.8% total dietary fibre (Nemzer et al., 2011). Akin result was also reported by Verma et al. (2022) for chicken nuggets prepared with the addition of nelumbo nucifera root powder.

Antioxidant Parameters

DPPH(1, 1-diphenyl-2-picrylhydrazyl)% inhibition and Total phenolic content (µg GAE/100g): The DPPH radical percent inhibition is an easy, quick, affordable and widely used technique to assess the antioxidant capacity. Moreover, it efficiently assesses both hydrophilic and hydrophobic (lipophilic) antioxidants. Incorporation of beetroot powder markedly (p≤0.05) increased the DPPH radical% inhibition in the treatments (Table 2). Among treatments, the DPPH values increased significantly (p≤0.05) with increase in level of beetroot powder in the sausages. The antioxidant activity of beetroot has been reported in the range of 14.2% to 90.7% (Georgiev et al. 2010). The T3 sample showed highest DPPH values. Above results showed that the beetroot can be successfully use in products to provide a great source of natural antioxidant effect.

Plants are rich in phenolic compounds which by the virtue of their hydroxyl groups are endowed with redox properties. These compounds act as free radical scavengers and prevent oxidative deterioration and /or degeneration. An estimate of total phenolic content indicates the antioxidant potency of a compound. Beetroot powder incorporation recorded appreciable increase in the total phenolic content of the treatments as compared to control (Table 2). Among treatments, the total phenolic content was directly proportional to the level of incorporation. Highest phenolic content was observed in T3 while least total phenolic content was observed in

control. Increasing trend in total phenolic content with increase in beetroot powder might be due to presence of polyphenols in the beetroot powder. The level of polyphenols in beetroot may vary from 720 to 1276 mg/kg (Ninfali and Angelino, 2013). Lechner and Stoner (2019) also reported that the chemo-protective effect against free radical compounds and oxidative stress in beetroot is due to the phenolic compounds found in them.

Table 2: Physicochemical properties and antioxidant capacity of chicken sausages incorporated with different levels of beetroot powder

Parameters	С	T1	T2	T3	
Cooking yield (%)	89.22±0.13 ^a	90.11±0.27 ^b	91.70±0.21°	91.66±0.22°	
Emulsion stability (%)	91.46 ± 0.12^{a}	92.21±0.22 ^b	93.14±0.10°	94.08 ± 0.24^{d}	
Moisture (%)	64.95±0.31a	65.77 ± 0.53^{ab}	66.09±0.19b	67.16±0.13°	
Protein (%)	15.66±0.56°	15.28 ± 0.38^{bc}	14.81±0.15 ^b	14.27 ± 0.22^{a}	
Fat (%)	14.62±0.16°	13.45 ± 0.14^{bc}	13.26±0.17 ^b	12.81 ± 0.15^{a}	
Ash (%)	2.82 ± 0.02^{a}	3.04 ± 0.03^{b}	3.12±0.05°	3.24 ± 0.03^{d}	
Fiber (%)	0.86 ± 0.19^{a}	1.23±0.11 ^b	1.95 ± 0.18^{c}	2.35 ± 0.17^{d}	
DPPH(%)	42.32±0.21a	62.33±0.19 ^b	67.20±0.58°	68.44 ± 0.16^{d}	
$TPC (\mu g GAE/g)$	14.32±0.57 ^a	21.30±0.37 ^b	25.95±0.17°	28.40 ± 0.44^{d}	

Means values having small letters (a, b, c, d.....) treatment wise differ significantly ($P \le 0.05$) n=6. C: Control chicken sausage without beetroot powder; T1: chicken sausage with 1.5% beetroot powder; T2: chicken sausage with 3.0% beetroot powder; T3: chicken sausage with 4.5% beetroot powder. GAE=gallic acid equivalent

Change in pH, peroxide value and TBARS (mg malonaldehyde/kg) of chicken sausage during storage: Significant differences were observed in pH due to incorporation of beetroot powder in chicken sausages. The pH decreased significantly in treatments than in control which was dependent on the level of incorporation. Highest pH was observed in control and lowest was observed in chicken sausage with 4.5% beetroot powder (Table 3). This difference was evident till the end of storage except variations among T1 and T2 during intermediate days (Day 4 and 8). Similar decrease in pH was also observed by Ozaki et al. (2021) in fermented dry sausage incorporated with beetroot powder. Noticeably, during storage the pH of all samples increased significantly, highest being on the 12th day. This increase in pH might be attributed to the biochemical and microbial activities which continue even during refrigeration conditions at a gradual pace.

The peroxide value (PV) of all samples evinced significant (p \leq 0.05) differences on the initial day (Table 3). Lowest PV was observed in T3 followed by T2 >T1>C. The higher phenolic content of beetroot might be attributed to the lower PV in treatments. During storage, the PV increased significantly (p \leq 0.05) among all groups but remained under the prescribed limits. Best result of peroxide value was observed in T3 having highest concentration of beetroot powder that could be attributed

to achievement of threshold by the active compounds present in the beetroot powder in T3. Significantly least (p \leq 0.05) PV was observed in T3 and highest in C on day 12 of storage. This contrasting difference in PV between test groups (T1, T2 and T3) and control shows that beetroot powder has active compounds which reduces the rate of lipid oxidation. Ozaki *et al.* (2021) and Turp *et al.* (2016) also reported that the beetroot powder caused a considerable (p \leq 0.05) retardation of lipid oxidation in sausages. Similar results were obtained by Duthie *et al.* (2013) with incorporation of 6% of beetroot powder in turkey patties found to have greater number of bioactive compounds (phenolic compounds, carotenes and tocopherols etc.) and oxidation stability.

During storage, TBARS values increased significantly (p≤0.05) among all groups, highest TBARS values were observed in C and lowest in T3 on day 12 of storage which were under the safe limits (Table 3). T2 and T3 showed non-significant (p<0.05) decrease in TBARS values from day 8 to day 12. Appreciable results in groups incorporated with beetroot powder was noticed compared to control due to presence of betalains, which show radical-scavenging activities (Georgiev *et al.*, 2010). Similar results in TBARS values were observed by Mashau *et al.* (2021) who added moringa leaf powder in ground beef and Umaraw *et al.* (2024) for meat balls added with mango seed extract.

Table 3: Change in pH, peroxide value and TBARS number of storage stability of chicken sausages incorporated with different level of beetroot powder

Groups Days	0 day	4 days	8 days	12 days
		p ^H		
C	6.22 ± 0.04^{dA}	6.26 ± 0.03^{cB}	6.43 ± 0.04^{cC}	6.52 ± 0.04^{dD}
T1	6.09 ± 0.02^{cA}	6.25 ± 0.06^{cB}	6.36 ± 0.03^{bC}	$6.45\pm0.07^{\text{cD}}$
T2	$6.04\pm0.02^{\rm bA}$	6.22 ± 0.05^{bB}	6.23 ± 0.08^{aB}	$6.36\pm0.05^{\mathrm{bB}}$
T3	5.94 ± 0.05^{aA}	6.07 ± 0.02^{aB}	6.24 ± 0.06^{aC}	6.29 ± 0.04^{aD}
		Peroxide value (med	ı/kg)	
С	3.12±0.05 ^{dA}	4.34±0.07 ^{dB}	4.54±0.06 ^{dC}	5.61±0.06 ^{dD}
T1	2.73 ± 0.06^{bA}	3.22 ± 0.08^{bB}	3.40 ± 0.02^{bC}	4.05 ± 0.01^{bD}
T2	2.77 ± 0.07^{cA}	3.65 ± 0.04^{cB}	3.93 ± 0.07^{cC}	4.65 ± 0.04^{cD}
T3	2.63 ± 0.04^{aA}	2.85 ± 0.11^{aB}	3.02 ± 0.01^{aC}	3.93 ± 0.08^{aD}
	TBA	RS number (mg malona	ıldehyde/kg)	
С	0.55±0.08 ^{bA}	0.63±0.04 ^{cB}	0.68±0.04 ^{cC}	0.72±0.03 ^{cD}
T1	0.53 ± 0.05^{aA}	0.59 ± 0.04^{bB}	0.62 ± 0.03^{bC}	0.67 ± 0.04^{bD}
T2	$0.54\pm0.07^{\rm bA}$	0.55 ± 0.04^{aA}	0.59 ± 0.04^{aB}	0.63 ± 0.03^{aB}
T3	0.58 ± 0.04^{cA}	0.63 ± 0.03^{cB}	0.71 ± 0.04^{dC}	0.69 ± 0.04^{bC}

Means values having small letters (a, b, c, d.....) treatment wise and capital letters (A, B, C and D) storage wise differ significantly ($p \le 0.05$) n=6; C: Control chicken sausage without beetroot powder; T1: chicken sausage with 1.5% beetroot powder; T2: chicken sausage with 3.0% beetroot powder; T3: chicken sausage with 4.5% beetroot powder.

Microbiological qualities

Total Plate Count: Incorporation of beetroot powder in the chicken sausage significantly improved its microbiological quality (Table 4). On Day 0, significantly lowest TPC were observed in T3 followed by T2, T1 and C which showed that beetroot powder contains ingredients which possess antimicrobial activity. The TPC increased significantly (p≤0.05) among all groups during the storage period. Highest TPC values were observed in C and lowest in T3 on day 12

of storage which were under the prescribed limits. The psychrophilic count was absent up to 4th days of storage and observed at 8th day and count was lower in T3 followed by T2, T1 and control. The incorporation of beetroot can decrease the proliferation of microbes in chicken sausage, which may be associated with bioactive compounds present in beetroot (Gong *et al.* 2022). *E. coli* and yeast and mould growth were not detected in chicken sausage during the storage period.

Table 4: Change in microbial quality of chicken sausages incorporated with different level of beetroot powder

			0.1	12.1	
Groups Days	0 day	4 days	8 days	12 days	
		Total plate counts (cf	u/gm)		
С	2.37 ± 0.08^{dA}	3.34 ± 0.12^{dB}	3.40±0.17 ^{dC}	4.64 ± 0.16^{dD}	
T1	2.11 ± 0.18^{cA}	2.23 ± 0.19^{bB}	2.96 ± 0.18^{cC}	3.88 ± 0.09^{cD}	
T2	1.99 ± 0.11^{bA}	2.64 ± 0.13^{cB}	2.76 ± 0.12^{bC}	3.82 ± 0.11^{bD}	
T3	1.72 ± 0.14^{aA}	1.95 ± 0.17^{aB}	2.35 ± 0.15^{aC}	3.59 ± 0.14^{aD}	
		Psychrophilic counts (cfu/gm)		
С	ND	ND	1.58±0.12 ^{bA}	2.26±0.15 ^{bB}	
T1	ND	ND	1.36 ± 0.09^{abA}	2.06 ± 0.11^{aB}	
T2	ND	ND	$1.21\pm.011^{aA}$	1.98 ± 0.08^{aB}	
T3	ND	ND	1.18 ± 0.15^{aA}	1.86 ± 0.14^{aB}	
		Coliform counts (cfu	ı/gm)		
С	ND	ND	ND	ND	
T1	ND	ND	ND	ND	
T2	ND	ND	ND	ND	
T3	ND	ND	ND	ND	
		Yeast and Moulds (cf	ru/gm)		
С	ND	ND	ND	ND	
T1	ND	ND	ND	ND	
T2	ND	ND	ND	ND	
T3	ND	ND	ND	ND	

Means values having small letters (a, b, c, d......) treatment wise and capital letters (A, B, C and D) storage wise differ significantly (p<0.05) n=6; C: Control chicken sausage without beetroot powder; T1: chicken sausage with 1.5% beetroot powder; T2: chicken sausage with 3.0% beetroot powder; T3: chicken sausage with 4.5% beetroot powder. ND: Not detected

Change in sensory attributes of beetroot added chicken sausage

All attributes of the sensory analysis varied significantly (p≤0.05) among the groups and it was also noticed that every parameter decreased significantly $(p \le 0.05)$ during storage (Table 5). Overall, from day 0 to day 12 the sensory score for colour and appearance reduced but were in acceptable range during the whole storage period. Hwang et al. (2017) reported that with increase in the level of fermented beetroot extract overall acceptability scores for pork sausages reduced. Sucu and Turp (2018) also observed increased visual colour and overall acceptability scores incorporation of beetroot powder in Turkish fermented beef sausage as compared to control. Jin et al. (2014) reported that incorporation of beetroot powder increases the colour score of the sausages formed. In present study T3 showed lower colour and appearance score which might be attributed due to production of intense red colour in the product with incorporation of 4.5% level of beetroot powder which makes chicken sausages less appealing and also made the product look dry. Flavour attributes of all samples decreased during storage which might be due to the oxidation of fat and protein by microbial proliferation leading to generation of off-flavour compounds (Umaraw et al., 2020). Singh et al. (2021) also observed significant (p≤0.05) decrease in juiciness and texture scores of chicken sausage during storage which might be due to alteration in the matrix of sausage during storage. On day 0, control received highest acceptability followed by treatments. But with storage the changes in other sensory attributes significantly influenced the overall acceptability of products. By the end of storage (day 12) only T2 received scores above 7 rest all samples were rated below 7 indicating the changes in sensory attributes during storage.

Table 5: Sensory evaluation values of chicken sausages incorporated with different level of beetroot powder

Groups Days	0 day	4 days	8 days	12 days
	-	Colour and Appear		•
С	8.17±0.08 ^{aD}	7.86±0.07 aC	7.23±0.07 aB	$6.81\pm0.07^{\mathrm{aA}}$
T1	8.51 ± 0.11^{bD}	8.19 ± 0.08^{bC}	$7.75\pm0.11^{\mathrm{bB}}$	7.31 ± 0.18^{bA}
T2	$8.52\pm0.15^{\mathrm{bC}}$	8.33±0.13 cBC	8.24 ± 0.07^{cB}	7.60±0.12°A
T3	8.19 ± 0.12^{aC}	7.90 ± 0.18^{aB}	7.73 ± 0.09^{bB}	7.51 ± 0.14^{cA}
		Flavour		
С	8.50±0.14 ^{cD}	8.15±0.08 ^{bC}	7.29±0.16 ^{aB}	6.71±0.16 ^{aA}
T1	8.41 ± 0.08^{cD}	8.21 ± 0.10^{bcC}	$7.63\pm0.15^{\mathrm{bB}}$	7.29 ± 0.10^{cA}
T2	$8.25\pm0.09^{\mathrm{bC}}$	8.30±0.10°C	8.00 ± 0.12^{cB}	7.49 ± 0.18^{dA}
T3	$8.07\pm0.07^{\mathrm{aC}}$	$7.76\pm0.09^{\mathrm{aB}}$	$7.61\pm0.13^{\mathrm{bB}}$	$7.16\pm0.15^{\mathrm{bA}}$
		Texture		
С	8.42±0.15 ^{cD}	8.29±0.16°C	7.19±0.10 ^{aB}	6.79±0.09 ^{bA}
T1	8.30 ± 0.10^{bD}	7.79 ± 0.09^{bC}	7.31 ± 0.10^{bB}	6.77 ± 0.09^{bA}
T2	8.50 ± 0.09^{dD}	8.25 ± 0.09^{cC}	$7.86\pm0.12^{\mathrm{cB}}$	7.50 ± 0.09^{cA}
T3	7.86 ± 0.11^{aD}	7.51 ± 0.09^{aC}	7.14 ± 0.14^{aB}	$6.38 \pm 0.20^{\mathrm{aA}}$
		Juiciness		
С	8.25±0.07 ^{bD}	8.15±0.08 ^{bC}	7.93±0.13 ^{cB}	6.15±0.08 ^{aA}
T1	8.29 ± 0.09^{bC}	8.14 ± 0.08^{bC}	$7.70\pm0.12^{\mathrm{bB}}$	7.25 ± 0.09^{cA}
T2	8.51±0.18°C	$8.27\pm0.09^{\mathrm{cB}}$	8.25 ± 0.09^{dB}	7.48 ± 0.13^{dA}
T3	$7.98\pm0.18^{\mathrm{aC}}$	7.60 ± 0.19^{aB}	7.50 ± 0.18^{aB}	6.65 ± 0.12^{bA}
		Overall Acceptabi	lity	
С	8.50±0.09 ^{cD}	7.24 ± 0.09^{bC}	7.05 ± 0.09^{aB}	6.79±0.12 ^{aA}
T1	7.51 ± 0.15^{bC}	7.21 ± 0.09^{bB}	$7.11 {\pm} 0.09^{\mathrm{aAB}}$	$6.99\pm0.11^{\mathrm{bA}}$
T2	7.64 ± 0.13^{bC}	7.49 ± 0.12^{cB}	7.29 ± 0.14^{bA}	7.21 ± 0.10^{cA}
T3	$7.25 \pm 0.09^{\mathrm{aC}}$	7.18 ± 0.10^{aBC}	7.02 ± 0.12^{aB}	$6.85{\pm}0.09^{\mathrm{aA}}$

Means values having small letters (a, b, c, d.....) treatment wise and capital letters (A, B, C and D) storage wise differ significantly ($p \le 0.05$) n=21; C: Control chicken sausage without beetroot powder; T1: chicken sausage with 1.5% beetroot powder; T2: chicken sausage with 3.0% beetroot powder; T3: chicken sausage with 4.5% beetroot powder.

CONCLUSION

The incorporation of beetroot powder in chicken sausages significantly improved the emulsion stability of the sausage batter resulting in increased cooking yield of the product. Although the replacement of chicken meat with beetroot powder decreased the protein and fat content of sausages, the moisture, ash and dietary fibres increased appreciably along with the DPPH and total phenolic content. The high DPPH and TPC of products augmented the storage stability of the chicken sausages as evinced from the restricted increase in deteriorative changes such as peroxide value and TBARS numbers. Moreover, the microbial proliferation was lower in treatments and the sensory characteristics were also better maintained. Among treatments, microbial quality and lipid oxidation were slightly better maintained in T3 however, T2 evinced better overall acceptability during storage.

REFERENCES

- AOAC 1995. *Official Methods of Analysis*. 16th ed. Association of Official Analytical Chemists. Washington D.C.
- APHA 1992. Compendium of methods for the microbiological examination of foods. 4th ed. American Public Health Association. Washington, D.C.
- Babarykin, D., Smirnova, G., Pundinsh, I., Vasiljeva, S., Krumina, G. and Agejchenko, V. 2019. Red beet (*Beta vulgaris*) impact on human health. *Journal of Biosciences and Medicines*, **7**(3): 61-79.
- Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y. and Panghal, A. 2019. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. *Food Chemistry*, 272: 192-200.
- Choe, J.H., Kim, H.Y., Han, D.J., Kim, Y.J., Park, J.H., Ham, Y.K. and Kim, C.J. 2011. Effect of goldenrod (*Solidago virgaurea*) leaf and stem powder on physical and sensory characteristics of emulsion-type sausages. *Food Science of Animal Resources*, 31(5): 668-675.
- De Oliveira, S.P.A., do Nascimento, H.M.A., Sampaio, K.B. and de Souza, E.L. 2021. A review on bioactive compounds of beet (*Beta vulgaris L. subsp. vulgaris*) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. *Critical Reviews in Food Science and Nutrition*, **61**(12): 2022-2033. (Placeholder1p. 2)
- Duthie, G., Campbell, F., Bestwick, C., Stephen, S. and Russell, W. 2013. Antioxidant effectiveness of vegetable powders on the lipid and protein oxidative stability of cooked turkey meat patties: Implications for health. *Nutrients*, 5(4): 1241-1252
- Georgiev, V.G., Weber, J., Kneschke, E.M., Denev, P.N., Bley, T. and Pavlov, A.I. 2010. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant foods for Human Nutrition, 65(2): 105-111
- Gong, S., Jiao, C. and Guo, L. 2022. Antibacterial mechanism of beetroot (*Beta vulgaris*) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork. *LWT - Food Science and Technology*, **165**: 113711.

- Hwang, K.E., Kim, T.K., Kim, H.W., Oh, N.S., Kim, Y.B., Jeon, K.H. and Choi, Y.S. 2017. Effect of fermented red beet extracts on the shelf stability of low-salt frankfurters. *Food Science and Biotechnology*, 26(4): 929-936.
- Jin, S.K., Choi, J.S., Moon, S.S., Jeong, J.Y. and Kim, G.D. 2014. The assessment of red beet as a natural colorant, and evaluation of quality properties of emulsified pork sausage containing red beet powder during cold storage. *Korean Journal for Food Science of Animal Resources*, 34(4): 472.
- Kato, K., Terao, S., Shimamoto, N. and Hirata, M. 1988. Studies on scavengers of active oxygen species. 1. Synthesis and biological activity of 2-O-alkylascorbic acids. *Journal of Medicinal Chemistry*, 31(4): 793-798.
- Kohajdová, Z., Karovièová, J., Kuchtová, V. and Lauková, M. 2018. Utilisation of beetroot powder for bakery applications. Chemical Papers, 72: 1507-1515.
- Koniecko, R. (1979). Handbook for meat chemists. Wayne, NJ: Avery Publishing Group Inc., Wayne, New Jersey, USA pp 68-69.
- Lechner, J.F. and Stoner, G.D. 2019. Red beetroot and betalains as cancer chemopreventative agents. *Molecules*, **24**(8): 1602.
- Mashau, M.E., Ramatsetse, K.E. and Ramashia, S.E. 2021. Effects of adding *Moringa oleifera* leaves powder on the nutritional properties, lipid oxidation and microbial growth in ground beef during cold storage. *Applied Sciences*, **11**(7): 2944.
- Nemzer, B., Pietrzkowski, Z., Spórna, A., Stalica, P., Thresher, W., Micha³owski, T. and Wybraniec, S. 2011. Betalainic and nutritional profiles of pigment-enriched red beet root (*Beta vulgaris L.*) dried extracts. *Food chemistry*, **127**(1): 42-53.
- Ninfali, P. and Angelino, D. 2013. Nutritional and functional potential of *Beta vulgaris cicla* and *rubra*. *Fitoterapia*, 89: 188-199.
- Ozaki, M.M., Munekata, P.E., Jacinto-Valderrama, R.A., Efraim, P., Pateiro, M., Lorenzo, J. M. and Pollonio, M.A.R. 2021. Beetroot and radish powders as natural nitrite source for fermented dry sausages. *Meat Science*, **171**: 108275.
- Panghal, A., Virkar, K., Kumar, V., Dhull, S.B., Gat, Y. and Chhikara, N. 2017. Development of probiotic beetroot drink. *Current Research in Nutrition and Food Science Journal*, 5(3).
- Patel, P., Bharti, S.K., Pathak, V., Goswami, M., Verma, A.K. and Mahala, S.S. 2021. A comprehensive study on functional, rheological and sensory property of whey protein concentrate incorporated chicken meat nuggets. *Indian Journal of Poultry Science*, **56**: 271-276.
- Park, K.S., Choi, Y.S., Kim, H.Y., Kim, H.W., Song, D.H., Hwang, K.E., Choi, S.G. and Kim, C.J. 2012. Quality characteristics of chicken emulsion sausages with different levels of *Makgeolli* lees fiber. *Food Science of Animal Resources*, **32**(1): 54-61.
- Rani, R., Yadav, S., Kumar, S. and Bora, B., 2021. Development of chicken meat nuggets by incorporating pumpkin seed powder and chia seed powder. *Indian Journal of Poultry Science*, *56*:161-166.
- Ravichandran, K., Ahmed, A.R., Knorr, D. and Smetanska, I. 2012. The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. *Food Research International*, **48**(1): 16-20.
- Singh, V.P., Verma, A.K., Umaraw, P., Roy, D. and Rawat, S. 2021.
 Quality and storage life of sorpotel using finger millet. *Indian Journal of Small Ruminants (The)*, 27(1): 100-104.
- Smith, N.W., Fletcher, A.J., Hill, J.P. and McNabb, W.C. 2022. Modeling the contribution of meat to global nutrient availability. *Frontiers in Nutrition*, **9**:766796.

- Sucu, C. and Turp, G.Y. 2018. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. *Meat Science*, **140**: 158-166.
- Townsend, W.E., Witnauer, L.P., Riloff, J.A. and Swift, C.E. 1968. Comminuted meat emulsions. Differential thermal analysis of fat transition. *Food Technology*, **22**: 319-323
- Troutt, E.S., Hunt, M.C., Johnson, D.E., Claus, J.R., Kastner, C.L., Kropf, D.H. and Stroda, S. 1992. Chemical, physical, and sensory characterization of ground beef containing 5 to 30 percent fat. *Journal of Food Science*, **57**(1): 25-29.
- Turp, G.Y., Kazan, H. and Unubol, H. 2016. The usage of red beet powder as natural colorant and antioxidant in sausage production. Celal Bayar University Journal of Science, 12: 303-311
- Umaraw, P., Chauhan, G., Mendiratta, S.K., Verma, A.K. and Arya, A. 2020. Effect of oregano and bay as natural preservatives in meat bread for extension of storage stability at ambient temperature. *Journal of Food Processing and Preservation*, 44(4): e14375.
- Umaraw, P., Singh, V.P. and Verma, A.K. 2024. Effect of Addition of Mango Seed Extract on Storage Stability of Chevon Meatballs at Refrigeration Temperature. *Foods*, **13**: 676.
- United Nation Environmental Programme, 2021. https://www.unep.org/news-and-stories/press-release/un-17-all-food-available-consumer-levels-wasted (accessed on dated 28/01/2023).
- Verma, A.K., Pathak, V., Singh, V.P. and Umaraw, P. 2016. Storage study of chicken meatballs incorporated with green cabbage

- (Brassica olerecea) at refrigeration temperature (4±1 °C) under aerobic packaging. Journal of Applied Animal Research, **44**(1): 409-414.
- Verma, A.K., Singh, V.P. and Pathak, V. 2015. Quality characteristics and storage stability of chicken meat patties incorporated with pumpkin pulp. *Indian Veterinary Journal*, 92: 37-40.
- Verma, A.K., Umaraw, P. and Singh, V.P. 2023. Effect of mushroom extract on storage stability of chevon nuggets at refrigerated temperature. *Journal of Food Processing and Preservation*, 2023(1): 8972331.
- Verma, S., Verma, A.K., Umaraw, P., Singh, V.P., Vihan, V. and Singh, C. 2022. Development and evaluation of quality characteristics of meat nuggets prepared with inclusion of *Nelumbo nucifera* root powder. *Journal of Animal Research*, 12(2): 205-214.
- Witte, V.C., Krause, G.F. and Bailey, M.E. 1970. A new extraction method for determining 2 thiobarbituric acid values of pork and beef during storage. *Journal of Food Science*, 35(5): 582-585.
- Zaini, H.B.M., Sintang, M.D.B. and Pindi, W. 2020. The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. *Food* science and Nutrition, 8: 5497-5507.
- Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D.A. and Barrow, C.J. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. In: Eighteenth International Seaweed Symposium. Springer, Netherlands, pp 219–224.