Effect of Vitamin E and Zinc supplementation on the growth performance, immunity, serum biochemistry and antioxidant profile of broiler chicken under heat stress

MEESAM RAZA¹, CHANDRA DEO² AND RUKKIYA SIDDIQUI^{3*}

¹Department of LPM, DGCN COVAS, CSKHPKV, Palampur, HP, ²ANFT, CARI, Izatnagar, Bareilly, UP, ³*Animal Nutrition Division, ICAR-IVRI, Izatnagar, Bareilly, UP, India

(Received on July 09, 2024; accepted for publication on July 11, 2024)

ABSTRACT

Raza, M., Deo, C. and Siddiqui, R. 2024. Effect of Vitamin E and Zinc supplementation on the growth performance, immunity, serum biochemistry and antioxidant profile of broiler chicken under heat stress. Indian Journal of Poultry Science, 59(3): 247-255.

A six-week feeding trial was carried out to evaluate the effects of dietary vitamin E and zinc on growth performance, immune response, and serum biochemical profile in broiler chickens. A total of 360 mixed-sex day-old chicks were randomly assigned to nine dietary treatments in a 3×3 factorial design, with three levels of vitamin E (50, 100, and 150 IU/kg diet) and three levels of zinc (40, 80, and 120 mg Zn/kg diet). Each treatment had five replicates of eight birds each. Birds were reared under *ad libitum* feeding and watering conditions, and body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were recorded across starter (0–3 weeks) and finisher (4–6 weeks) phases. Results indicated that birds supplemented with 100 IU/kg vitamin E and 80 mg Zn/kg diet exhibited significantly higher BWG and better feed efficiency. FI was higher at 50 IU/kg vitamin E with 40 mg Zn/kg diet, whereas FCR improved with 150 IU/kg vitamin E and 120 mg Zn/kg diet. Significantly (p≤0.05) higher serum total protein was observed at 150 IU/kg vitamin E with 40 mg Zn/kg diet compared to 150 IU/kg vitamin E with 120 mg Zn/kg diet and 50 IU/kg vitamin E with 40 mg Zn/kg diet. Serum triglycerides was significantly higher at 50 IU/kg vitamin E than those recorded at other levels. Immune responses were significantly enhanced at 100 IU/kg vitamin E with 80 mg Zn/kg diet. Spleen weight was significantly affected by dietary treatments, but thymus and bursa weights remained unaffected. The study concluded that supplementation of 100 IU/kg vitamin E with 80 mg Zn/kg diet is optimal for improving growth performance, immune response, and feed efficiency in broiler chickens under heat-stressed conditions.

Keywords: Broiler chickens, Vitamin E, Zinc, Growth performance, Immune response, Feed efficiency

INTRODUCTION

Reducing heat stress in broiler chickens remains a major concern for both researchers and poultry producers. Heat stress often leads to high mortality rates, reduced feed intake, lower body weight gain, and poor feed efficiency, which negatively impact meat-type poultry flocks (Yegani, 2008). Each year, poultry farmers face substantial economic losses due to heat stress, as temperatures exceeding 30°C create stressful conditions for birds and significantly affect production. The optimal temperature range for broiler chickens to achieve maximum body weight is 10-22°C, while the range of 15-27°C is considered ideal for improved feed efficiency (Rama Rao *et al.*, 2011).

Various strategies have been explored to mitigate the harmful effects of high environmental temperatures on broiler performance, with dietary modifications being one of the most effective approaches (Dukare *et al.*, 2021). Among these, supplementing broiler diets with vitamin E and zinc has proven beneficial in enhancing diet stability, strengthening the immune system, and improving overall performance (Bou *et al.*, 2004). Additionally, Bou *et al.* (2005) reported that zinc

supplementation significantly increased selenium levels in chicken. Moreover, studies by Sahin and Kucuk (2003) demonstrated that dietary zinc supplementation led to higher serum concentrations of vitamin C, vitamin E, and zinc in poultry, further supporting its role in improving bird health and productivity.

Adaptive immunity is based on activity of B- and T-lymphocytes which produce antigen specific antibodies or directly attached the pathogens to be expelled from the cell, respectively. Feeding selenium and vitamin E at increased levels than the recommended dose increase the antibody titre against sheep red blood cell antigen (Yamuna and Thangavel, 2011; Nageswara et al., 2003). Dietary Zn is essential for normal immune function (Dardenne and Bach, 1993) and substantial evidences are available which show that adding Zn above the dietary requirement enhances disease resistance in chicken. Zhang et al. (2006) reported that optimum supplemental levels of Zn should range between 80-120 mg/kg diet for broiler chicken to get better immune competence. Kumar (2007) and Kumar et al. (2009) reported that immune response of broiler chicks was better at higher levels of Zn (60 and 80 mg/kg diet) compared to 40 mg Zn/kg diet, irrespective of Zn sources. However, Mohanna and Nys (1999) reported that the antibody titres

^{*}Corresponding author Email: rukkiya1995@gmail.com

in response to sheep red blood cells (SRBC) injection and plasma alkaline phosphatase activity remained unaffected by dietary Zinc. During heat stress, an increased respiratory rate serves as a mechanism for heat dissipation. However, this elevated respiration leads to respiratory alkalosis and a rise in blood pH, which in turn reduces blood calcium levels. As a result, bone mineralization and strength are compromised (Raza *et al.*, 2021). Therefore, this study was undertaken to assess the impact of vitamin E and zinc supplementation on the growth performance, immune response, serum biochemistry, and antioxidant profile of broiler chickens.

MATERIALS AND METHODS

A six-week feeding trial was conducted to evaluate the performance of broiler chickens in terms of growth, immune response, and serum biochemical profile in broiler birds. A total of 360 mixed-sex day-old chicks were obtained from the experimental hatchery of the Central Avian Research Institute, Izatnagar, for this study. The experiment followed a 3×3 factorial design, incorporating nine dietary treatments with three levels of vitamin E (50, 100, and 150 IU/kg diet) and three levels of zinc (40, 80, and 120 mg Zn/kg diet). Each treatment was assigned five replicates of birds with 8 birds in each making a total of 40 birds per treatment. The birds were reared for 6 weeks – starter (0-3 weeks) and finisher (4-6 weeks) phase. There was the provision of ad lib feeding and watering to the birds during the whole experimental period. The ingredients and nutrient composition of broiler starter and finisher ration are presented in Table 1. The experiment was conducted during May to June, 2017. The temperature humidity index (THI) of 85.18 of the shed was obtained from the recorded temperature (minimum 31.54±0.08 and maximum 35.00±0.36) and humidity (minimum 59.25±1.21 and maximum 69.25±0.89) during the whole experimental period. All experimental procedures involving the birds were reviewed and approved by the Animal Ethics Committee of the Indian Veterinary Research Institute, Izatnagar, India.

Weekly body weight and feed intake were recorded, and overall body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were calculated for different periods (0–3 weeks, 4–6 weeks, and 0–6 weeks). The immune response of the birds to varying dietary levels of vitamin E and selenium was assessed through humoral immunity (haemagglutination-HA titer against sheep red blood corpuscles - SRBC) and cell-mediated immunity (CMI) measured by the foot web index response to phytohaemagglutinin (PHA-P, a lectin derived from *Phaseolus vulgaris*) at three weeks of age. For this 90 birds (10 birds per treatment) were selected randomly for each SRBC and CMI test. At the end of the trial immune organs such as thymus, spleen and bursa

Table 1: Ingredients and nutrients composition of basal diets for broiler chicks used during starter (0-3wks) and finisher (4-6wks) of age

(4-0wks) of age				
Ingredients %	Starter	Finisher		
	(0-21 days)	(22-42 days)		
Maize	53.570	61.650		
Soya bean meal	42.000	34.000		
Oil	1.000	1.300		
Lime stone	0.920	1.100		
Di-calcium phosphate	1.730	1.285		
Salt	0.300	0.300		
DL-Methionine	0.165	0.050		
TM-Premix*	0.100	0.100		
Vit-Premix	0.150	0.150		
B complex	0.015	0.015		
Ch. Chloride	0.050	0.050		
Total	100.000	100.000		
Analyzed values %DM				
Crude protein, %	23.22	20.40		
Calcium, %	1.02	0.95		
Total P %	0.72	0.66		
Selenium (mg/kg)	0.15	0.13		
Calculated values				
ME, Kcal/kg	2905	3006		
Available phosphorus%	0.45	0.36		
Lysine, %	1.25	1.06		
Methionine%	0.53	0.38		
Threonine%	0.99	0.87		

Trace mineral premix supplied mg/kg diet: Mg300, Mn 60, I0.4, Fe 80, Cu 8, Zn* 40, Se-variable

 2 Vitamin mixture provided mg/kg diet: Choline chloride 500, Niacin12, Pyridoxine hydrochloride 1.6, vitamin A 82500IU, Vitamin D₃2000IU, Vitamin B₁0.8, Vitamin B₂ 6, Vitamin B₁₂8, Vitamin K 1, Vitamin E*-variable

taken from 90 randomly sacrificed birds (10 birds per treatment) were weighed and presented as % of pre slaughter live weight.

During the time of slaughter, blood samples were collected and serum was separated for the assay of serum biochemistry and antioxidant enzyme assay. The diagnostic kits were used for the estimation of serum cholesterol (Wybenga et al., 1970), triglycerides (Bucolo and David, 1973), glucose (Barham and Trinder, 1972), total protein (Daumas, 1976), alkaline phosphatase (Kind and King, 1954), serum glutamic-pyruvic transaminase (Reitman and Frankel 1957), and serum glutamic-oxaloacetic transaminase (Reitman and Frankel, 1957). The Cayman diagnostic kits were utilized to assess serum antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) (Wheeler et al., 1990). The experimental data were analyzed using

^{*}Values variable in test die

a two-way analysis of variance (ANOVA) following a completely randomized design, employing the GLM procedure in SPSS 20. Significant differences among means were determined using Duncan's multiple range test, with a significance level set at p≤0.05.

RESULTS AND DISCUSSION

Growth performance

Temperatures exceeding 30°C create heat stress conditions for poultry, significantly impacting production parameters. Heat stress is particularly critical in intensive poultry farming, especially in broiler lines, due to their enhanced production performance and feed conversion efficiency, making modern broilers more vulnerable to heat stress than before (Lin et al., 2004). Common negative effects of heat stress in meat-type poultry include increased mortality, reduced feed intake, lower body weight gain, and poor feed efficiency (Yegani, 2008). Vitamin E plays a crucial role in protecting lipid components of biological membranes, acting as a key chain-breaking antioxidant (Halliwell and Gutteridge, 1999). The present study was conducted from May to June under recorded environmental conditions, with temperatures ranging from a minimum of 31.54±0.08°C to a maximum of 35.00±0.36°C, and humidity levels varying between 59.25±1.21% and 69.25±0.895% throughout the experimental period.

During 0-3 week of age, significantly ($p \le 0.01$) higher BWG was recorded at 100 IU/kg vitamin E with 80 and 40 mg Zn/kg diet and 50 IU/kg vitamin E with 120 mg Zn/kg diet than those observed in other dietary combinations (Table 2). During 4-6 weeks of age, significantly higher BWG was recorded at 100 IU/kg vitamin E with 40, 80 and 120 mg Zn/kg diet and 150 IU/kg vitamin E with 40 mg Zn/kg diet than those recorded in other dietary combinations. Throughout the 0-6 weeks period, the highest cumulative body weight gain (BWG) was observed in broilers fed a diet supplemented with 100 IU/kg vitamin E and 80 mg Zn/ kg, surpassing the BWG recorded in other dietary combinations. The cumulative BWG during the 0-3, 4-6, and overall, 0-6 week periods varied significantly depending on the different levels of vitamin E included in the diets. During the 0-3- and 0-6-week periods, broilers fed a diet with 100 IU/kg vitamin E exhibited significantly higher body weight gain (BWG) compared to those receiving other levels of vitamin E supplementation. During 4-6 weeks of age, significantly higher BWG was recorded at 50 and 100 IU/kg vitamin E than that recorded at 150 IU/kg vitamin E in the diets. The cumulative body

Table 2: Effect of different levels of vitamin E and zinc (Zn) on growth performance of broiler chicken

Vitamin E	Zn	Body weight gain (g)			Feed intake (g)			Feed conversion ratio		
(IU/kg)	(mg/kg)	0-3 week	4-6 week	0-6 week	0-3 week	4-6 week	0-6 week	0-3 week	4-6 week	0-6 week
50	40	692ª	1253bc	1945 ^{bc}	733	2690 ^d	3423	1.06°	2.15°	1.76°
	80	718^{bc}	1260^{bc}	1978^{cd}	717	2610°	3327	$1.00^{ m abc}$	2.07^{ab}	1.68 ^{abc}
	120	747^{d}	1258bc	$2005^{\rm de}$	695	2531 ^b	3226	0.93^{a}	2.01^{ab}	1.61 ^a
100	40	745^{d}	1269°	2014^{de}	713	2591°	3304	0.96^{ab}	2.04^{ab}	1.64 ^{ab}
	80	749^{d}	1284°	2033e	727	2538 ^b	3265	0.97^{ab}	1.98^{a}	1.61 ^a
	120	736^{cd}	1269°	$2005^{\rm de}$	750	2453^a	3203	1.02^{abc}	1.93^{a}	1.60^{a}
150	40	704^{ab}	1265°	1969 ^{bcd}	718	2438a	3156	1.02^{bc}	1.93^{a}	1.60^{a}
	80	713 ^b	1214^{ab}	1927^{ab}	712	2480^{ab}	3192	$1.00^{ m abc}$	2.04^{ab}	1.66a
	120	701^{ab}	1192^a	1893 ^a	629	2483^{ab}	3112	0.90^{a}	2.08^{b}	1.64 ^{bc}
Pooled SEM	3.9	3.39	7.61	7.94	24.67	26.31	0.018	0.026	0.019	
Main effect										
Vitamin E										
50	719 ⁿ	1257 ⁿ	1976 ⁿ	715^{mn}	2604 ⁿ	3319 ⁿ	0.99	2.07	1.68	
100	743°	1274 ⁿ	2017°	730^{n}	2527^{mn}	3257^{mn}	0.98	1.98	1.61	
150	$706^{\rm m}$	1223^{m}	1929^{m}	$686^{\rm m}$	2467^{m}	$3153^{\rm m}$	0.97	2.02	1.63	
Zinc										
40	714 ^x	1262	1976	721	2573	3294	1.01^{y}	2.04	1.67	
80	727 ^y	1252	1979	719	2482	3201	0.99^{xy}	1.98	1.62	
120	728 ^y	1240	1968	691	2543	3234	0.95^{x}	2.05	1.64	
Probability										
Vitamin E	P<0.01	P<0.01	P<0.01	P<0.05	P<0.05	P<0.05	NS	NS	NS	
Zinc	P<0.05	NS	NS	NS	NS	NS	P<0.05	NS	NS	
Interaction	P<0.01	P<0.01	P<0.01	NS	P<0.01	NS	P<0.05	P<0.01	P<0.01	

Value bearing different superscripts within a column differ significantly, NS-Non-significant

weight gain (BWG) during the 4-6- and 0-6-week periods remained unaffected by varying zinc levels in the diet. However, during the 0-3-week period, birds fed diets containing 80 and 120 mg Zn/kg exhibited significantly higher BWG compared to those receiving 40 mg Zn/kg.

The cumulative feed intake (FI) during the 4-6week period varied significantly due to the interaction between different dietary levels of vitamin E and zinc. Significantly higher cumulative FI was observed at 50 IU/kg vitamin E with 40 mg Zn/kg diet than those recorded in other dietary combinations. Cumulative FI during 0-3 and 0-6 wk of age, however, did not differ significantly due to interaction between varied levels of vitamin E and zinc in the diets. Significantly higher cumulative FI was observed at 100 IU/kg vitamin E than that recorded at 150 IU/kg vitamin E during 0-3 weeks of age. However, cumulative FI recorded at 50 IU/kg vitamin E was found intermediary. The cumulative FI during 4-6 and 0-6 wk of age was significantly higher at 50 IU /kg vitamin E than that recorded at 150 IU/kg vitamin E. However, cumulative FI recorded at 100 IU/ kg vitamin E was found intermediary. Non-significant differences in cumulative feed intake (FI) were observed across different zinc levels in the diets.

During 0-3 weeks of age, significantly lower and better FCR was recorded at 150 IU/kg vitamin E with 120 mg Zn/kg diet followed by 50 IU/kg vitamin E with 120 mg Zn/kg diet than those recorded in other dietary combinations. The cumulative FCR recorded at 100 IU/ kg vitamin E with 40, 80 and 120 mg Zn/kg diet, 150 IU/ kg vitamin E with 80 mg Zn/kg diet and 50 IU/kg vitamin E with 80 mg Zn/kg diet was found comparable to that fed diet having 150 IU/kg vitamin E with 120 mg Zn/kg diet and 50 IU/kg vitamin E with 120 mg Zn/kg diet. During 4-6 wk of age, significantly lower and better FCR was recorded at 150 IU/kg vitamin E with 40 mg Zn/kg diet, 100 IU/kg vitamin E with 80 and 120 mg Zn/kg diet than those recorded in other dietary combinations. However, cumulative FCR recorded at 50 IU/kg vitamin E with 80 and 120 mg Zn/kg diet, 100 IU/kg vitamin E with 40 mg Zn/kg diet and 150 IU/kg vitamin E with 80 mg Zn/kg diet was found comparable to that fed diet having 150 IU/kg vitamin E with 40 mg Zn/kg diet, 100 IU/kg vitamin E with 80 and 120 mg Zn/kg diet. The cumulative FCR during 0-6 wk of age was recorded significantly lower and better at 150 IU/kg vitamin E with either 40 and 80 mg Zn/kg diet, 100 IU/kg vitamin E with either 80 and 120 mg Zn/kg diet, and 50 IU/kg vitamin E with 120 mg Zn/kg diet than those recorded in other dietary combinations. However, cumulative FCR recorded at 50 IU/kg vitamin E with 80 Zn/kg diet and 100 IU/kg vitamin E with 40 mg Zn/kg diet was found comparable to that fed diet containing 150 IU/kg vitamin E with 40 and 80 mg Zn/kg diet, 100 IU/kg vitamin E with 80 and 120 mg Zn/kg diet and 50 IU/kg vitamin E with 120 mg Zn/kg diet. The cumulative feed conversion ratio (FCR) of broiler chickens showed no significant differences across varying levels of vitamin E in the diets. Likewise, during the 4-6 and 0-6-week periods, cumulative FCR remained unaffected by different zinc levels. However, during the 0-3 weeks period, a significantly lower and improved cumulative FCR was observed at 120 mg Zn/kg diet compared to 40 mg Zn/kg diet, while the FCR recorded at 80 mg Zn/kg diet was intermediate.

Based on the findings of this study, it is recommended that broiler diets be supplemented with at least 100 IU/kg vitamin E along with 80 mg Zn/kg to achieve optimal body weight gain. These results align with previous research by Khattak et al. (2012), who reported improved performance in heat-stressed broilers when supplemented with 300 mg/kg vitamin E compared to a control group receiving 35 mg/kg. Similarly, Lin et al. (2004) found that pullets fed 160 mg/kg vitamin E exhibited significantly higher (p≤0.01) body weight gain between 26 and 35 weeks of age than those receiving 0 or 40 mg/kg. However, findings by Niu et al. (2009) contrast with the present study. Their research on birds raised in either a thermoneutral environment (constant 23.9°C) or under heat stress (cycling between 23.9-38°C) showed that dietary supplementation with 0, 100, or 200 mg/kg vitamin E did not significantly affect body weight or feed intake, although feed conversion improved at 100 mg/kg. Regarding zinc supplementation, the present findings are supported by Burrell et al. (2004), who observed that optimal body weight gain in broilers was achieved at 80 mg Zn/kg, exceeding the NRC recommendation of 40 mg/kg. The BIS (2007) also suggested 80 mg Zn/kg for optimal growth performance. Furthermore, Zhang et al. (2006) recommended a zinc supplementation range of 80-120 mg/kg for improved performance and immune function in broilers. Conversely, Bartlett and Smith (2003) found that dietary zinc levels (32, 40, and 100 mg/kg) did not significantly impact the performance of broilers raised under cyclic heat stress (23.9-35°C). Similarly, Akbari et al. (2016) conducted an experiment evaluating three dietary zinc levels (0, 60, and 120 mg/kg) in combination with three vitamin E levels (0, 150, and 300 mg/kg). Their results indicated no significant effects on average daily feed intake, average daily gain, feed conversion ratio, mortality rate, or the European production efficiency factor.

Regarding feed intake, present results are in accordance with Raza *et al.* (1997) who found that supplementing vitamin E @ 300 IU/kg diet increased the feed intake of broiler chicken as compared to control. Bou *et al.* (2004, 2005) reported that growth performance of broiler chicken was not affected by variable dietary zinc levels. Lagana *et al.* (2007) reported no differences in feed intake of broiler chicks fed control diet

supplemented with 60/30 IU vitamin E and 80 mg/kg inorganic zinc. Similarly, Daniel et al. (2017) observed that the levels of selenium and vitamin E did not affect feed intake of broiler chicken. However, the supplementation of 100 IU/kg vitamin E and 80 mg/kg Zn was found optimum for better efficiency of feed utilization. The improvement in FCR of broiler chicken in the present results has been related to increased body weight gain which might be due to positive effects of Vitamin E supplementation. Vitamin E functions as a biological antioxidant that can enhance broiler performance by neutralizing free radicals and minimizing lipid peroxidation in both plasma and skeletal muscle (Gao et al., 2010; Selim et al., 2013b). Niu et al. (2009) reported that dietary vitamin E supplementation did not have a significant impact on body weight or feed intake in broilers, although feed conversion showed significant improvement at a supplementation level of 100 mg/kg. Conversely, Akbari et al. (2016) found that supplementing broiler diets with vitamin E and zinc had no notable effect on the feed conversion ratio.

Immune response and immune organs

Results pertaining to immune response and immune

organ weights in response to dietary vitamin E and Zn supplementation are presented in Table 3. The interaction effect revealed significantly (P≤0.05) higher cellular immune response at 150 IU/kg vitamin E with 40 mg Zn/kg diet than those observed in other dietary combinations. However, cellular immune response recorded at 100 IU/kg vitamin E with 80 mg Zn/kg diet and 50 IU /kg vitamin E with 120 mg Zn/kg diet was found intermediary. Non-significant differences were observed on cellular immune response of broiler chicks due to different levels of vitamin E as well as different supplementary levels of zinc in the diets. On similar lines, significantly higher (P≤0.01) humoral immune response was observed at 100 IU/kg vitamin E with 80 mg Zn/kg diet than those recorded in other dietary combinations. However, humoral immune response recorded in birds at 50 IU/kg vitamin E with 120 mg Zn/kg diet, 100 IU/kg vitamin E with 40 mg Zn/kg diet and 150 IU/kg vitamin E with 120 mg Zn/kg diet was found comparable to those fed diet containing 100 IU/kg vitamin E with 80 mg Zn/ kg diet. A significantly (P≤0.05) higher humoral immune response was observed at a dietary level of 100 IU/kg vitamin E compared to other levels. Additionally, a

Table 3: Effect of different levels of vitamin E and zinc (Zn) on immune response and immune organs weight of broiler chicken

Vitamin E	Zinc	Immun	ity status	Immune Organ weight (%)			
(IU/kg)	(mg/kg)	CMI (mm)	HA titre (log ₂)	Thymus	Spleen	Bursa	
50	40	0.41 ^a	1.95 ^a	0.29	0.16^{ab}	0.10	
	80	0.58^{a}	2.47^{bc}	0.34	0.24^{c}	0.09	
	120	0.66^{ab}	2.58^{cd}	0.32	0.21^{bc}	0.10	
100	40	0.57^{a}	2.62^{cd}	0.30	0.23°	0.10	
	80	0.78^{ab}	2.84^{d}	0.35	0.17^{ab}	0.10	
	120	0.52^{a}	2.23^{ab}	0.33	0.15^{a}	0.10	
150	40	$0.97^{\rm b}$	2.25 ^{ab}	0.34	0.20^{bc}	0.11	
	80	0.53^{a}	2.21 ^{ab}	0.35	0.17^{ab}	0.08	
	120	0.53^{a}	2.66^{cd}	0.31	0.16^{ab}	0.07	
Pooled SEM	0.043	0.042	0.006	0.006	0.003		
Main Effect							
Vitamin E (IU/kg)							
50	0.55	2.34^{m}	0.31	0.20	0.10		
100	0.63	2.56 ⁿ	0.33	0.18	0.10		
150	0.68	2.37^{m}	0.34	0.18	0.09		
Zinc (mg/kg)							
40	0.65	2.27^{m}	0.31	0.20	0.10^{y}		
80	0.63	2.51 ⁿ	0.34	0.19	0.09^{x}		
120	0.57	2.49 ⁿ	0.32	0.18	0.09^{x}		
Probability							
Vitamin E	NS	P<0.05	NS	NS	NS		
Zinc	NS	P<0.05	NS	NS	P<0.05		
Interaction	P<0.05	P<0.01	NS	P<0.05	NS		

Value bearing different superscripts within a column differ significantly, NS-Non-significant

Table 4: Effect of different levels of vitamin E and zinc (Zn) on serum biochemistry and antioxidant enzymes of broiler chicken

Vitamin E	Zinc	Glucose	TP	TG	TC	SGOT	SGPT	ALP	SOD	GSH-Px
(IU/kg)	(mg/kg)	(mg/dl)	(g/dl)	(mg/dl)	(mg/dl)	(IU/L)	(IU/L)	(IU/L)	(IU/ml)	(nmol/min/ml)
50	40	190.17	4.01a	131.67	146.67	123.25°	32.48	216.11	104.67	6.83
	80	187.83	4.51bc	122.17	146.83	122.78 ^c	28.62	217.13	114.67	9.58
	120	188.50	4.57^{bc}	115.17	122.50	125.45 ^c	27.62	211.02	126.33	11.30
100	40	217.67	4.64bc	102.33	118.33	97.39 ^{ab}	26.84	230.72	108.00	7.77
	80	218.17	4.78^{bc}	101.50	121.00	80.00^{a}	25.67	231.17	116.00	12.35
	120	203.17	4.54^{bc}	103.50	120.83	92.87^{ab}	30.60	225.17	130.67	12.62
150	40	207.67	4.82^{c}	101.17	125.00	89.97^{a}	29.43	225.85	108.00	8.07
	80	204.83	4.55bc	111.00	128.50	115.83 ^{bc}	29.41	219.17	124.67	12.40
	120	197.83	4.39 ^b	114.17	122.50	112.93bc	25.95	224.60	130.67	11.87
Pooled SEN	1	2.37	0.045	2.73	3.44	2.95	0.69	3.67	5.15	0.47
Main Effect	į.									
Vitamin E(II	U/kg)									
50		188.83	4.38^{m}	$123.00^{\rm n}$	138.67	123.83°	29.57	214.75	113.22^{m}	9.24 ^m
100		213.00	4.65^{n}	102.44^{m}	120.06	90.09^{m}	27.70	229.02	120.22^{n}	10.91 ⁿ
150		203.44	4.59^{n}	108.78^{m}	125.33	106.24 ⁿ	28.26	223.21	121.11 ⁿ	10.78 ⁿ
Zinc (mg/kg)										
40		205.17	4.49	111.72	130.00	103.54	29.58	224.23	106.89 ^x	7.56^{x}
80		203.61	4.63	111.56	132.11	106.20	27.90	222.49	118.45 ^y	11.44 ^y
120		196.50	4.50	110.94	121.94	110.42	28.06	220.26	129.22 ^z	11.93 ^y
Probability										
Vitamin E		P<0.01	P<0.05	P<0.01	NS	P<0.01	NS	NS	(P<0.05)	(P<0.05)
Zinc		NS	NS	NS	NS	NS	NS	NS	(P<0.01)	(P<0.01)
Interaction		NS	P<0.01	NS	NS	P<0.05	NS	NS	NS	NS

Value bearing different superscripts within a column differ significantly, TP: Total protein; TG: Triglycerides; TC: Total cholesterol; Serum glutamic oxaloacetic transaminase; SGPT: Serum glutamic pyruvic transaminase; ALP: Alkaline phosphatase; SOD; Superoxide dismutase; GPx: Glutathione peroxidase; NS-Non-significant

significantly (P≤0.05) higher humoral immune response was recorded at 80 and 120 mg Zn/kg diet compared to 40 mg Zn/kg diet.

The immune organ weights such as thymus and bursa did not differ significantly due to the interaction between vitamin E and zinc levels in the diets. However, significantly higher (P≤0.05) weight of spleen was recorded at 50 IU/kg vitamin E with 80 mg Zn/kg diet and 100 IU/kg vitamin E with 40 mg Zn/kg diet than those observed in other dietary combinations. However, weight of spleen recorded in birds at 50 IU vitamin with 120 mg Zn/kg diet and 150 IU /kg vitamin E with 40 mg Zn/kg diet was found comparable to those fed diet having $50\,IU/kg$ vitamin E with $80\,mg$ Zn/kg diet and $100\,IU/kg$ vitamin with 40 mg Zn/kg diet. The different levels of vitamin E had no significant effect on any of the recorded immune organ weights. Similarly, thymus and spleen weights remained unaffected by varying levels of dietary zinc. However, bursa weights were significantly higher at 40 mg Zn/kg diet compared to other zinc levels.

It is evident for the results that supplementation of 100IU/kg vitamin with 80mg/kg zinc was found optimum for better immunity in term of cellular and humoral immune response. Present results get strengthen by the work reported by Singh et al. (2006) who also found better immunity at supplementary vitamin E levels of 100 and 200 IU/kg diet in broiler chicken. Yamuna and Thangavel (2011) observed that feeding of selenium and vitamin E at higher levels than the recommended dose increased the antibody titre against sheep red blood cell antigen (SRBC). Nageswara et al. (2003) also observed an increased antibody titre against SRBC on selenium and vitamin E supplementation at levels higher than the recommended dose. Consistent with the findings of the present study, Zhang et al. (2006) reported that the optimal supplemental zinc levels for broiler chickens should range between 80-120 mg/kg diet to enhance immune competence. Kumar et al. (2009) reported improved immune response of broiler chicken at higher levels of Zn (60 and 80 mg/kg diet) compared to 40 mg

/kg diet, irrespective of Zn sources. In the present study relative organs weight were not affected by different levels of vitamin E in the diets which was corroborated by the results obtained by Swain and Johri (2000) who suggested that the relative weights of spleen, thymus, and liver were not affected by supplemental vitamin E (0 to 300 IU/kg). Similarly, Konjufca et al. (2004) also concluded that vitamin E supplementation (110 and 220 IU/kg diet) did not increase relative organ weight of thymus and bursa. However, Basmacýoglu et al. (2009) reported significantly increased relative spleen weight in broiler chicken supplemented with 200 IU/kg vitamin E. Consistent with the findings of the present study, Kulkarni et al. (2017) reported that supplementing the diet with ZnO at 60 or 120 mg/kg had no significant effect on the relative thymus weight in broiler chickens at 42 days of age. In contrary, Bartlett and Smith (2003) and Sunder et al. (2008) observed that weight of immune organs, cellular, and humoral immune response were increased significantly by supplementing zinc up to 40 ppm. Further they reported that increase in dietary zinc up to 80 ppm had no disadvantage on immunity.

Serum biochemistry and antioxidant profile

Results of serum biochemistry and antioxidant profile of broiler chicken under the influence of dietary vitamin E and Zn supplementation are given in Table 4. Among the serum biochemical and antioxidant parameters only total protein and SGOT levels differed significantly due to interaction between different levels of vitamin E and Zn in the diets. Significantly (p≤0.05) higher serum total protein was observed at 150 IU/kg vitamin E with 40 mg Zn/kg diet compared to 150 IU/kg vitamin E with 120 mg Zn/kg diet and 50 IU/kg vitamin E with 40 mg Zn/kg diet. All the dietary combinations resulted in intermediate total protein values which were statistically similar to birds fed 150 IU/kg vitamin E with 40 mg Zn/ kg diet. Significantly lower serum SGOT was observed at $100 \; IU/kg$ vitamin E with $80 \; mg \; Zn/kg$ diet and 150IU/kg vitamin E with 40 mg Zn/kg diet compared to birds fed diet containing 50 IU/kg vitamin E with 40,80, and 120 mg Zn/kg diet. The other dietary combinations yielded intermediate results. The other serum biochemistry and antioxidant parameters were not influenced by the interaction between vitamin E and Zn supplementation.

Significantly higher serum total protein was observed at 100 and 150 IU/kg vitamin E than that recorded at 50 IU/kg vitamin E in the diets. Serum triglycerides was significantly higher at 50 IU/kg vitamin E than those recorded at other two levels. The serum SGOT level of birds was found to be significantly lower at 100 IU/kg vitamin E followed by 150 IU/kg vitamin E compared to 50 IU/kg level. Significantly lower SOD and GSH-Px levels were observed in birds fed with diets containing 50 IU/kg vitamin E compared to other two

levels which did not differ significantly from each other. Likewise, serum SOD levels showed a linear increase with the dietary zinc concentration ranging from 40 to 120 mg Zn/kg diet. However, serum GSH-Px levels were significantly lower at 40 mg Zn/kg diet compared to the other two levels, which did not exhibit any significant difference from each other.

In concurrence with the findings of present study, Sahin et al. (2002) and Speranda et al. (2008) reported that dietary vitamin E levels had no significant effects on the glucose level in quail serum. Mobaraki et al. (2013) reported that total protein concentration increased significantly in quail fed diet containing 80 and 160 mg/ kg vitamin E and 0.20 and 0.40 mg/kg Se compared to control groups. However, significantly higher plasma total protein level was also reported with dietary Zn supplementation in broiler chicken (Feng et al., 2010). The addition of vitamin E to diets of broiler chicken had no significant effect on serum triglyceride levels (Speranda et al., 2008; Zaghari and Mohiti Asli, 2010; El-Mallah et al., 2011). Contrary to the findings of the present study, Herzig et al. (2009) observed a significant reduction in plasma cholesterol levels in broiler chickens fed high levels of dietary zinc. Zinc has been reported to exhibit anti-atherogenic properties in hypercholesterolemic rabbits (Rashtchizadeh et al., 2008). Additionally, Bolkent et al. (2006) demonstrated the protective role of zinc supplementation on lipid metabolism indices in laboratory rats. Zinc deficiency has been associated with increased plasma lipid levels in LDL recipient mice. Aksu and Ozsoy (2010) also noted a decrease in total and LDL cholesterol, along with an increase in HDL cholesterol, in the blood plasma of chickens when their diets were supplemented with organic complexes of zinc, copper, and manganese. However, in agreement with the present study, Kucuk et al. (2008) reported no significant alterations in total cholesterol, triglycerides, and glucose levels as a result of zinc supplementation. Furthermore, no changes were observed in turkey plasma ALP levels due to vitamin E supplementation (Franchini et al., 1990).

The findings on the antioxidant profile in this study align with previous research, which established the role of Cu/Zn-SOD in safeguarding cells by minimizing lipid peroxidation and superoxide anion production (Fawzy *et al.*, 2016). Similarly, Ozkan *et al.* (2007) reported that supplementation of inorganic Selenium with vitamin E significantly increased glutathione peroxidase and total glutathione concentration in the liver of broiler chicken. Supplemented diets with antioxidants alleviated these negative impacts of the heat stress by a significant improvement in GPx activity in all the supplemented dietary groups (Samar Sayed Tawfeek *et al.*, 2014). Contrary to present finding, Tawfeek *et al.* (2010) found no significant changes in liver SOD in Zn supplemented chicks.

CONCLUSIONS

The present study concludes that broiler chicken raised under heat stress perform better in terms of growth, immunity, and serum biochemical profile on dietary supplementation of 100 IU vitamin E/kg diet along with 80 mg Zn /kg diet.

REFERENCES

- Akbari M. Kakhki, Bakhshalinejad, R., Hassanabadi, A. and Ferket, P. 2017. Effects of dietary organic zinc and á-tocopheryl acetate supplements on growth performance, meat quality, tissues minerals, and á-tocopherol deposition in broiler chickens. *Poultry Science*, 96(5): 1257-1267.
- Aksu, T. and Ozsoy, B. 2010. The effects of lower supplementation levels of organically complexed minerals (zinc, copper and manganese) versus inorganic forms on hematological and biochemical parameters in broilers. *Kafkas Üniversitesi Veteriner Fakültesi Dergisi*, **16**(4).
- Barham, D. and Trinder, P. 1972. An improved colour reagent for the determination of blood glucose by the oxidase system. *Analyst*, **97**(1151): 142-145.
- Bartlett, J.R. and Smith, M.O. 2003. Effects of different levels of zinc on the performance and Immunocompetence of broilers under heat stress. *Poultry Science*, **82**(10):1580-1588.
- Basmacýoðlu Malayoðlu, H., Özkan, S., Koçtürk, S., Oktay, G. and Ergül, M. 2009. Dietary vitamin E (á-tocopheryl acetate) and organic selenium supplementation: performance and antioxidant status of broilers fed n-3 PUFA-enriched feeds. South African Journal of Animal Science, 39: 274–285.
- BIS 2007. Nutrient Requirements for Poultry. 7176-26:2007, Bureau of Indian Standards, New Delhi
- Bolkent, S., Yanardag, R., Mutlu, O., Yildirim, S., Kangawa, K., Minegishi, Y. and Suzuki, H. 2006. The effect of zinc supplementation on ghrelin-immunoreactive cells and lipid parameters in gastrointestinal tissue of streptozotocin induced female diabetic rats. *Molecular and Cellular Biochemistry*, 286: 77-85.
- Bou, R., Guardiola, F., Tres, A., Barroeta, A.C. and Codony, R. 2004. Effect of dietary fish oil, á-tocopheryl acetate, and zinc supplementation on the composition and consumer acceptability of chicken meat. *Poultry Science*, 83: 282– 292.
- Bou, R., Guardiola, F., Barroeta, A.C. and Codony, R. 2005. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat. *Poultry Science*, **84**(7): 1129-1140.
- Bucolo, G. and David, H. 1973. Quantitative determination of serum triglycerides by the use of enzymes. *Clinical Chemistry*, **19**(5): 476-482.
- Burrell, A.L., Dozier, W.A., Davis, A.J., Compton, M.M., Freeman, M.E., Vendrell P.F. and Ward, T.L. 2004. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. *British Poultry Science*, 45: 255-263
- Daniel M.N. Albuquerque, João B. Lopes, Maíra S. Ferraz, Mabell N. Ribeiro, Sandra R.G. Silva, Elvânia M.S. Costa, Daniela C.P. Lima, Jefferson D.M. Ferreira, Pedro E.B. Gomes4 and Jackelline C.O. Lopes. 2017. Vitamin E and organic selenium for broilers from 22 to 42 days old: performance and carcass trait. *Anais da Academia Brasileira de Ciências*, **89**(2): 1259-1268

- Dardenne, M., and Bach, J.M. 1993. Rationale for the mechanism of zinc interaction in the immune system, in: Cunningham-Rundles, S. (Ed) Nutrient modulation of Immune Response, pp. 501-509.
- Daumas, R.A. 1976. Variations of particulate proteins and dissolved amino acids in coastal seawater. *Marine Chemistry*, **4**(3): 225-242.
- Dukare S, Mandal A B, Mir NA, Dev K, Tyagi PK, Biswas A, Rokade JJ, Tyagi PK. 2021. Effect of different levels and sources of dietary copper on the growth and immunity of broiler chicken. *Letters in Animal Biology*, **1**(2): 26 32.
- El-Mallah, G.M., S.A. Yassein. M. Magda, A. Abdel-Fattah and A. El-Ghamry. 2011. Improving performance andsome metabolic response by using some antioxidants in laying diets during summer season. *Journal of Animal Science*, 7(4): 217-224.
- Fawzy, M.M., El-Sadawi, H.A., El-Dien, M.H. and Mohamed, W.A.M. 2016. Hematological and biochemical performance of poultry following zinc oxide and sodium selenite supplementation as food additives. *Annals of Clinical Pathology*, 4(4): 1076.
- Feng, J.W.Q.M., Ma, W.Q., Niu, H.H., Wu, X.M., Wang, Y. and Feng, J. 2010. Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. *Biological Trace Element Research*, **133**: 203-211.
- Franchini, A., Meluzzi, A., Bertuzzi, S. and Giordani, G. 1990. High doses of vitamin E in the broilers diets. *Archiv fuer Gefluegelkunde (Germany, FR)*, **52**(1).
- Gao, J., H. Lin, X.J. Wang, Song, Z.G. and Jiao, H.C. 2010. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. *Poultry Science*, **89**: 318–327.
- Halliwell, B. and Gutteridge, J.M.C. 1999. Free radicals in biology and medicine. 2nded. Oxford University Press, New York, 105-245
- Herzig, I., Navratilova, M., Totusek, J., Suchy, P., Vecerek, V., Blahova, J. and Zraly, Z. 2009. The effect of humic acid on zinc accumulation in chicken broiler tissues. *Czech Journal of Animal Science*, **54**(3):121-127.
- Khattak, F.M., Acamovic, T., Sparks, N., Pasha, T.N., Joiya, M.H., Hayat, Z. and Ali, Z. 2012. Comparative efficacy of different supplements used to reduce heat stress in broilers. *Pakistan Journal of Zoology*, 44(1): 31-41.
- Kind, P.R.N. and King, E.J. 1954. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. *Journal of Clinical Pathology*, 7: 322.
- Konjufca, V.K., Bottje, W.G., Bersi, T.K. and Erf, G.F. 2004. Influence of dietary vitamin E on phagocytic functions of macrophages in broilers. *Poultry Science*, 83: 1530-1534.
- Kucuk, O., Kahraman, A., Kurt, I., Yildiz, N. and Onmaz, A.C. 2008. A combination of zinc and pyridoxine supplementation to the diet of laying hens improves performance and egg quality. *Biological Trace Element Research*, 126(1-3): 165-175.
- Kulkarni, R.C., Mandal, A.B., Bhanja, S.K., Goel, A. and Mehra, M. 2017. Dietary zinc supplementation on immune response of coloured broilers during hot-humid summer. *Journal of Poultry Science and Technology*, 5: 18-21.
- Kumar, Y. 2007. Response of broiler chickens to dietary supplemental Zn levels and sources. M.V.Sc. (Poultry Science) Thesis, IVRI Deemed University, Izatnagar, 243122 (U.P.).
- Kumar, Y., Deo, C., Shrivastava, H.P., Madal, A.B. and Mishra,

- S.K. 2009. Response of feeding different sources and concentrations of zinc on growth, immune response and carcass yield of broiler chicks. Proceedings of Animal Nutrition Association World Conference, 14-17 Feb 2009, New Delhi, India.
- Laganá, C., Ribeiro, A.M.L., Kessler, A.D.M., Kratz, L.R. and Pinheiro, C.C. 2007. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. *Brazilian Journal of Poultry Science*, 9: 39-43.
- Lin, Y. F., S. J. Chang and A. L. Hsu. 2004. Effects of supplemental vitamin E during the laying period on the reproductive performance of Taiwan native chickens. *British Poultry Science*, 45: 807-814.
- Mobaraki, M.A., Shahryar, H.A. and Dizaji, A.A. 2013. The effects of vitamin E-Se supplemented on some of serum biochemical parameters in the laying Japanese quail. *Bulletin of Environment, Pharmacology and Life Sciences*, 2(10): 29-32.
- Mohanna, C and Nys, Y. 1999. Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. *British Poultry Science*, **40**: 108-114.
- Nageswara, A.R., V. Ramasubba, Reddy and M. Ramakota Reddy. 2003. Effect of E- care -se - herbal on the performance on immune response in broilers. *Indian Journal of Poultry Science*, 38: 115 - 120.
- Niu, Z.Y., Liu, F.Z., Yan, Q.L and Li, W.C. 2009. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. *Poultry Science*, 88(10): 2101- 2107.
- Özkan, S., Basmacýoðlu-Malayoðlu, H., Yalçýn, S., Karadaþ, F., Koçtürk, S., Çabuk, M., Oktay, G., Özdemir, S., Özdemir, E. and Ergül, M. 2007. Dietary vitamin E (á-tocopherol acetate) and selenium supplementation from different sources: performance, ascites-related parameters and antioxidant status in broilers reared at low and optimum temperatures. *British Poultry Science*, **48**: 580-593.
- Rama Rao, S.V., Raju, M.V.L.N., Panda, A.K., Poonam, N.S. and Shyam Sunder, G. 2011. Effect of dietary á -tocopherol concentration on performance and some immune responses in broiler chickens fed on diets containing oils from different sources. *British Poultry Science*, **52**: 97–105.
- Rashtchizadeh, N., Ettehad, S., DiSilvestro, R.A. and Mahdavi, R. 2008. Antiatherogenic effects of zinc are associated with copper in iron-overloaded hypercholesterolemic rabbits. *Nutrition research*, **28**(2): 98-105.
- Raza, M., Deo, C., Mandal, A.B. and Siddiqui, R. 2021. Influence of dietary supplementation of selenium and vitamin E on bone morphometry and mineralization in broiler chicken under heat stress. *Letters in Animal Biology*, **1**(2): 21-25.
- Raza, F.K., Khan, S.A., Raza, A., Saeed, M.A. and Bashir, M.N. 1997. Effect of vitamin E deficiency and excess on immune system of broilers. *International Journal of Animal Science*, **12**: 39-41.
- Reitman, S. and Frankel, S. 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. *American Journal of Clinical Pathology*, **28**(1): 56-63
- Sahin, K., Kucuk, O., Sahin, N. and Sari, M. 2002. Effects of vitamin C and vitamin E on lipid peroxidation status, serum hormone, metabolite, and mineral concentrations of Japanese quails reared under heat stress (34° C). *International Journal for Vitamin and Nutrition Research*, **72**(2):91-100.

- Sahin, K. and Kucuk, O. 2003. Zinc supplementation alleviates heat stress in laying Japanese quail. *The Journal of Nutrition*, **133**(9): 2808-2811.
- Selim, N.A., Nada, S.A., Abdel-Salam, A.F. and Youssef, S.F. 2013a. Evaluation of some natural antioxidant sources in broiler diets: 2-effect on chemical and microbiological quality of chilled and frozen broiler meat. *International Journal of Poultry Science*, 12: 572-581.
- Selim, N.A., Youssef, S.F., Abdel-Salam, A.F. and Nada, S.A. 2013b. Evaluations of some natural antioxidant sources in broiler diets: 1-effect on growth, physiological and immunological performance of broiler chicks. *International Journal of Poultry Science*, 12: 561-571.
- Singh, H., Sodhi, S. and Kaur, R. 2006. Effects of dietary supplements of selenium, vitamin E or combinations of the two on antibody response of broilers. *British Poultry Science*, **47**: 714-719.
- Speranda, M., Florijancic, T., Boskovic, I., Bogut, I., Gutzmirtl, H., Grguric, D. and Antunovic, Z. 2008. The effects of organic selenium and manan oligosaccharides on the productivity and health of pheasant chicken (Phasianuscolchicus). Acta Veterinaria (Beograd), 58(1): 63-73.
- Sunder, G.S., Panda, A.K., Gopinath, N.C.S., Rao, S.R., Raju, M.V.L.N., Reddy, M.R. and Kumar, C.V. 2008. Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. *Journal of Applied Poultry Research*, 17(1): 79-86
- Swain, B.K., Johri, T.S. and Majumdar, S. 2000. Effect of supplementation of vitamin E, selenium and their different combinations on the performance and immune response of broilers. *British Poultry Science*, **41**: 287–292.
- Tawfeek, S.S., Hassanin, K.M.A. and Youssef, I.M.I. 2014. The effect of dietary supplementation of some antioxidants on performance, oxidative stress, and blood parameters in broilers under natural summer conditions. *Journal of World's Poultry Research*, **4**(1): 10-19.
- Wheeler, C.R., Salzman, J.A., Elsayed, N.M., Omaye, S.T. and Korte Jr, D.W. 1990. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Analytical Biochemistry, 184(2): 193-199.
- Wybenga, D.R., Pileggi, V.J., Dirstine, H. and Giorgio, J.D. 1970.
 Direct manual determination of serum total cholesterol with a single stable reagent. *Clinical Chemistry*, 16: 980-984.
- Wybenga, D.R., Pileggi, P.H., Dirstine, J. and Giorgio, J.D. 1970.
 Direct manual determination of serum total cholesterol with a single stable reagent. Clinical Chemistry, 16: 980-984.
- Yamuna, K. and Thangavel, A. 2011. Effect of selenium and vitamin e supplementation on immune status in broiler chickens. *Tamilnadu Journal of Veterinary & Animal Sciences*, 7(6): 303-306.
- Yegani, M. 2008. Summer and heat stress. Available at: http:// www.worldpoultry.net /Home /General/200 8/6/summerand-heat-stress.
- Zaghari, M. and Asli, M.M. 2010. Effects of vitamin E and C on the performance of laying hens, eggcholesterol and blood parameters. *Journal of Veterinary Research*, **66**(2): 137-142.
- Zhang, C., Zhn, W., Guan, X. and Song, J. 2006. Effect of interaction between dietary zinc and vitamin A in broilers on performance, immunity, ALPW and CuZn-SOI activity and serum Insulin Concentration. *World Journal of Zoology*, 1(1): 17-23.