Parasitic invaders: A report on *Trinoton querquedulae* lice and helminthiasis in a nomadic duck flock

A. LATCHUMIKANTHAN¹*, E. TAMILENIYAN¹, M. JEEVITHA¹, K.Y. ABHISHEK¹, M. VEERASELVAM², V.R. KUNDAVE¹ AND R. VELUSAMY¹

¹Dept. of Veterinary Parasitology, ²Dept. of Veterinary Medicine, Veterinary College and Research Institute, Orathanadu, Thanjayur – 614625, Tamil Nadu Veterinary and Animal Sciences University, India

(Received on March 02, 2024; accepted for publication on December 17, 2024)

ABSTRACT

Latchumikanthan, A., Tamileniyan, E., Jeevitha, M., Abhishek, K.Y., Veeraselvam, M., Kundave, V.R. and Velusamy, R., 2024. Parasitic invaders: a report on Trinoton querquedulae lice and helminthiasis in a nomadic duck flock. Indian Journal of Poultry Science, 59(3): 369-374.

A nomadic flock of 1500 ducks were sheltered in paddy fields near Orathanadu, Thanjavur district. The flock owner reported that the ducks showed symptoms like dullness, reduced feed intake, decreased egg production and body weight gain. Physical examination of the birds revealed the presence of lice over the body surface, which were identified as *Trinoton querquedulae*. Faecal samples were collected for screening of endoparasites revealed the ova of *Echinostoma* spp., *Raillietina* spp., *Capillaria* spp. and oocysts of *Eimeria* sp. The present study highlights the economic importance of ecto- and endo-parasitic infections in nomadic duck rearing practices. **Keywords**: *Capillaria* spp., *Echinostoma* spp., Nomadic ducks, *Raillietina* spp., *Trinoton querquedulae*

INTRODUCTION

Ducks are waterfowls belonging to the family Anatidae and they are close to other birds like geese and swans which can be found extensively all over the world except Antarctica. Ducks are one of the important poultry species in India next to chicken, are reared by many rural people of India as subsidiary source of income (Jowel et al., 2020). They are reared for production of copious number of eggs and meat due to their faster growth rate, meat quality, low cost of maintenance and efficient converters of feed (Borah et al., 2018) and also provide efficient source of animal protein in the form of eggs and meat to the people. In southern parts of India, ducks are mostly reared as nomadic flock rather than intensified rearing and they are mostly raised in wetlands and harvested agricultural fields due to its dabbling and scavenging type of feeding. Duck farming and paddy cultivation can be easily integrated and it provide enormous benefits to the farmers, but they suffer with economic losses in duck farming due to parasitic infections which causes poor growth rate, poor feed conversation rate, decreased egg and meat production and mortality of birds (Soulsby, 1982). As they are reared as nomads, they can easily acquire infection from other birds as cross transmission. Nomadic ducks are highly susceptible to ecto- and endoparasites due to their foraging behavior and habitat. While feeding, they disrupt soil, inadvertently ingesting parasitic stages and intermediate hosts. Their presence in aquatic and semi-aquatic areas exposes them to trematodes via infected snails. Scavenging ducks are

MATERIALS AND METHODS

Collection of samples

A nomadic flock of 1,500 ducks was camped (Fig. 1, 2) in paddy fields near Orathanadu, Thanjavur region,

prone to nematodes like Capillaria spp., Subulura spp., Echinuria spp. and protozoa such as Cryptosporidium sp. and coccidian oocysts (Larki et al., 2018). Intestinal parasites cause enteric disease, leading to undernutrition, reduced feed efficiency, lower meat and egg production and economic losses for rural communities. Mixed parasitism often results in severe effects on the birds which includes stunted growth, low egg production and susceptibility to other diseases (Muthusamy et al., 2020; Preena et al., 2020). Among ectoparasites, lice are the most commonly encountered in ducks. Chewing lice are widespread ectoparasites which exist inside the feathers or plumage of mammals and birds. They never evacuate their host during their life cycle. Normally, chewing lice exhibit vertical transmission as they brood on eggs and chicks (Clayton et al., 2016). Lice infestations in ducks can cause feather damage, skin irritation, anemia and secondary infections, leading to reduced growth, egg production and overall productivity (Soulsby, 1982). Severe infestations increase stress and susceptibility to other diseases, resulting in significant economic losses for duck farmers, particularly those in rural areas who rely on duck farming for their livelihood. This paper deals with the finding of a rare species of lice *Trinoton* querquedulae and endoparasitic infection in a nomadic flock of delta region of Tamil Nadu with its morphological characterization.

^{*}Corresponding author E mail: latchupara2010@gmail.com

for foraging during August 2023. The flock was managed under a free-range system, moving between agricultural fields for feeding. The flock owner reported clinical signs including dullness, reduced feed intake, decreased egg production and loss of body weight. A thorough physical examination of randomly selected ducks was conducted to assess ectoparasitic infestation and general health status. The presence of lice was observed across the body surface of affected birds, and specimens were carefully collected using fine forceps. The collected lice were preserved in 70% ethanol for morphological identification. Cloacal swab was collected randomly and preserved in 70% alcohol for screening of endoparasites.

Fig. 1: Ducks inside the fencing

Fig. 2: Ducks in harvested paddy fields for grazing

Processing of sample

The lice which were collected in 70% alcohol were further dehydrated using ascending grades of alcohols from 50%, 70%, 80%, 90% and absolute alcohol. In each grade of alcohol, the specimen was kept for 10 minutes, followed by clearing in xylene for 2 hours. After clearing, the specimen was mounted with DPX carefully on a glass slide. The mounted samples were subjected to

high power microscopy for morphological characterization. Concentration methods of faecal examination including sedimentation and floatation (with saturated salt solution, specific gravity 1.18) were used with the cloacal swab for detection of endoparasites as described by Soulsby (1982).

RESULTS AND DISCUSSION

Ectoparasite

The louse *Trinoton querquedulae* (Fig. 3) exhibits distinctive morphological features of triangular head (Fig. 4) with a rounded and broader temporal region. A single pair of antennae emerges laterally on each side, comprising four to five segments. Notably, the gular region is adorned with short, stout spine-like papillae, adding a unique aspect to its morphology. The mouthparts include a pair of well-developed mandibles (Fig. 5), structures adapted for biting and chewing. The exoskeleton of the thorax is robustly developed and chitinized, imparting strength and resilience to this vital segment. The prothorax (Fig. 6), occupying the anterior portion, stands out prominently with its substantial size. Following the prothorax, the mesothorax and metathorax are clearly demarcated, revealing a distinct separation between these segments. The mesothorax, centrally positioned, is characterized by a narrower and shorter profile compared to the metathorax, emphasizing structural asymmetry. Most distinctive feature of the thorax is the presence of numerous short and long bristles, unevenly arranged. Three pairs of well-developed legs attached to the thoracic segments with two tarsal claws at the terminal end (Fig. 7). The abdomen is characterized by its elongated structure with unevenly arranged bristles, divided into eight to nine segments (Fig. 8, 9). It exhibits a specific arrangement of bristles, particularly concentrated in the posterior angle of the alternate abdominal segments (Fig. 10), and features setae on the sternites. The terminal abdominal segments having rounded abdominal border (Fig. 11).

Fig. 3: Trinoton querquedulae lice - Gross

Fig. 4: Triangular head – T. querquedulae x 40

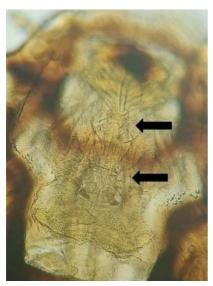


Fig. 5: Well developed mandibles (arrow) – $T.querquedulae \times 100$

Fig. 6: Chitinized prothorax – *T.querquedulae* lice x100

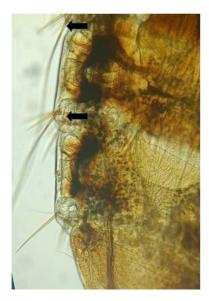

Fig. 7: Tarsal claws (arrow) – *T.querquedulae* lice x400

Fig. 8: Abdominal segments – *T.querquedulae* x100

Fig. 9: Numerous unevenly arranged bristles (arrow) – $T.querquedulae \times 100$

Fig. 10: Numerous bristles in the lateral side of abdominal segments (arrow) – T. $querquedulae \times 100$

Fig. 11: Rounded abdominal border with reproductive organ- T-querquedulae $\times 100$

Lice (Insecta: Phthiraptera) are permanent parasites of their hosts and usually exhibit high host specificity (Soulsby, 1982). The duck has been the host for seven distinct lice species: Anaticola crassicornis, Anatoecus dentatus, Anatoecus icteroides, Holomenopon leucoxanthum, Holomenopon maxbeieri, Holomenopon transvaalense, and Trinoton querquedulae (Aksin, 2011; Jeyathilakan et al., 2016). Soulsby (1982) stated that Trinoton sp., commonly found in ducks and swan, where, Kettle (1995) also emphasizes the occurrence of *Trinoton* querquedulae lice infestation in ducks. Jeyathilakan et al., 2023 reported the occurrence of Trinoton querquedulae lice infestation in nomadic duck flock from the Thanjavur district of Tamil Nadu, aligns with our study. The duck population in Tamil Nadu resides mainly in wetland ecosystems and raised in semi-intensive conditions. These environments also promote the prevalence of different types of parasites in ducks. Lice infestations can negatively impact duck growth and productivity as a result of their severe irritation, as reported in our study. Lice are external parasites that typically pose a nuisance rather than a hazard to their hosts and significantly influence the economy of the nomadic farming community.

Endoparasites

The cloacal swab of ducks revealed the presence of eggs of trematode *Echinostoma revolutum*, acestode *Raillietina* sp. and nematode *Capillaria* sp., The ova of *Echinostoma revolutum* (Fig. 12) morphologically characterized by the ellipsoidal yellowish egg with typical operculum measuring $80\times55~\mu m$. *Raillietina* sp., ova (Fig. 13) were identified by a single egg capsule with a peculiar hexacanth embryo. *Capillaria* sp., (Fig. 14) egg was identified by thick, barrel shaped egg containing bipolar plugs. The oocysts of *Eimeria* sp., morphologically characterized by the unsporulated sporocysts, measuring $18\times13~\mu m$.

Fig. 12: Ova of Echinostoma revolutum x400

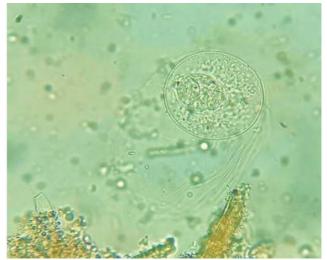


Fig. 13: Ova of Raillietina spp., x400

Fig. 14: Ova of Capillaria spp., x400

Fig. 15: Unsporulated oocysts of Eimeria spp. x400;

Ducks raised in free-range conditions are more prone to get parasitic diseases such helminthiasis and intestinal protozoans (Farjana et al., 2008). Parasitic diseases in these nomadic birds are largely caused by their feeding habits. They mainly scavenge on wide range of aquatic and terrestrial stuff including aquatic insects, crustaceans, worms, small amphibians, weeds and grasses. These substances are capable of serving as intermediate hosts for parasite larvae of trematodes and cestodes. Furthermore, climatic factors including temperature and humidity influence the occurrence and severity of these parasitic helminths (Elahi et al. 2014). Ducks in the investigation zone were found to be harboring intestinal parasites similar to those reported in domestic chickens (Muhairwa et al., 2007). The current study detected eggs of Echinostoma revolutum in ducks, which was similar to the study conducted by Yousuf et al. (2009), who observed extensive Echinostoma infection in ducks from Bangladesh. Echinostoma has an intricate life cycle, with intermediate hosts such as Planorbis sp. snails and definitive hosts such as birds, primarily ducks. Raillietina spp., is the common cestode to be found in nomadic ducks, tends to cause severe intestinal lesion in heavier infection (Soulsby, 1982; Adejinmi and Oke, 2011). The study by Adejinmi and Oke, (2011) reported the presence of Capillaria spp., in domestic ducks from Southwestern Nigeria was in parallel with our study. Gastrointestinal parasites, while pervasive and highly detrimental to duck productivity, pose a significant challenge in nomadic duck farming. Although their prevention remains elusive, effective control measures are imperative to sustain the economic viability of this farming practice. *Eimeria* spp. are the most prevalent coccidia detected in birds, particularly ducks, with mixed infections occurring often. As a subclinical infection is believed to enhance the protective immunity to subsequent infections in nomadic duck species, it is recommended that the coccidial infection in a nomadic flock should be monitored and controlled, rather than eradicated (Ballweber, 2004). The flock was treated with fenbendazole (10 mg/kg) orally along with the drinking water. The lice infested birds were treated with 1.25% deltamethrin (BUTOX®) liquid. The ducks were monitored for one week, post therapeutic examination showed improvement in feed intake and egg production. Random faecal sample examination was negative for helminthic eggs.

CONCLUSION

This study highlights the importance of vigilant monitoring, prompt diagnosis and targeted interventions in mitigating the economic losses associated with parasitic infections in nomadic duck rearing. By addressing both ecto- and endo-parasitic challenges through a tailored treatment approach, the well-being and productivity of the duck flock were restored, emphasizing the significance of comprehensive parasite management strategies in sustainable duck farming practices.

CONFLICT OF INTEREST

The authors do not have any conflict of interest for this article.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to the Dean, Veterinary College and Research Institute, Orathanadu, TANUVAS, for providing all the support to carry out this work.

REFERENCES

Adejinmi, J.O. and Oke, M. 2011. Gastro-intestinal parasites of domestic ducks (Anas platyrhynchos) in Ibadan Southwestern Nigeria. Asian Journal of Poultry Science, 5:46-50.

Aksin, Z. 2011. Chewing lice (Insecta: Phthiraptera) on mallards (Anas platyrhynchos) in Turkey. Journal of Animal Veterinary Advances, 10:1656-1659.

- Ballweber, L.R. 2004. Waterfowl parasites. Seminars in Avian and Exotic Pet Medicine, 13:197-205.
- Borah, N., Phukan, S.C., Islam, S., Tamuli, S., Tamuli, S.M. and Rajbongshi, P. 2018. Prevalence of helminth parasites of domestic ducks in Upper Assam (India). *International Journal of Chemical Studies*, **6**(4):131-134.
- Clayton, D.H., Bush, S.E. and Johnson, K.P. 2016. Coevolution of life on hosts: Integrating ecology and history. University of Chicago Press, Chicago, USA.
- Elahi, A., Islam, R., Hossain, M.S., Mohiuddin, K., Mikolon, A., Paul, S.K., Hosseini, P.R., Daszak, P. and Alam, M.S. 2014. Prevalence and diversity of avian haematozoan parasites in wetlands of Bangladesh. *Journal of Parasitology Research*, 1-12. doi:10.1155/2014/493754.
- Farjana, T., Islam, K.R. and Mondal, M.M.H. 2008. Population density of helminths in ducks: Effects of host's age, sex, breed and season. *Bangladesh Journal of Veterinary Medicine*, 6(1):45-51.
- Jeyathilakan, N., Ahamad, B.D. and Selvaraj, J. 2016. First report of Anatoecus dentatus in domestic duck (Anas platyrhynchos domesticus, Linnaeus, 1978) from Southern India. Parasite Epidemiology and Control, 1: 131-135.
- Jeyathilakan, N., Ahamad, B.D., Dhivya, B. and Selvaraj, J. 2023. Chewing lice (Insecta: Phthiraptera) infestation on native duck (*Anas platyrhynchos domesticus*, Linn.) in Tamil Nadu. *Indian Journal of Veterinary and Animal Sciences Research*, **52**(5): 99-103.
- Jowel, D., Sarkar, D. and Das, T.K. 2020. Socio-economic status of duck farmers and duck rearing system in India: A review.

- Journal of Entomology and Zoology Studies, **8**(6): 1262-1266.
- Kettle, D.S. 1982. Medical and veterinary entomology. 2nd edition. Wallingford, Oxon, UK. 1-725.
- Larki, S., Alborzi, A., Chegini, R. and Amiri, R. 2018. A preliminary survey on gastrointestinal parasites of domestic ducks in Ahvaz, Southwest Iran. *Iranian Journal of Parasitology*, 13(1):137-144.
- Muhairwa, A.P., Msoffe, P.L., Ramadhani, S., Mollel, E.L., Mtambo, M.M.A. and Kassuku, A.A. 2007. Prevalence of gastro-intestinal helminths in free-range ducks in Morogoro. Livestock Research for Rural Development, 19(4).
- Muthusamy, P., Latchumikanthan, A. and Thirumavalavan, R. 2020. Mixed infection of helminthiasis and caecal coccidiosis in a native chicken farm from Villupuram district of Tamil Nadu. *Indian Journal of Poultry Science*, 55(2):157-160. doi: 10.5958/0974-8180.2020.00022.7.
- Preena, P., Nair, Sonu S., Aswathi, P.B., Sarangom, Sherin, B. and Prasad, C.P. 2020. Fatal systemic non-albicans candidiasis with concurrent *Hemoproteuscolumbae* infection in a white pigeon flock. *Indian Journal of Poultry Science*, 55(3): 249-252.
- Soulsby, E.J.L. 1982. *Helminthes, arthropods and protozoa of domesticated animals*. Bailliere and Tindall, London: 365p.
- Yousuf, M.A., Das, P.M. and Banowary, A.B. 2009. Gastrointestinal helminths of ducks: Some epidemiologic and pathologic aspects. *Journal of Bangladesh Agricultural University*,7:91-x400;