# Comparison of the Transcriptomic studies in indigenous chicken versus IBL-80 broiler chicken

JASWINDER KAUR<sup>1</sup>, PARAMVIR SINGH<sup>1</sup>, YOGESHWAR SINGH<sup>2</sup>, S.K. DASH<sup>1</sup> AND C.S. MUKHOPADHYAY<sup>1\*</sup>

<sup>1</sup>Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, India <sup>2</sup>College of Veterinary Science, Rampura Phool, Punjab, India.

(Received on May 06, 2024; accepted for publication on December 24, 2024)

#### ABSTRACT

Kaur, J., Singh, P., Singh, Y., Dash, S.K. and Mukhopadhyay, C.S. 2024. Comparison of the transcriptomic studies in indigenous chicken versus IBL-80 broiler chicken. Indian Journal of Poultry Science, 59(3): 233-240.

Indigenous chicken breeds have played a vital role in contributing towards nutritional security and economic assistance to the rural people in the nation. These birds are well adapted to the local environment and possesses resistance to a number of diseases. However, they lack performance in terms of growth characteristics for which they are not prefered for raising in commercial broiler farming. A study was conducted to compare lung and trachea tissue transcriptomic analysis data for three groups of chickens namely Aseel, Punjab Brown, and IBL80 commercial broiler. RNA-sequencing results provided 5,282 differentially expressed genes (DEGs). Out of the total DEGs, 1478 from Aseel, were up-regulated and 930 were down-regulated. 1872 DEGs belonged to Punjab Brown in which 697 were up-regulated and 1175 down-regulated and IBL-80 exhibited 1931 DEGs but 714 were upregulated and 1217 downregulated. Interestingly, all three chicken groups revealed more downregulated DEGs. Gene Ontology (GO) enrichment analysis led to most of the comparable terms among the chicken groups. The count of genes related to innate immunity were greater in Aseel compared to Punjab Brown and commercial broiler. The majority of genes were chemokines or chemokine receptors. Aseel exhibited relatively higher count of chemokines and chemokines receptor-related genes compared to Punjab Brown, and IBL-80 commercial broiler.

Keywords: Aseel, Commercial broiler, Differentially expressed gene, Pathway analysis, Punjab Brown, Transcriptome

## INTRODUCTION

The poultry industry plays a crucial role in the livestock sector, being the third-largest producer of eggs and the fourth-largest producer of chicken meat worldwide. The domesticated chicken (Gallus gallus domesticus) is one of the most important livestock species, serving as a key source of animal protein for human consumption. In India, poultry farming has steadily expanded, especially with the increasing demand for native chicken meat (Padhi et al., 2022). The nation has officially identified 19 Indigenous chicken breeds (Niranjan et al., 2022). Indigenous poultry birds are welladapted to various climatic conditions (Dalal et al., 2022) and exhibit a higher tolerance to elevated temperatures, making them more resilient to diseases compared to exotic or commercial broilers (Ramasamy et al., 2010). Aseel is one of the supreme indigenous chicken breeds of India. Aseel chickens can be located largely in Andhra Pradesh, Madhya Pradesh, Orissa, and Rajasthan. This breed is known for combativeness, magnificent gait, high endurance, and fighting skills (Dalal et al., 2022). The productivity is low in Aseel yet the birds are known for their meat quality with preferable taste and enriched flavour (Haunsh & Prince, 2021). On the contrary, Punjab Brown is a dual-purpose breed in the poultry industry and is reared for meat and egg production. The breed is mainly found in the northern states of Punjab and Haryana (Kanakachari et al., 2022.). The indigenous chicken breeds of India are known to be more disease-resistant than commercial breeds. The artificial selection performed for improvement in growth performance neglects the disease resistance parameters in commercial chicken (Sehrawat et al., 2021). Thus, commercial chicken remains immunologically deprived and indigenous chicken remains immunologically resilient to many diseases (Raj et al., 2009). The immune system acts as the first line of defense against the infective pathogen. Both innate and adaptive immunities work supremely towards reorganization and clearance of pathogens. The more or less production of immune factors magnifies the pathophysiology of diseases (Prabhu et al., 2021, Saini et al., 2022)

RNA sequencing (RNA-seq) is a powerful data set that offers a snapshot insight into a particular tissue. Recently RNA-sequencing (RNA-seq) is performed using Next-generation sequencing (NGS) technologies (Mortazavi *et al.*, 2008) The transcriptome displays a dynamic physiological picture of gene expression. Even more, transcriptomic profiling is efficient to investigate the comprehensive repertoire of genes related to various economic traits in poultry as well as in livestock species

<sup>\*</sup>Corresponding author Email: csmbioinfo@gmail.com

(Ahlawat *et al.*, 2021). Transcriptomic profiling technology is in increasing demand which offers to catalog and identify the differentially expressed genes expressed at a particular point of time in any organism, and comes with the potential to discover unique functional properties including disease resistance, growth, and environmental habituation (Wu *et al.*, 2020)

Among all the body systems in poultry, the respiratory tract is an important part to investigate because pathogens are frequently responsible to cause disease in birds. Their respiratory tract serves as the pathway for pathogens to enter the body system and regulate the magnitude of disease complexity. The most common and hazardous respiratory diseases in poultry are avian influenza (AI), Newcastle disease (ND), infectious bronchitis (IB), infectious laryngotracheitis (ILT), and Avian metapneumovirus (Islam et al., 2022) Therefore, in this study, the differential gene expression profile of the lungs and trachea of Aseel, Punjab Brown, and commercial broiler (IBL-80) were compared by RNAseq to get a comprehensive insight into identifying the key genes associated with stronger immune response in the defferent breeds of chicken.

## MATERIALS AND METHODS

Ethics Statement

All experiments were carried out in compliance with the guidelines set by the Institutional Animal Ethics Committee (IAEC) of Guru Angad Dev Veterinary and Animal Sciences University (GADVASU/2018/IAEC/47/09).

Experimental Design

Two-day-old chicks of Aseel, Punjab Brown, and Commercial broiler (IBL-80) were purchased from the state of Punjab. No vaccination was administered to the chicks. For 42 days, the experimental chickens were taken care of under standard hygienic conditions at the Poultry farms of Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana. The chickens were kept under surveillance daily and had indispensable access to feed and water. On the 42<sup>nd</sup> day, the experimental chicken was slaughtered, and two tissues lung and trachea were collected. The tissues were immersed and preserved in RNA Later (Ambion, Austin, TX, USA) and maintained at 4°C for 24 hours, and thereafter at -80° C for subsequent use. Total RNA was obtained from both tissues (lung and trachea) using Trizol (Ambion, Austin, TX, USA). DNase I (Thermo Scientific) digestion was done post-RNA extraction. The RNA quantification was done to check the concentration and purity was determined by measuring absorbance at 260nm and A260/A280 ratio using a NanoDrop One (Thermo Scientific, USA). The purified RNA was preserved at -80°C up to needed for subsequent analysis.

RNA Sequencing and Data Analyses

The purified RNA from the samples were sent for

sequencing to Agri Genome Labs Pvt. Ltd. (Kerala, India) for Next-generation sequencing on Illumina 150 bp Paired End (Nova Seq 6000). The raw sequenced data has been submitted to NCBI (National Centre for Biotechnology Information) under the short read archive. The fastq files were submitted to the SRA of NCBI (Bioproject: PRJNA972351, Biosample: SAMN35074231).

The Raw reads generated were subjected to removing the adapter and trimming low-quality bases using AdapterRemoval-v2 (version 2.3.1). The processed reads were further aligned to the Gallus gallus genome assembly (GCA 016699485.1). The differential expression analysis for the 8 samples was done using the cuffdiff program of the Cufflinks package. Differentially expressed genes (DEGs) were identified using R programming environment version 4.1.0. The gene with  $\log_2$  fold-change  $\geq 2.0$  or  $\geq -2.0$  along with the p-value  $\leq 0.05$  were retained throughout the analysis. Further, constructed a heat map between the three experimental chickens illustrating the expression difference. Venn diagrams of overlapped DEGs were constructed using http://bioinformatics.psb.ugent.be/ webtools/Venn/. between the three experimental chicken groups. The functional annotation and enrichment analysis of the pathways in DEGs was conducted using DAVID (Huang et al., 2009), while the STRING database was utilized for further investigation of protein-protein interactions (PPI) among differentially expressed genes, applying default parameters (Szklarczyk et al., 2016).

### RESULTS AND DISCUSSION

RNA sequencing result

The average numbers of raw reads, processed reads, and aligned percentages in Aseel, Punjab Brown and Commercial Broiler are given in Table (1).

Differentially expressed genes and enriched pathways

The comparison of the transcript levels between the three chicken groups was done and DEGs meeting the criteria of log<sub>2</sub> fold change greater than or equal to 2.0 or less than or equal to -2.0. along with the p-value  $\leq 0.05$  were identified. An overall count of 5,282 differentially expressed genes (DEGs) were observed from the three chicken groups. A total of 1,479 DEGs were observed in Aseel, while 1,872 and 1,931 DEGs were identified in Punjab Brown and IBL-80 commercial broilers, respectively, with 660 DEGs common to all three chicken groups. In Aseel out of the 1479 DEGs, 549 were upregulated and 930 were downregulated. The DEGs were subsequently explored for GO analysis in order to understand their functional enrichment. The top 10 gene ontology terms for the Aseel are shown in Table (2). The significantly enriched biological function was cell differentiation, cell adhesion, angiogenesis, immune system, and inflammatory responses. A fundamental part of the membrane, plasma membrane, extracellular space, and extracellular region were top terms for the cellular

| S.No.      | Sample Name        | Sample Name | Total read count | Read count after<br>rRNA removal | Aligned percentage |
|------------|--------------------|-------------|------------------|----------------------------------|--------------------|
| 1.         | Aseel              | Lung        | 54,523,434       | 54,059,248                       | 94.63              |
| 2.         |                    | Trachea     | 50,821,690       | 50,821,690                       | 93.94              |
| 3.         | Punjab Brown       | Lung        | 32,695,158       | 31,337,832                       | 93.80              |
| <b>1</b> . |                    | Lung        | 34,892,244       | 34,234,960                       | 93.63              |
| 5.         |                    | Trachea     | 40,342,628       | 39,864,188                       | 93.51              |
| 5.         |                    | Trachea     | 30,712,610       | 30,251,374                       | 92.65              |
| 7.         | Commercial Broiler | Lung        | 59,699,960       | 59,205,720                       | 95.59              |
| R          |                    | Trachea     | 59 650 598       | 39 170 430                       | 91.03              |

**Table 1:** RNA sequencing summary data for Aseel, Punjab Brown, and Commercial Broiler with their respective Lung and Trachea tissues.

component. The top terms for molecular functions were calcium ion binding, RNA polymerase II transcription factor activity, growth factor activity, actin filament binding, and cytokine activity.

For the 1872 DEGs in Punjab Brown, 697 were upregulated while 1175 were downregulated, the enriched gene ontology terms are depicted in Table (3). The major biological processes identified encompassed the control of transcription from the RNA polymerase II promoter, its enhancement, and cellular functions differentiation, cell adhesion, enhancement of gene expression, and immune responses. In the cellular component category, enrichment was observed in the integral membrane component, plasma membrane, extracellular space, and extracellular region. The predominant molecular functions involved RNA polymerase II transcription factor activity with sequencespecific DNA binding, sequence-specific DNA binding at the RNA polymerase II core promoter proximal region, calcium ion binding, and G-protein-coupled receptor affinity activity.

Furthermore, enrichment analysis using the PANTHER tool highlighted immune-related responses in Aseel, Punjab Brown, and Commercial Broiler, as illustrated in Figure 1. Among the 931 differentially expressed genes (DEGs) in commercial broiler, 714 were upregulated, while 1,217 were downregulated. Gene Ontology (GO) analysis for biological processes identified key functions such as cell-differentiation, cell-adhesion, positive modulation of gene expression, signaling of Gprotein-coupled receptor, and suppression of apoptosis. The cellular component category included the integral membrane component, plasma membrane, extracellular space, and integral plasma membrane component. Lastly, in molecular functions, the most enriched GO terms were calcium ion binding, RNA polymerase II transcription factor function, DNA binding with sequence specificity, and actin filament interaction, and cytokine activity, as presented in Table 2 to Table 4.

Enriched Immune-related DEGs

The immune-related DEGs were also explored using the PANTHER tool. PANTHER enrichment analysis revealed 29 DEGs in Aseel associated with immune responses. And similarly, there were 30 and 39 DEGs associated with immune-related responses in Punjab Brown and commercial broiler respectively. Venn diagram (Figure 2) was constructed to analyze the unique elements in each experimental chicken group. Amongst the three groups, 5 genes were common including

(IL7R, ZAP70, BST1, CRTAM, and VEGFC). Surprisingly 16 genes were unique to Aseel including (THEMIS, CST7, EOMES, CCR8, CXCL13L3, FRK, BLK, CCL1, GATA3, CXCL13L2, VEGFD, CCL5, CXCL13, STAP1, CXCR5, and CD1), Punjab Brown represented 12 unique genes having (CD180 SYK DYSF CD79B LY96 EFNA2 CCR6 HELLS FLT3 CCL4 CX3CR1 LAT2), while only 8 genes were unique to commercial broiler including (LCK, CCL17, CCR7, BANK1, FES, RELA, AvBD14, and ANXA1).

Gene network analysis

The interaction among the proteins encoded by DE immune-related genes were explored through STRING (Figure 3). For Aseel the unique genes were carried out to explore the protein-protein interaction resulted in PPI enrichment p-value 1.8≥-06. The annotation information of these proteins was provided and KEGG analysis showed 1 pathway of cytokine- cytokine receptor interaction pathway whereas Reactome analysis showed chemokine receptor bind cytokine. Similarly, for the Punjab Brown and commercial broiler the unique genes related to immune responses were studied to explore protein-protein interactions (PPI).

PPI enrichment had a significant association with Punjab Brown (p-value 6.93≥-08). In biological processes, the gene ontology enrichment and annotation information of the proteins revealed macrophage activation implicated in immunological responses, leukocyte Intercellular adhesion, B lymphocyte receptor signaling pathway, and neutrophil chemotaxis. It

Table 2: Gene ontology terms for Differently expressed genes with higher expression in Aseel

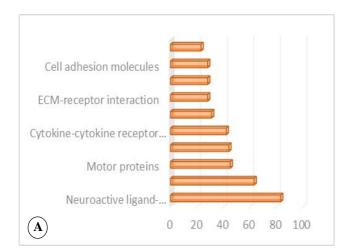
| Category Aseel | Terms                                            | Number of genes | P- Value    |
|----------------|--------------------------------------------------|-----------------|-------------|
| Biological     | Cell differentiation                             | 34              | 0.015703981 |
| Process        | Cell adhesion                                    | 28              | 0.070821657 |
|                | Positive regulation of gene expression           | 23              | 0.001103749 |
|                | Negative regulation of apoptotic process         | 22              | 2.01E-08    |
|                | Extracellular matrix organization                | 16              | 0.001316166 |
|                | Angiogenesis                                     | 16              | 1.48E-08    |
|                | Immune response                                  | 16              | 0.047320148 |
|                | Inflammatory response                            | 15              | 0.032618284 |
|                | Wnt signaling pathway                            | 14              | 0.027869193 |
|                | Neuron differentiation                           | 13              | 0.037343346 |
| Cellular       | Integral component of membrane                   | 205             | 7.56E-04    |
| Component      | Plasma membrane                                  | 151             | 1.82E-07    |
|                | Extracellular space                              | 122             | 7.18E-21    |
|                | Extracellular region                             | 73              | 2.61E-12    |
|                | Integral component of plasma membrane            | 58              | 3.01E-04    |
|                | Cell surface                                     | 30              | 2.08E-05    |
|                | Synapse                                          | 29              | 0.003220001 |
|                | Neuron projection                                | 27              | 6.81E-05    |
|                | Extracellular matrix                             | 25              | 1.67E-06    |
|                | Dendrite                                         | 22              | 0.01416244  |
| Molecular      | Calcium ion binding                              | 63              | 8.41E-05    |
| Functions      | RNA polymerase II transcription factor activity, | 55              | 0.006603603 |
|                | sequence-specific DNA binding                    |                 |             |
|                | Growth factor activity                           | 26              | 1.18E-07    |
|                | Actin filament binding                           | 23              | 0.002943803 |
|                | Cytokine activity                                | 21              | 0.014563451 |
|                | Receptor binding                                 | 17              | 0.039972134 |
|                | RNA polymerase II regulatory region sequence-    | 16              | 1.73E-04    |
|                | specific DNA binding                             |                 |             |
|                | Calmodulin binding                               | 14              | 2.51E-04    |
|                | Heme binding                                     | 12              | 6.70E-04    |
|                | Iron ion binding                                 | 12              | 0.012299711 |

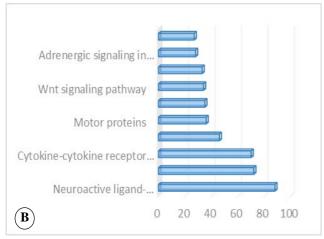
(fold change  $\geq$  2.0 or  $\geq$  -2.0; p-value  $\leq$ 0.05)

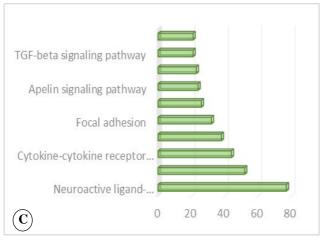
**Table 3:** Gene ontology terms for differently expressed genes with higher expression in Punjab Brown (PB)

| Category PB | Terms                                                                | Number of genes | P Value     |
|-------------|----------------------------------------------------------------------|-----------------|-------------|
| Biological  | Regulation of transcription from RNA polymerase II promoter          | 87              | 0.015703981 |
| Process     | Positive regulation of transcription from RNA polymerase II promoter | 53              | 0.070821657 |
|             | Cell differentiation                                                 | 44              | 0.001103749 |
|             | Cell adhesion                                                        | 41              | 2.01E-08    |
|             | Positive regulation of gene expression                               | 36              | 0.001316166 |
|             | Immune response                                                      | 34              | 1.48E-08    |
|             | Positive regulation of transcription, DNA-templated                  | 28              | 0.047320148 |
|             | Positive regulation of cell proliferation                            | 27              | 0.032618284 |
|             | Negative regulation of apoptotic process                             | 26              | 0.027869193 |
|             | G-protein coupled receptor signaling pathway                         | 24              | 0.037343346 |
| Cellular    | Integral component of membrane                                       | 297             | 5.64E-11    |
| Component   | Plasma membrane                                                      | 204             | 5.47E-04    |
|             | Extracellular space                                                  | 164             | 1.79E-05    |
|             | Extracellular region                                                 | 100             | 0.06876925  |

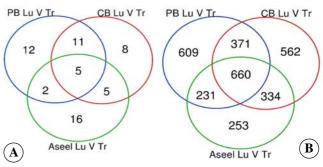
|           | Integral component of plasma membrane                               | 85 | 6.52E-07    |
|-----------|---------------------------------------------------------------------|----|-------------|
|           | Extracellular matrix                                                | 37 | 0.006934009 |
|           | Cell surface                                                        | 37 | 0.033447239 |
|           | Synapse                                                             | 33 | 0.007957547 |
|           | External side of plasma membrane                                    | 32 | 4.21E-06    |
|           | Dendrite                                                            | 28 | 0.011709836 |
| Molecular | RNA polymerase II transcription factor activity, sequence-specific  | 83 | 8.41E-05    |
| Functions | DNA binding                                                         |    |             |
|           | RNA polymerase II core promoter proximal region sequence-specific   | 73 | 0.006603603 |
|           | DNA binding                                                         |    |             |
|           | Calcium ion binding                                                 | 69 | 1.18E-07    |
|           | G-protein coupled receptor activity                                 | 38 | 0.002943803 |
|           | Transcriptional activator activity, RNA polymerase II transcription | 35 | 0.014563451 |
|           | regulatory region sequence-specific binding                         |    |             |
|           | Transcription factor activity, sequence-specific DNA binding        | 28 | 0.039972134 |
|           | actin filament binding                                              | 27 | 1.73E-04    |
|           | Growth factor activity                                              | 27 | 2.51E-04    |
|           | Cytokine activity                                                   | 24 | 6.70E-04    |
|           | Receptor binding                                                    | 21 | 0.012299711 |


(fold change  $\geq 2.0$  or  $\geq -2.0$ ; p-value  $\leq 0.05$ )

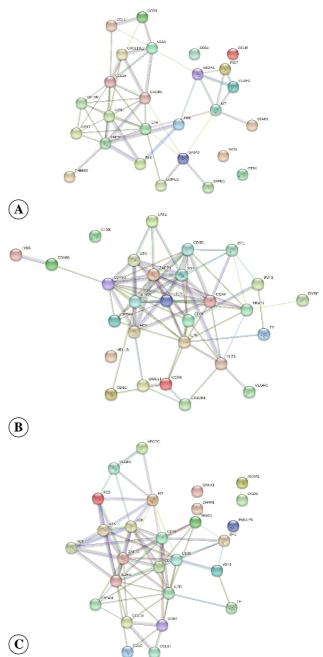

Table 4: Gene ontology terms for differently expressed genes with higher expression in Commercial Broiler (CB) Terms Number of genes


| Category CB | Terms                                                              | Number of genes | P Value     |
|-------------|--------------------------------------------------------------------|-----------------|-------------|
| Biological  | cell differentiation                                               | 41              | 0.004006601 |
| Process     | cell adhesion                                                      | 38              | 3.33E-07    |
|             | positive regulation of gene expression                             | 29              | 0.050046652 |
|             | G-protein coupled receptor signaling pathway                       | 29              | 9.42E-04    |
|             | negative regulation of apoptotic process                           | 28              | 0.006086793 |
|             | positive regulation of transcription, DNA-templated                | 26              | 0.089902286 |
|             | angiogenesis                                                       | 23              | 1.99E-04    |
|             | heart development                                                  | 19              | 0.001587833 |
|             | inflammatory response                                              | 19              | 0.051168634 |
|             | Wnt signaling pathway                                              | 17              | 0.009741761 |
| Cellular    | integral component of membrane                                     | 100             | 8.27E-05    |
| Component   | plasma membrane                                                    | 45              | 4.80E-12    |
|             | extracellular space                                                | 39              | 4.17E-19    |
|             | integral component of plasma membrane                              | 26              | 2.20E-07    |
|             | extracellular region                                               | 18              | 4.55E-07    |
|             | synapse                                                            | 14              | 0.007193313 |
|             | cell surface                                                       | 13              | 2.11E-04    |
|             | extracellular matrix                                               | 12              | 1.37E-07    |
|             | neuron projection                                                  | 125             | 9.47E-04    |
|             | external side of plasma membrane                                   | 25              | 0.012791029 |
| Molecular   | calcium ion binding                                                | 78              | 5.54E-12    |
| Functions   | RNA polymerase II transcription factor activity, sequence-specific |                 |             |
|             | DNA binding                                                        | 71              | 0.008676056 |
|             | actin filament binding                                             | 26              | 2.64E-04    |
|             | sequence-specific DNA binding                                      | 22              | 0.009984102 |
|             | cytokine activity                                                  | 21              | 0.005760943 |
|             | growth factor activity                                             | 20              | 0.037047591 |
|             | receptor binding                                                   | 18              | 0.061982693 |
|             | iron ion binding                                                   | 15              | 0.015386205 |
|             | calmodulin binding                                                 | 14              | 0.026106811 |

(fold change  $\geq 2.0$  or  $\geq -2.0$ ; p-value  $\leq 0.05$ )


demonstrated C-C chemokine binding, C-C chemokine receptor activity, and cytokine receptor function in Molecular function. Pathway analysis revealed only Reactome analysis with chemokine receptors binds chemokines. The PPI enrichment p-value was 0.282, and gene ontology enrichment was detected demonstrating monocyte chemotaxis, cell chemotaxis, and control of leukocyte activation for biological processes in commercial broilers.








**Fig. 1:** Immune response terms associated with differently expressed genes in (A) Aseel, (B) Punjab Brown, and (C) Commercial Broiler chickens



**Fig. 2:** Venn diagram illustrating differentially expressed genes. (A) Representation of differentially expressed genes between the three groups of chicken. (B) Venn diagram of PANTHER screened immune response-related genes.



**Fig. 3:** Gene network analysis of immune response-related genes on (A) Aseel, (B) Punjab Brown and, (C) Commercial Broiler

In this study, we have carried out the transcriptomic profiling based on RNA sequencing of Lung and trachea tissues of Aseel, Punjab Brown breeds, and Commercial Broiler (IBL-80) strain of India. The chicken groups were taken into study under nonvaccinated conditions to explore the immune-related response generated in the chicken. The DEGs were identified using an R programming environment with the  $\log_2$  fold change  $\geq 2.0$  or  $\geq -2.0$  along with the p-value  $\leq$ 0.05. A total of 5,282 DEGs were identified from the three experimental chicken groups, of which 1479 DEGs were from Aseel, 1872 were from Punjab Brown, and 1931 were from Commercial Broiler. Keeping in view that commercial broiler showed the highest number of DEGs and Aseel showed the lowest. Moreover, 549 DEGs were upregulated and 930 were downregulated in Aseel, the 697 DEGs were upregulated while 1175 were downregulated in Punjab Brown, and for Commercial Broiler 714 DEGs were upregulated and 1217 were downregulated. Upon Venn diagram construction we revealed that among the three chicken groups, 660 DEGs were common in the three groups.

Based on the GO annotation data (generated using the DAVID tool) top 10 terms from biological processes, cellular components, and molecular functions were identified that in Aseel. Most of the DEGs participate in cell differentiation, cell adhesion, plasma membrane, calcium ion binding, immune response, cytokine activity, inflammatory responses. Given the conserved nature of innate immune responses across different organisms, additional genes related to innate immunity were identified using the PANTHER tool. 28 DEGs were screened to be related to immune responses. Venn diagram was constructed which highlighted 16 genes out of 28 including (THEMIS, CST7, EOMES, CCR8, CXCL13L3, FRK, BLK, CCL1, GATA3, CXCL13L2, VEGFD, CCL5, CXCL13, STAP1, CXCR5, and CD14). CCR8, CCL1, and CCL5 were up-regulated chemokines. CXCL13L, CXCL13L2 CXCL13, and CXCR5 were upregulated chemokine receptors.

Apart from the chemokines and chemokine receptors, there were other important innate immunity genes that were upregulated including *THEMIS* which is known as an important T-cell protein implicated in the activation of mature T cells and homeostasis (Liu *et al.*, 2022). *CST7* is a leukocystatin that is found to play a role in immune regulation by inhibiting unique targets in the hematopoietic systems (Halfon *et al.*, 1998).

1872 DEGs were found in Punjab Brown, out of which 697 were upregulated while 1175 were down-regulated, GO analysis revealed, most of the DEGs were involved in the regulation of transcription from RNA polymerase II promoter, positive regulation of transcription from RNA polymerase II promoter, cell differentiation, cell adhesion, positive regulation of gene

expression and immune responses, an integral component of membrane, plasma membrane, extracellular space, RNA polymerase II transcription factor activity, RNA polymerase II core promoter proximal region sequencespecific DNA binding, Calcium-ion binding, and Gcoupled receptor binding activity. PANTHER tool was used to screen the immune response which results in 30 genes. Further, 12 genes were found as unique to Punjab Brown including (CD180, SYK, DYSF, CD79B, LY96, EFNA2, CCR6, HELLS, FLT3, CCL4, CX3CR1, and LAT2). CCR6 and CCL4 are chemokines and CX3CR1 is chemokine receptor. In Commercial Broiler, 714 DEGs were elevated, whereas 1217 were downregulated. Commercial Broiler also represented GO enrichment as an integral component of the membrane, plasma membrane, and extracellular space as the former two chicken positive regulation of gene expression, G-protein coupled receptor signaling pathway, and negative regulation of the apoptotic process, a calcium ion binding, RNA polymerase II transcription factor activity, sequences-specific DNA binding, actin filament binding, and cytokine activity. When Commercial Broiler was examined for immunological responses using the PANTHER tool, 8 distinct genes were discovered, including (LCK, CCL17, CCR7, BANK1, FES, RELA, AvBD14, and ANXA1). Only the two chemokine genes CCL17 and CCR7 are presented. BANK1 has been identified as a possible positive regulator of B cell signaling (Georg et al., 2020). There were 5 (IL7R, ZAP70, BST1, CRTAM, and VEGFC) innate-immune genes that were common in three chicken groups.

## CONCLUSION

The comparative analysis of the expression profile between three distinct breeds/lines (viz. Aseel, Punjab brown, and commercial broiler) indicated that there was no distinct variation between the breeds. The gene expression was found to be comparable with each other. Further studies are warranted with larger population size to determine any genetic pattern in the expression of module genes linked to economically significant traits in chickens.

Funding Agency

This work was funded by the project "Identifying tag-SNPs associated with Newcastle disease susceptibility/resistance in divergent lines of chicken", under Rashtriya Krishi Vikas Yojana (RKVY12).

Author Contribution

JS: DEGs identification, pathway analysis, and manuscript writing; PVS: Collection of chicks, RNA extraction; YS: Collection of chicks, RNA extraction; Shakti Dash Kant management inputs and simpling; CSM designed the study and supervised the work. All authors read and approved the manuscript. All authors contributed to the manuscript revision, read, and approved the submitted version.

# ACKNOWLEDGEMENT

The authors are grateful to the Funding agency Rashtriya Krishi Vikas Yojana (RKVY) and Guru Angad Dev Veterinary and Animal Sciences University for providing research facilities and a conducive environment for conducting the study. Sincere thanks to the sequencing agencies (Agrigenome, Kerala).

#### REFERENCES

- Ahlawat, S., Arora, R., Sharma, U., Sharma, A., Girdhar, Y., Sharma, R. and Vijh, R.K. 2021. Comparative gene expression profiling of milk somatic cells of Sahiwal cattle and Murrah buffaloes. *Gene* **764**: 145101.
- Dalal, D.S., Ratwan, P. and Yadav, A.S. 2022. Genetic evaluation of growth, production and reproduction traits in Aseel and Kadaknath chickens in agroclimatic conditions of northern India. *Biological Rhythm Research*, **53**(1): 40-49.
- Georg, I., Díaz-Barreiro, A., Morell, M., Pey, A.L. and Alarcón-Riquelme, M.E. 2020. BANK1 interacts with TRAF6 and MyD88 in innate immune signaling in B cells. *Cellular & Molecular Immunology*, **17**(9): 954-965.
- Halfon, S., Ford, J., Foster, J., Dowling, L., Lucian, L., Sterling, M. and Zurawski, G. 1998. Leukocystatin, a new class II cystatin expressed selectively by hematopoietic cells. *Journal of Biological Chemistry*, 273(26): 16400-16408.
- Haunshi, S. and Prince, L.L.L. (2021). Kadaknath: A popular native chicken breed of India with unique black colour characteristics. World's Poultry Science Journal, 77(2), 427-440
- Huang, D.W., Sherman, B.T. and Lempicki, R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature Protocols*, 4(1): 44-57.
- Islam, M.T., Meher, M.M., Harun, A.B., and Haider, M.G. 2022. The common respiratory diseases of poultry in Bangladesh: present status and future directions. *Veterinary Sciences: Research and Reviews*, **8**(1): 52-64.
- Kanakachari, M., Rahman, H., Chatterjee, R.N., and Bhattacharya, T.K. 2022. Signature of Indian native chicken breeds: a perspective. World's Poultry Science Journal, 78(2): 421-445.
- Liu, Y., Cong, Y., Niu, Y., Yuan, Y., Tan, F., Lai, Q., and Fu, G. 2022. Themis is indispensable for IL-2 and IL-15 signaling in T cells. *Science Signaling*, **15**(721): eabi9983.
- Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. and Wold, B. 2008. Mapping and quantifying mammalian

- transcriptomes by RNA-Seq. *Nature Methods* **5**(7): 621-628
- Niranjan, S.K., Pundir, R.K. and Mishra, B.P. 2022. Breed registration and the gazette notification: A unique national framework for protecting native animal germplasm. *Indian Journal of Plant Genetic Resources*, 35(03), 279-282.
- Padhi, M.K., Chatterjee, R.N. and Rajkumar, U. 2022. Effects of genotype and age on egg quality traits in crossbred chickens developed for backyard poultry farming. *Indian Journal of Poultry Science*, **57**(2):133-138.
- Prabhu, M., Malmarugan, S., Sweetline Anne, N., Parthiban, S., Balakrishnan, G., and Johnson Rajeswar, J. 2021. Detection of *Mycoplasma gallisepticum* infection in Turkey and chicken farms of Tamilnadu, India. *International Journal of Current Microbiology and Applied Sciences*, **10**(01), 3151-3158.
- Raj, G.D., Rajanathan, T.C., Kumanan, K., and Elankumaran, S. 2009. Expression profile of Toll-like receptor mRNA in an indigenous Aseel breed of chicken in India. *International Journal of Poultry Science* 8(7): 651-655.
- Ramasamy, K.T., Reddy, M.R., Raveendranathan, D.N., Murugesan, S., Chatterjee, R.N., Ullengala, R., and Haunshi, S. 2010. Differential expression of Toll-like receptor mRNA in White Leghorn and indigenous chicken of India. *Veterinary Research Communications* **34**(7): 633-639.
- Saini, J., Dhande, P.L., Ranade, A.S., Avari, P.E. and Desai, D. 2022. Growth performance, meat yields and economics of broiler chickens fed diets containing selected feed additives. *Indian Poultry Science Association*, 57 (2), 145-149.
- Sehrawat, R., Sharma, R., Ahlawat, S., Sharma, V., Thakur, M.S., Kaur, M. and Tantia, M.S. 2021. First report on better functional property of black chicken meat from India. *Indian Journal of Animal Research*, 55(6), 727-733.
- Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M. and Von Mering, C. 2016. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. *Nucleic Acids Research*, **45**(D1): D362-D368.
- Wu, P., Zhang, X., Zhang, G., Chen, F., He, M., Zhang, T. and Dai, G. 2020. Transcriptome for the breast muscle of Jinghai Yellow Chicken at early growth stages. *Peer J* 8: e8950.