Effect of dietary supplementation and *in ovo* feeding of menthol on the growth performance, development of lymphoid and digestive organs and carcass quality traits of broilers

B.B. BONDAR, P.K. SHUKLA, A. BHATTACHARYYA * , A.R. KHERDE, M. PATEL, P.S. GULHANE AND M. SHARMA

Department of Poultry Science, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura, India

(Received on December 12, 2023; accepted for publication on November 14, 2024)

ABSTRACT

Bondar, B.B., Shukla, P.K., Bhattacharyya, A., Kherde, A.R., Patel, M., Gulhane, P.S. and Sharma, M. 2024. Effect of dietary supplementation and in ovo feeding of menthol on the growth performance, development of lymphoid and digestive organs and carcass quality traits of broilers. Indian Journal of Poultry Science, 59(3): 281-290.

This study was carried out to evaluate the effect of *in ovo* feeding and dietary supplementation of menthol on the growth performance, digestive and lymphoid organs, and carcass yield of broiler chickens. Fertile eggs (n = 372) of CARIBRO VISHAL birds were set for incubation. On the 18th day, *in ovo* feeding was done at the broad end of the egg. The eggs were divided into three groups: un-injected control, sham control (injected with 0.5 ml of 5% ethanol), and *in ovo* injected with menthol (0.5 ml of 1% menthol solution). After hatching, 180 one-day-old chicks were reared for feeding trial. Chicks from these three groups were further divided into two subgroups, each with three replicates and ten chicks per replicate. One subgroup received a basal diet, while the other received a basal diet with menthol supplementation (250 mg/kg diet). Day old body weight of *in ovo* menthol group birds was significantly higher (P≤0.01) compared to un-injected control. Day old and 1st week body weight of basal diet along with menthol supplementation group birds were significantly higher (P=0.04, P=0.003) than basal diet. No significant differences were recorded in digestive and lymphoid organs, carcass quality traits, yield of giblets and cut-up-parts after *in ovo* feeding and/or dietary supplementation of menthol. Thus, *in ovo* feeding of 1% menthol as well as dietary supplementation of menthol @ 250 mg/kg diet resulted in significant positive effects on early body weight.

Keywords: Carcass quality, In ovo, Menthol, Growth, Broiler

INTRODUCTION

Phytogenic feed additives are plant-based feed additives that are used in natural substances in poultry nutrition. These substances are derived from herbs, spices, other plants and their extracts like essential oils. Being natural, less toxic and residue free, they are ideal feed additives for poultry when compared to synthetic antibiotics. The benefits of using phytogenic feed additives in poultry nutrition are increased feed intake, stimulation of digestion, increased growth performance, reduced incidence of disease, improved reproductive parameters, feed efficiency, profitability and reduced poultry house emissions (Bhattacharyya et al., 2013; Mishra et al., 2016; Singh et al., 2019; Rai et al., 2022; Raghav et al., 2023). Further, these feed additives positively influence gut morphology in broilers and significantly increase nutrient digestibility. Moreover, it stimulates the production of antioxidant enzymes (Roofchaee et al., 2011). So phytogenic feed additives have been widely used to elicit the performance of animals and are now used in poultry feeding practices extensively (Collington et al., 1990; Khan et al., 2007) not only to stimulate the growth and feed efficiency but also to improve the health and performance of birds (Fadlalla

Menthol (also known as menthol camphor) is a cyclic monoterpene alcohol that is a major component of Mentha. Peppermint leaves contain about 0.5 to 4% essential oils that are composed of 25 to 78% menthol, 14 to 36% menthone, 1.5 to 10% isomenthone, 2.8 to 10% menthyl acetate, and 3.5 to 14% cineol (Grigoleit and Grigoleit, 2005; Bupesh et al., 2007; Aziz et al., 2011; Beigi et al., 2018). There are many in vitro and in vivo publications stating that peppermint leaves and their essential oil and particularly menthol have many desirable effects, including; moderate antibacterial effect on pathogenic bacteria (Sharifi et al., 2013), antiviral and fungicidal activity (Schlez et al., 2006; Bupesh et al., 2007) appetizing, digestion stimulating and antimicrobial properties (Alcicek et al., 2004), reduces stress by decreasing heterophil lymphocytes ratio (Sultan et al., 2017). Menthol can be used as an effective feed additive to improve growth performance of broilers (Abdel-Wareth et al., 2019). Also, the antioxidant properties of menthol have been reported in many studies (Kamkar et al., 2010).

In recent years, studies on in ovo feeding of essentials have been carried out to elicit growth and

et al., 2010; Abouelfetouh and Moussa, 2012). Mint is one such phytogenic feed additive used in broilers in recent years.

^{*}Corresponding author E mail: amitav6@gmail.com

immunity in broilers (Ma et al., 2022; Toosi et al., 2016). In ovo technology has been defined as "the direct inoculation of bioactive substances to the developing embryo to elicit superior lifelong effects, while considering the dynamic physiology of the chicken embryo" (Oladokun and Adewole, 2020). In recent years, in ovo feeding has gained attention as it provides beneficial biochemical and physiological balances, including improved oxidative protection, during incubation (Malheiros et al., 2012). The technique offers a costeffective way to deliver nutrients directly to embryos, surpassing the need for dietary additives (Kadam et al., 2013). Additionally, in ovo injection technology has shown potential to improve hatching quality and subsequent growth of broiler chickens (Ipek et al., 2004), and may also be used to deliver bioactive compounds with antioxidant properties to developing embryos. Several nutrients, including L-carnitine, carbohydrates, amino acids, creatine, nucleotides, egg white, peptides, electrolytes, vitamins, and plant extracts, have been investigated in ovo (Kucharska-Gaca et al., 2017). Several plant extracts, such as moringa, tomato, garlic, savory, and thyme extracts, have been used (Fazli et al., 2015; Saki and Salary, 2015; N'nanle et al., 2017). Interestingly, research on in ovo delivery of menthol in broilers is relatively scarce in the literature.

Studies on dietary supplementation vis-à-vis *in ovo* feeding of menthol on the growth performance and carcass quality traits are limited in commercial broilers. Hence, the present study aimed at investigating the effect of dietary supplementation vis-a-vis *in ovo* feeding of menthol on the performance of commercial broilers.

MATERIALS AND METHODS

Eggs

Three hundred and seventy-five fertile eggs of CARIBRO VISHAL birds were procured from ICAR Central Avian Research Institute, Izatnagar, Bareilly. The eggs were set for incubation for first 18 days in the setter and last 3 days in the hatcher. On the 18th day, eggs were candled, and dead-in-shell eggs were discarded. Further, remaining fertile eggs were divided into three treatment groups - uninjected control, sham control and *in ovo* injected with menthol.

Preparation of menthol solution for in ovo feeding

Menthol was procured from SRL Pvt. Ltd. Menthol is a white crystalline substance, which is poorly soluble in water-based preparations, but it is readily dissolvable at high concentrations in ethanol. So, 5% ethanol (prepared in double distilled water) was used as a solvent for preparing a 1% solution of menthol to be used for *in ovo* injection. 1% menthol solution was prepared by adding 1g of menthol in 100ml of 5% ethanol. *In ovo feeding*

In ovo feeding was done on 18th day of incubation

at the broad end of incubated egg. Adherence to the prescribed biosafety and good laboratory practice (GLP) protocols were diligently maintained throughout the *in ovo* feeding process.

Birds

Out of the total chicks obtained after hatching, 180 one-day-old CARIBRO VISHAL chicks were reared for feeding trials. The chicks obtained from three *in ovo* treated groups were further subdivided into 2 subgroups each comprising of three replicates and ten chicks in each replicate. The chicks were wing banded, weighed individually and distributed randomly on uniform body weight basis in the treatment groups. The chicks were housed in deep litter system. Water was offered *ad libitum*. The experiment was conducted at Poultry Farm of Department of Poultry Science, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwa Vidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura after due approval of the Institutional Animal Ethics Committee (IAEC) (138/IAEC/22/2/30) (28/12/22).

Experimental design

Birds were reared for 42 days (6 weeks) and kept on a basal or control diet [BIS, 2007; broiler starter diet till 3 weeks and thereafter broiler finisher diet till 6 weeks]. The experimental design was 3×2 CRD. The dietary treatments offered have been tabulated below:

Table 1: Experimental treatments showing *in ovo* and/or dietary menthol supplementation

2	11	
Treatment	In-Ovo Injection	Diet
T1	Un-injected (Control)	Basal Diet
T2	Un-injected (Control)	Basal Diet +
		menthol @
		250mg/kg
Т3	Injected with 0.5ml	Basal Diet
	of 5% ethanol/egg	
	(Sham Control)	
T4	Injected with 0.5ml of	Basal Diet +
	5% ethanol/egg	menthol @
	(Sham Control)	250mg/kg
T5	Injected with 0.5 ml of	Basal Diet
	1% menthol solution/egg	
T6	Injected with 0.5 ml of	Basal Diet +
	1% menthol solution/egg	menthol @
		250mg/kg

Growth performance parameters

Weekly body weight, group feed consumption and mortality was recorded. Feed conversion ratio (feed intake: body weight gain) of 0 to 6 weeks were calculated at the end of the experiment.

Measurement of lymphoid and digestive organs and carcass quality traits

At the time of slaughter, 2 male and 2 female birds from each group i.e. total 24 birds were taken after 6 weeks of age for studying various slaughter traits *viz*: pre-slaughter fasting shrinkage in live weight (%), bled weight (%), defeathered weight (%), dressed weight (%), yield after evisceration loss or ready to cook yield (%), giblets yield (%), total ready-to-cook yield (%) and development of digestive organs. Further, percent yield of cut-up-parts (thighs, drumsticks, breast, back, neck and wing) on eviscerated carcass yield were determined.

The birds were starved for 12 hours before slaughter. However, drinking water was provided *ad lib*. During the starvation period, their body weights were recorded after starvation. The birds were sacrificed by improved Kosher method, bled for 1.5 to 2 minutes and defeathered. The birds were dressed by cutting the head at atlanto-occipital joint, leg at hock joint and oil gland located at the base of the tail and weighed. Evisceration was done by making a slit opening at the neck skin to remove oesophagus and trachea, vertical cut below the tip of breast bone to remove viscera. The heart, liver and gizzard were separated and cleaned. The internal lining of gizzard and pericardium of heart were removed before weighing them. Further, the length and weight of different digestive organs (proventriculus, small intestine, large

intestine and caecum) were measured separately at 6 weeks of age.

Statistical Analysis

The data pertaining to various parameters were analyzed statistically as per the standard procedure (Snedecor and Cochran, 1989) and difference between the treatment means were obtained by using Duncan multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

Body weight

There were no significant differences in the average weekly body weight after in ovo feeding, except at day old body weight and 1st week body weight (Table 2). Day old body weight of in ovo menthol group birds was significantly higher (P≤0.01) as compared to un-injected control; and during 1st week, un-injected control had significantly and numerically lower body weight as compared to sham control and in ovo menthol birds, respectively. In contrast, Toosi et al. (2016) reported that in ovo injection of blend of essential oils and organic acids did not affect body weight at day old and throughout the experiment. Oladokun et al. (2021) also reported that there was no significant difference in day old chick weight and average weekly body weight after in ovo feeding of 0.2ml of blend of essential oils. However, our findings suggest that in ovo feeding of menthol

Table 2: Effect of *in ovo* feeding and dietary supplementation of menthol on average weekly body weight (g) of commercial broilers during 0-6 weeks of age

Group				Age in	weeks		
Gloup _	Day-old	1 st	2^{nd}	$3^{\rm rd}$	4^{th}	5 th	6 th
Un-injected Control + Basal Diet	38.00 ^{abc}	115.53 ^b	290.43	596.36	840.04	1159.0	1540.0
Un-injected Control + Menthol	37.53^{ab}	116.20 ^b	291.88	614.13	874.20	1196.8	1603.8
supplementation							
Sham Control + Basal Diet	37.27^{a}	98.44 ^a	259.51	585.19	830.08	1152.5	1542.5
Sham Control + Menthol supplementation	39.13 ^{cd}	119.04 ^b	293.29	618.14	881.07	1198.8	1588.5
In ovo Menthol + Basal Diet	38.87^{bcd}	112.80 ^b	280.90	608.93	834.87	1160.8	1549.1
In ovo Menthol + Menthol	39.93^{d}	115.82 ^b	279.53	599.32	853.09	1183.3	1570.8
Supplementation							
Treatment							
Un-injected Control	37.77^{a}	108.74^{a}	291.16	605.24	857.12	1177.91	1571.94
Sham Control	38.20^{a}	115.87 ^b	276.4000	601.67	855.57	1175.69	1565.46
In ovo Menthol	39.40 ^b	114.31 ^{ab}	280.2139	604.13	843.98	1172.07	1559.93
Diet							
Basal Diet	38.04^{a}	108.92a	276.95	596.83	834.99	1157.46	1543.86
Menthol Supplementation	38.87^{b}	117.02 ^b	288.23	610.53	869.45	1192.99	1587.69
Pooled SEM	0.27	1.88	3.90	6.38	8.76	9.28	11.62
Sig Level							
Treatment	P≤0.01	P≤0.05	NS	NS	NS	NS	NS
Diet	$P\!=\!0.04$	P = 0.003	NS	NS	NS	NS	NS
$Treatment \times Diet$	P≤0.01	P = 0.002	NS	NS	NS	NS	NS

Means bearing different superscripts within a column differ significantly (P≤0.05) NS: Not Significant (P≥0.05) SEM: Standard Error of Means

significantly increased body weight of day-old chicks which is in line with Uni et al. (2005) who concluded that in ovo feeding of a solution of maltose, sucrose, dextrin and hydroxymethylbutyrate (HMB) to the late term embryos increased the hatching weight by 5-6% over control. Similarly, Ohta et al. (2001) as well as Bhanja and Mandal (2005) reported that in ovo administration of all 20 amino acids increased the chick weight by 3.6% and 2% respectively. Further, Bhanja et al. (2006) reported that though there was no difference in chick weight to egg weight ratio, but the ratio was higher in 0.25 IU vitamin E and 25 mg linoleic acid injected chicks than un-injected control. Interestingly, researches on in ovo feeding of menthol in broilers are limited. The present study indicated that in ovo feeding of menthol increased day-old chick weight and the effect continued till 1st week. However, thereafter the positive effect of in ovo feeding in weekly body weight was not carried forward in the experiment.

There were no significant differences in average weekly body weight in dietary supplementation throughout the experiment except day old and 1st week body weight. Basal diet with menthol supplementation significantly increased day old body weight (P=0.04) and 1st week body weight (P=0.003) than basal diet. Abdel-Wareth et al. (2019) reported that peppermint leaves or menthol in different concentrations to broiler diet significantly increased body weight compared to control groups. Akbari and Torki (2014) reported that dietary supplementation of peppermint essential oil (250 mg/kg diet) had no significant effect on body weight but numerically peppermint supplemented group has higher body weight as compared to control. In our study, significant increase was observed only on body weight at day-old and during the first week, with all mentholsupplemented dietary groups showing higher body weight compared to basal diet. The significantly higher body weight at day-old and week one may be due to the in ovo feeding of menthol, which was combined with dietary supplementation. However, despite the positive effect of in ovo feeding, this benefit did not carry forward to a significant level beyond the first week. After first week, dietary supplementation of menthol resulted in numerical higher body weight compared to the basal diet fed group.

Similarly, interaction of *in ovo* feeding and dietary supplementation of menthol did not impart any significant effect on body weight throughout the experiment except day old body weight. Day-old body weight of *in ovo* menthol along with dietary menthol supplementation group birds were significantly higher ($P \le 0.01$) than uninjected control with basal diet, un-injected with menthol supplementation in basal diet and sham control along with basal diet group birds. First week body weight of sham control with basal diet was significantly lower (P = 0.002)

than body weight of chicks of other interaction groups. This clearly reflects the positive effect of *in ovo* feeding rather than dietary supplementation of menthol to the broilers.

Body weight gain

There were no significant differences observed in weekly body weight gain due to *in ovo* feeding during the experiment except 1^{st} week of age (Table 3). The weekly body weight gain at first week of un-injected control birds was significantly higher (P \leq 0.05) than sham control. Oladokun *et al.* (2021) also observed that at the grower phase (\leq 15–28) and for the entire length of study (\leq 0–28), there was no treatment effect of *in ovo* essential oil on growth performance parameters.

Dietary supplementation of menthol caused significantly higher (P≤0.01) 1st week body weight gain as compared to basal diet group. Further, data of weekly body weight gain showed no significant difference throughout the experiment due to dietary supplementation. This agrees with the studies of Ayman *et al.* (2016) and Akbari and Torki (2014). Akbari and Torki (2014) reported that dietary supplementation of peppermint essential oil (250 mg/kg diet) had no significant effect on body weight gain but numerically peppermint supplemented group has higher body weight as compared to control which is in line with our present study.

When the interaction of *in ovo* feeding and dietary supplementation was studied, body weight gain of sham control along with basal diet group was significantly lower ($P \le 0.01$) as compared to other groups during 1st week of age. Further, there were no significant differences in body weight gain in birds among the different groups from 2nd week to 6th week.

Feed Intake

The results indicated that there were no significant differences in the average weekly feed intake of birds after *in ovo* feeding throughout the experimental period (Table 4). Similarly, Toosi *et al.* (2016) observed that *in ovo* injection of BiacidTM (blend of essential oil and volatile fatty acids) did not result in any significant effect on feed intake of broilers.

There were no significant differences in average weekly feed intake in dietary groups from 0-6 weeks, except at first week where birds in the menthol supplementation group had significantly higher (P=0.04) feed consumption compared to the basal diet. Although no significant differences were observed overall, all menthol-supplemented groups showed higher feed intake compared to the basal diet. Abdel-Wareth *et al.* (2019) observed that feed intake was increased with the increase in dietary menthol concentrations (linear, P≤0.05) during trial periods of 21 to 35, and 1 to 35 d of age. Mucha and Witkowska (2021) stated that essential oils may be used mainly as feed additives to improve feed palatability and

Table 3: Effect of *in ovo* feeding and dietary supplementation of menthol on average weekly body weight gain (g) of commercial broilers during 0-6 weeks of age

Const	Age in weeks							
Group	1 st	2^{nd}	3 rd	4 th	5 th	6 th		
Un-injected Control + Basal Diet	77.53 ^b	174.90	305.92	243.68	319.00	381.00		
Un-injected Control + Menthol supplementation	78.67 ^b	175.68	322.25	260.07	322.59	407.04		
Sham Control + Basal Diet	61.17 ^a	161.07	325.68	244.89	322.47	389.91		
Sham Control + Menthol supplementation	79.91 ^b	174.25	324.85	262.93	317.76	389.64		
In ovo Menthol + Basal Diet	73.93 ^b	168.10	328.03	225.93	325.93	388.30		
In ovo Menthol + Menthol	75.89 ^b	163.71	319.79	253.77	330.25	387.41		
Supplementation								
Treatment								
Un-injected Control	78.10 ^b	175.29	314.09	251.88	320.79	394.02		
Sham Control	70.53^{a}	167.66	325.27	253.91	320.12	389.78		
In ovo Menthol	74.91^{ab}	165.90	323.91	239.85	328.09	387.86		
Diet								
Basal Diet	70.88^{a}	168.02	319.88	238.17	322.47	386.41		
Menthol Supplementation	78.15 ^b	171.21	322.30	258.92	323.53	394.70		
Pooled SEM	1.80	2.41	4.68	5.05	3.53	4.64		
Sig Level								
Treatment	$P \le 0.05$	NS	NS	NS	NS	NS		
Diet	$P \le 0.01$	NS	NS	NS	NS	NS		
Treatment \times Diet	$P \le 0.01$	NS	NS	NS	NS	NS		

Means bearing different superscripts within a column differ significantly (P≤0.05) NS: Not Significant (P≥0.05) SEM: Standard Error of Means

Table 4: Effect of *in ovo* feeding and dietary supplementation of menthol on average weekly feed intake (g) of commercial broilers during 0-6 weeks of age

Carre			Age	in weeks		
Group	1 st	2^{nd}	$3^{\rm rd}$	4 th	5 th	6 th
Un-injected Control + Basal Diet	101.37 ^b	221.16	439.52	548.57	670.67	908.62
Un-injected Control + Menthol	99.67 ^b	238.61	424.25	521.07	644.41	838.74
supplementation						
Sham Control + Basal Diet	83.16 ^a	250.41	467.64	556.86	690.74	880.46
Sham Control + Menthol	103.69 ^b	243.81	444.12	540.68	686.59	888.55
supplementation						
In ovo Menthol + Basal Diet	96.13 ^b	234.60	422.00	489.00	616.33	812.33
In ovo Menthol + Menthol	96.92 ^b	234.87	495.85	607.21	765.69	939.74
Supplementation						
Treatment						
Un-injected Control	100.52	229.89	431.89	534.82	657.54	873.68
Sham Control	93.42	247.11	455.88	548.77	688.67	884.50
In ovo Menthol	96.53	234.73	458.93	548.10	691.01	876.04
Diet						
Basal Diet	93.56 ^a	235.39	443.05	531.48	659.25	867.14
Menthol Supplementation	100.09 ^b	239.09	454.74	556.32	698.90	889.01
Pooled SEM	1.99	6.32	12.70	16.25	19.94	25.12
Sig Level						
Treatment	NS	NS	NS	NS	NS	NS
Diet	P = 0.04	NS	NS	NS	NS	NS
$Treatment \times Diet$	P≤0.05	NS	NS	NS	NS	NS

Means bearing different superscripts within a column differ significantly (P≥0.05) NS: Not Significant (P≥0.05) SEM: Standard Error of Means

increase feed intake. Akbari and Torki (2014) reported that supplementation of peppermint essential oil (250 mg/kg diet) had no significant effect on feed intake but numerically peppermint supplemented group had higher feed intake as compared to control which is in line with our present study.

There were no significant differences in effect of interaction of *in ovo* feeding and dietary supplementation on average weekly feed intake except at 1^{st} week where, sham control along with basal diet had significantly lower (P \leq 0.05) feed intake as compared to other groups. *Feed Conversion Ratio*

Results indicated that there were no significant differences in weekly FCR after *in ovo* feeding and/or dietary supplementation of menthol during the entire experimental period of 0-6 weeks of age (Table 5). This agrees with the study by Akbari and Torki (2014) as well as Toosi *et al.* (2016). In contrary, Abdel-Wareth *et al.* (2019) reported linear improvements (P≤0.01) in feed conversion values with increasing peppermint leaves or menthol levels in diets of broiler chickens. In our study, dietary supplementation of menthol was 250 mg menthol per kg diet and there were no graded levels of dietary supplementation carried out in the experiment. Toosi *et*

al. (2016) observed that *in ovo* injection of BiacidTM (blend of essential oil and volatile fatty acids) did not have significant effect on FCR which is in line with the present study.

Development of digestive and lymphoid organs

There were no significant differences observed in development of digestive and lymphoid organs after *in ovo* feeding and/or dietary supplementation of menthol (Table 6 and 7). This is strongly supported by the studies of Abdel-Wareth *et al.* (2019), Ayman *et al.* (2016), Hashemipour *et al.* (2013) and Oladokun *et al.* (2021). *Carcass quality traits, yield of giblets and cut-up-parts*

No significant differences were recorded in carcass quality traits, yield of giblet and cut up parts after *in ovo* feeding and/or dietary supplementation of menthol (Table 8, 9 and 10). This agrees with studies by Toosi *et al.* (2016), Abdel-Wareth *et al.* (2019) and Ayman *et al.* (2016). Toosi *et al.* (2016) observed that *in ovo* injection of BiacidTM (blend of essential oil and volatile fatty acids) did not have any significant effect on carcass yield. Ayman *et al.* (2016) observed that carcass traits didn't differ between treatments (1.5 g Peppermint Leaves, 3.0 g Peppermint Leaves, 125 mg Peppermint Oil, 250 mg Peppermint Oil), except gizzard percent that increased with all peppermint

Table 5: Effect of *in ovo* feeding and dietary supplementation of menthol on weekly feed conversion ratio (FCR) of commercial broilers during 0-6 weeks of age

Contract			Age	n weeks		
Group	1 st	$2^{\rm nd}$	3^{rd}	4 th	5 th	6 th
Un-injected Control + Basal Diet	1.31	1.27	1.47	2.27	2.10	2.38
Un-injected Control + Menthol	1.27	1.36	1.32	2.01	2.00	2.07
supplementation						
Sham Control + Basal Diet	1.36	1.58	1.44	2.27	2.14	2.25
Sham Control + Menthol	1.30	1.40	1.36	2.06	2.16	2.29
supplementation						
In ovo Menthol + Basal Diet	1.30	1.40	1.29	2.19	1.90	2.09
In ovo Menthol + Menthol	1.30	1.45	1.55	2.41	2.31	2.43
Supplementation						
Treatment						
Un-injected Control	1.29	1.32	1.40	2.14	2.05	2.22
Sham Control	1.33	1.49	1.40	2.16	2.15	2.27
In ovo Menthol	1.30	1.42	1.42	2.30	2.11	2.26
Diet						
Basal Diet	1.33	1.41	1.40	2.24	2.05	2.24
Menthol Supplementation	1.29	1.40	1.41	2.16	2.16	2.26
Pooled SEM	0.03	0.05	0.05	0.07	0.05	0.06
Sig. Level						
Treatment	NS	NS	NS	NS	NS	NS
Diet	NS	NS	NS	NS	NS	NS
$Treatment \times Diet$	NS	NS	NS	NS	NS	NS

Means bearing different superscripts within a column differ significantly (P≤0.05) NS: Not Significant (P≥0.05) SEM: Standard Error of Means

Table 6: Effect of *in ovo* feeding and dietary supplementations of menthol on development of digestive organs of commercial broilers after 6 weeks of age

Group	Proventriculus	SI weight	LI weight	Caecal Wt.	SI length	LI length	Caecal length
	(g/100g)	(g/100g)	(g/100g)	(g/100g)	(cm/100g)	(cm/100g)	(cm/100g)
Un-injected Control +	0.58	4.40	1.20	0.77	10.61	1.84	1.25
Basal Diet							
Un-injected Control +	0.60	4.40	1.34	0.78	10.99	1.80	1.31
Menthol supplementation							
Sham Control +	0.56	4.39	1.81	1.20	11.42	2.19	1.51
Basal Diet							
Sham Control +	0.60	5.08	1.41	0.74	11.94	2.01	1.49
Menthol supplementation							
In ovo Menthol +	0.58	5.12	1.16	0.63	11.11	1.78	1.33
Basal Diet							
In ovo Menthol +	0.54	4.74	1.44	0.77	11.99	2.31	1.45
Menthol Supplementation							
Treatment							
Un-injected Control	0.59	4.40	1.27	0.78	10.80	1.82	1.28
Sham Control	0.58	4.73	1.61	0.97	11.68	2.10	1.50
In ovo Menthol	0.56	4.93	1.30	0.70	11.55	2.05	1.39
Diet							
Basal Diet	0.57	4.64	1.39	0.87	11.05	1.94	1.36
Menthol Supplementation	0.58	4.74	1.40	0.76	11.64	2.04	1.41
Pooled SEM	0.02	0.14	0.08	0.06	0.20	0.07	0.05
Sig. level							
Treatment	NS	NS	NS	NS	NS	NS	NS
Diet	NS	NS	NS	NS	NS	NS	NS
Treatment × Diet	NS	NS	NS	NS	NS	NS	NS

NS: Not Significant (P≥0.05) SEM: Standard Error of Means SI: Small Intestine LI: Large Intestine

Table 7: Effect of *in ovo* feeding and dietary supplementations of menthol on development of lymphoid organs of commercial broilers after 6 weeks of age (% live weight)

Group	Spleen weight %	Thymus weight %	Bursa weight %
Un-injected Control + Basal Diet	0.19	0.31	0.29
Un-injected Control + Menthol supplementation	0.18	0.39	0.31
Sham Control + Basal Diet	0.21	0.39	0.30
Sham Control + Menthol supplementation	0.21	0.32	0.28
In ovo Menthol + Basal Diet	0.18	0.40	0.28
In ovo Menthol + Menthol Supplementation	0.19	0.31	0.24
Treatment			
Un-injected Control	0.18	0.35	0.30
Sham Control	0.21	0.36	0.29
In ovo Menthol	0.19	0.36	0.26
Diet			
Basal Diet	0.19	0.37	0.29
Menthol Supplementation	0.19	0.34	0.27
Pooled SEM	0.01	0.03	0.01
Sig. level			
Treatment	NS	NS	NS
Diet	NS	NS	NS
$Treatment \times Diet$	NS	NS	NS

NS: Not Significant (P≥0.05) SEM: Standard Error of Means

Table 8: Effect of *in ovo* feeding and dietary supplementations of menthol on carcass quality traits of commercial broilers after 6 weeks of age (% live weight)

Canada	Shrinkage	Bled	Defeathered	Dressing	Ready to
Group	(%)	wt (%)	wt (%)	wt (%)	cook yield (%)
Un-injected Control + Basal Diet	9.42	96.38	80.35	71.32	52.83
Un-injected Control + Menthol supplementation	7.94	96.51	80.23	71.01	49.57
Sham Control + Basal Diet	6.52	95.77	80.06	72.38	51.89
Sham Control + Menthol	9.70	95.50	79.70	69.74	50.87
Supplementation					
In ovo Menthol + Basal Diet	9.05	96.08	80.02	70.41	52.48
In ovo Menthol + Menthol	9.39	95.48	79.90	70.35	51.38
Treatment					
Un-injected Control	8.68	96.44	80.29	71.16	51.20
Sham Control	8.11	95.64	79.88	71.06	51.38
In ovo Menthol	9.22	95.78	79.96	70.38	51.93
Diet					
Basal Diet	8.33	96.08	80.14	71.37	52.40
Menthol Supplementation	9.01	95.83	79.94	70.37	50.61
Pooled SEM	0.40	0.19	0.19	0.37	0.49
Sig. level					
Treatment	NS	NS	NS	NS	NS
Diet	NS	NS	NS	NS	NS
$Treatment \times Diet$	NS	NS	NS	NS	NS

NS: Not Significant (P≥0.05) SEM: Standard Error of Means

Table 9: Effect of *in ovo* feeding and dietary supplementations of menthol on yield of giblets (heart, liver, gizzard) of commercial broilers after 6 weeks of age (% live weight)

Group	Heart %	Liver %	Gizzard %
Un-injected Control + Basal Diet	0.54	2.17	2.77
Un-injected Control + Menthol supplementation	0.55	2.35	2.65
Sham Control + Basal Diet	0.62	2.37	2.50
Sham Control + Menthol supplementation	0.54	2.36	3.08
In ovo Menthol + Basal Diet	0.62	2.27	2.54
In ovo Menthol + Menthol Supplementation	0.60	2.68	2.63
Treatment			
Un-injected Control	0.55	2.26	2.71
Sham Control	0.58	2.37	2.79
In ovo Menthol	0.61	2.47	2.58
Diet			
Basal Diet	0.59	2.27	2.60
Menthol Supplementation	0.56	2.46	2.79
Pooled SEM	0.01	0.07	0.07
Sig. level			
Treatment	NS	NS	NS
Diet	NS	NS	NS
Treatment \times Diet	NS	NS	NS

NS: Not Significant (P≥0.05) SEM: Standard Error of Means

extracts. In the present study also, gizzard % of birds in menthol supplemented diet had higher values as compared to basal diet. The results of the present study clearly indicated that there was no adverse effect of menthol on the carcass quality characteristics, yield of giblets and cut up parts at 6 weeks of age.

Table 10: Effect of *in ovo* feeding and dietary supplementation of menthol on cut-up-parts of commercial broilers after 6 weeks of age

Group	Breast%	Back%	Wings%	Neck%	Drumstick%	Thigh %
Un-injected Control + Basal Diet	24.60	25.08	4.96	10.24	17.62	17.50
Un-injected Control + Menthol supplementa	ation24.41	24.99	5.62	8.71	17.98	18.29
Sham Control + Basal Diet	24.29	25.47	6.05	10.31	17.80	16.08
Sham Control + Menthol supplementation	25.01	23.29	5.97	11.09	17.60	17.05
In ovo Menthol + Basal Diet	24.02	25.12	5.69	9.78	18.46	16.94
In ovo Menthol + Menthol Supplementation	n 24.91	23.35	5.78	10.43	19.06	16.47
Treatment						
Un-injected Control	24.51	25.04	5.29	9.47	17.80	17.89
Sham Control	24.65	24.38	6.01	10.70	17.70	16.57
In ovo Menthol	24.46	24.24	5.74	10.10	18.76	16.71
Diet						
Basal Diet	24.30	25.22	5.57	10.11	17.96	16.84
Menthol Supplementation	24.78	23.88	5.79	10.07	18.21	17.27
Pooled SEM	0.32	0.39	0.13	0.28	0.20	0.25
Sig. level						
Treatment	NS	NS	NS	NS	NS	NS
Diet	NS	NS	NS	NS	NS	NS
Treatment x Diet	NS	NS	NS	NS	NS	NS

NS: Not Significant (P≥0.05) SEM: Standard Error of Means

CONCLUSION

Based on the results of the present study, *in ovo* feeding of 1% menthol along with dietary supplementation of menthol @ 250 mg/kg diet resulted in better early growth performance as compared to other treatment groups. Further, it did not significantly impact carcass quality traits, digestive and lymphoid organs and yield of cut up parts However, further studies are required with *in ovo* feeding and dietary supplementation of menthol at different levels to assess the effect of *in ovo* feeding vis-à-vis dietary supplementation of menthol on the performance of broilers.

ACKNOWLEDGEMENTS

The authors are thankful to the Dean, College of Veterinary Science and Animal Husbandry, and the Vice Chancellor of the University for providing necessary facilities to carry out the study.

REFERENCES

- Abdel-Wareth, A.A., Kehraus, S. and Südekum, K.H. 2019. Peppermint and its respective active component in diets of broiler chickens: growth performance, viability, economics, meat physicochemical properties, and carcass characteristics. *Poultry Science*, **98** (9): 3850-3859.
- Abouelfetouh, A.Y. and Moussa, N.K. 2012. Enhancement of antimicrobial activity of four classes of antibiotics combined with garlic. *Asian Journal of Plant Sciences*, **11**: 148-152.
- Akbari, M. and Torki, M. 2014. Effects of dietary chromium picolinate and peppermint essential oil on growth performance and blood biochemical parameters of broiler chicks reared under heat stress conditions. *International Journal of Biometeorology*, **58**: 1383–1391.
- Alcicek, A.H., Bozkurt, M. and Çabuk, M. 2004. The effect of a mixture of herbal essential oils, an organic acid or a probiotic

- on broiler performance. South African Journal of Animal Science, **34**(4): 217-222.
- Ayman, M.H., Ahmed Mourad, H.S., El-Sanhoury Mohamed, M.E. and Mostafa. 2016. Effect of peppermint extracts inclusion in broiler chick diet on chick performance, plasma constituents, carcass traits and some microbial populations, enzymatic activity and histological aspects of small intestine. Egypt Asian Journal of Animal and Veterinary Advances, 11: 441-451.
- Aziz, E.E., Gad, N. and Khaled, S.M. 2011. Effect of cobalt on growth and chemical composition of peppermint plant grown in newly reclaimed soil. *Australian Journal of Basic and Applied Sciences*, **5**(11): 628-633.
- Beigi, M., Torki-Harchegani, M. and Ghasemi Pirbalouti, A. 2018. Quantity and chemical composition of essential oil of peppermint (*Mentha piperita* L.) leaves under different drying methods. *International Journal of Food Properties*, **21**(1): 267-276.
- Bhanja, S.K., Mandal, A.B., Agarwal, S.K. and Majumdar, S. 2006. Modulation of post hatch growth and immunocompetence through *in ovo* injection of vitamin E and linoleic acid. *World's Poultry Science Journal*, **62**(Suppl.): 325.
- Bhanja, S.K. and Mandal, A.B. 2005. Effect of *in ovo* injection of critical amino acids on pre and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. *Asian-Australasian Journal of Animal Sciences*, **18**: 524–531.
- Bhattacharyya, A., Garg, S.K. and Maini, S. 2013. Effect of dietary supplementation of poly herbal liver tonic on immunocompetence, development of digestive organs and carcass quality of broiler chicken. *Indian Journal of Poultry Science*, **48** (3): 338-342.
- BIS. 2007. *Bureau of Indian Standards*. Indian standard poultry feeds-specification 5th revision, New Delhi. IS 1374: 2007.
- Bupesh, G., Amutha, C., Nandagopal, S., Ganeshkumar, A., Sureshkumar, P. and Murali, K. 2007. Antibacterial activity of *Mentha piperita* L. (peppermint) from leaf extracts-a medicinal plant. *Acta Agriculturae Slovenica*, **89** (1): 73.

- Collington, G.K., Parker, D.S. and Armstrong, D.G. 1990. The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig. *British Journal of Nutrition*, **64**: 59-70.
- Duncan, D.B. 1955. Multiple Range and Multiple F Tests. *Biometrics*, **11**(1): 1-42.
- Fadlalla, I.M.T., Mohammed, B.H. and Bakhiet, A.O. 2010. Effect of feeding garlic on the performance and immunity of broilers. *Asian Journal of Poultry Science*, **4**: 182-189.
- Fazli, N., Hassanabadi, A., Mottaghitalab, M. and Hajati, H. 2015. Manipulation of broiler chickens sex differentiation by in ovo injection of aromatase inhibitors, and garlic and tomato extracts. Poultry Science, 94(11): 2778-2783.
- Grigoleit, H.G. and Grigoleit, P. 2005. Pharmacology and preclinical pharmacokinetics of peppermint oil. *Phytomedicine*, **12**(8): 612-616.
- Hashemipour, H., Kermanshahi, H., Golian, A. and Veldkamp, T. 2013. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. *Poultry Science*, 92(8): 2059-2069.
- Ipek, A.Y., Sahan, Ü.M. and Yilmaz, B.Ý. 2004. The effect of in ovo ascorbic acid and glucose injection in broiler breeder eggs on hatchability and chick weight. European Poultry Science, 68(3): 132-135.
- Kadam, M.M., Barekatain, M.R., Bhanja, S.K. and Iji, P.A. 2013.
 Prospects of *in ovo* feeding and nutrient supplementation for poultry: The science and commercial applications-A review. *Journal of the Science of Food and Agriculture*, 93(15): 3654-3661.
- Kamkar, A., Javan, A.J., Asadi, F. and Kamalinejad, M. 2010. The antioxidative effect of Iranian *Mentha pulegium* extracts and essential oil in sunflower oil. *Food and Chemical Toxicology*, 48(7): 1796-1800.
- Khan, S.H., Sardar, R. and Anjum, M.A. 2007. Effects of dietary garlic on performance and serum and egg yolk cholesterol concentration in laying hens. *Asian Journal of Poultry Science*, 1: 22-27.
- Kucharska-Gaca, J., Kowalska, E. and Debowska, M. 2017. *In ovo* feeding-technology of the future-a review. *Annals of Animal Science*, **17**: 979–992.
- Ma, H., Liang, S., Wu, H., Du, C., Ren, Z., Yang, X. and Yang, X. 2022. Effects of *in ovo* feeding and dietary addition oils on growth performance and immune function of broiler chickens. *Poultry Science*, 101(5): 101815.
- Malheiros, R.D., Ferket, P.P. and Goncalves, F.M. 2012. Oxidative stress protection of embryos by *in ovo* supplementation. *In XXIV World's Poultry Congress Salvador, Bahia, Brazil*, pp 5-9.
- Mishra, D.B., Roy, D., Kumar, V., Bhattacharyya, A., Kumar, M., Kushwaha, R. and Vaswani, S. 2016. Effect of feeding azolla (*Azolla pinnata*) meal on the performance, nutrient utilization and carcass characteristics of chabro chicken. *Indian Journal of Poultry Science*, **51** (3): 259-263.
- Mucha, W. and Witkowska, D. 2021. The applicability of essential oils in different stages of production of animal-based foods. *Molecules*, **26**(13): 3798.
- N'nanle, O., Tété-Bénissan, A., Tona, K., Teteh, A., Voemesse, K., Decuypere, E. and Gbeassor, M. 2017. Effect of *in ovo* inoculation of *Moringa oleifera* leaves extract on hatchability and chicken growth performance. *European Poultry Science*, **81**(10.1399)

- Ohta, Y., Kidd, M.T. and Ishibashi, T. 2001. Embryo growth and amino acid concentration profiles of broiler breeder eggs, embryos and chicks after *in ovo* administration of amino acids. *Poultry Science*, **80**: 1430–1436.
- Oladokun, S. and Adewole, D.I. 2020. *In ovo* delivery of bioactive substances: An alternative to the use of antibiotic growth promoters in poultry production-A review. *Journal of Applied Poultry Research*, **29**: 744–763.
- Oladokun, S., MacIsaac, J., Rathgeber, B. and Adewole, D. 2021. Essential oil delivery route: Effect on broiler chicken's growth performance, blood biochemistry, intestinal morphology, immune, and antioxidant Status. *Animals*, **11**(12): 3386.
- Raghav, H., Bhattacharyya, A., Shukla, P.K., Sirohi, R., Jadhav, P.R., Bondar, B.B. and Kherde, A.R. 2023. Effect of different feeding levels of berseem on production performance of coloured Chabro chicken. *Indian Journal of Poultry Science*, **58**(3): 231"234.
- Rai, A., Bhattacharyya, A., Shukla, P.K., Kumar, M., Jadhav, P.R. and Raghav, H. 2022. Effect of dietary supplementation of oregano and thyme oil on the growth performance, development of lymphoid and digestive organs and carcass quality traits of turkey poults. *Indian Journal of Poultry Science*, 57 (1): 35-42.
- Roofchaee, A., Irani, M., Ebrahimzadeh, M.A. and Akbari, M.R. 2011. Effect of dietary oregano (*Origanum vulgare L.*) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens. *African Journal of Biotechnology*, **10**(32): 6177-6183.
- Saki, A.A. and Salary, J.J. 2015. The impact of *in ovo* injection of silver nanoparticles, thyme and savory extracts in broiler breeder eggs on growth performance, lymphoid-organ weights, and blood and immune parameters of broiler chicks. *Poultry Science Journal*, **3**(2): 165-172.
- Schelz, Z., Molnar, J. and Hohmann, J. 2006. Antimicrobial and antiplasmid activities of essential oils. *Fitoterapia*, 77: 279-285.
- Sharifi, S.D., Khorsandi, S.H., Khadem, A.A, Salehi, A and Moslehi, H. 2013. The effect of four medicinal plants on the performance, blood biochemical traits and ileal microflora of broiler chicks. *Veterinarski Arhiv*, 83: 69-80.
- Singh, D.N., Shukla, P.K., Bhattacharyya, A., Singh, Y. and Sirohi, R. 2019. Effect of breeder and post-hatch dietary supplementation of sea buckthorn leaf meal on growth performance of coloured broiler during summer season. *Indian Journal of Poultry Science*, **54** (3): 257-262.
- Snedecor, G.W. and Cochran, W.G. 1989. *Statistical Methods*. Oxford and IBH Publ. Co., Delhi.
- Sultan, R., Aslam, A., Saleem, G., Anjum, A., Krull, W., Kumosani, T. and Barbour, E.K. 2017. Studies on performance, immunity, and safety of broilers vaccinated with killed H9N2 vaccine and supplemented with essential oils of mentofin® in drinking water. *International Journal of Applied Research in Veterinary Medicine*, **15**(2): 67-74.
- Toosi, S., Chamani, M., Shivazad, M., Sadeghi, A.A. and Mousavi, S.N. 2016. Effects of *in ovo* injection and inclusion a blend of essential oils and organic acids in high NSPS diets of broiler breeders on performance of them and their offspring. *The Journal of Poultry Science*, **53**(3): 192-200.
- Uni, Z., Ferket, P.R., Tako, E. and Kedar, O. 2005. *In ovo* feeding improves energy status of the late-term chicken embryos. *Poultry Science*, 84: 764-770.