

#### Reviewed by

Dr. Ramesh Kumar Solanki ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, India. Email:rksolanki.ars@gmail.com

#### \*Correspondence

R. S. Meena rsm.nrcss@gmail.com

Received: 30 July 2024 Revision: 21 August 2024 Accepted: 30 October 2024

#### Citation

Meena, R.S., Shrama Y.K., Lal, G., Tahlan, S.K., Singh, D. and Singh, J.P. 2023. Ajmer Coriander - 3 (ACr-3): A high yielding and powdery mildew resistant coriander variety. *Int. J Seed Spice*, 13(1&2): 57-63

# DOI

https://doi.org/10.56093/IJSS.v13i1-2.8

#### **Affiliation**

<sup>1</sup>ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer – 305 206, Rajasthan, India <sup>2</sup>Chaudhary Charan Singh Haryana Agricultural University,,Hisar-125004, Haryana, India <sup>3</sup>Sri Karan Narendra Agriculture University, Jobner- 303 329, Rajasthan, India <sup>4</sup>Govind Ballabh Pant University of Agricultre & Technology, Pantnagar-263 145, Uttarakhand, India

# Ajmer Coriander - 3 (ACr-3): A high yielding and powdery mildew resistant coriander variety

R.S. Meena<sup>1</sup>., Y.K. Shrama<sup>1</sup>, G. Lal<sup>1</sup>, S.K. Tahlan<sup>2</sup>, D. Singh<sup>3</sup> and J.P. Singh<sup>4</sup>

#### **Abstract**

A new coriander variety ACr-3 had been released with an average seed yield (16.88 q ha<sup>-1</sup>), essential oil (0.55%) and powdery mildew resistance. The variety was recommended for release in Annual Group Meet XXIX AICRPS workshop held at Dr. YSPUH & F Solan (H.P.) during 4-6<sup>th</sup> Oct.2018 and notified vide S.O.4272 (E) dated 26.11.2019 for commercial cultivation under timely sown, with recommended POP for growing areas of Rajasthan. This verity is performing well at farmer field and adoption of new coriander variety ACr-3 by the coriander growers will increase their farm productivity and income, thus improving their livelihood besides, better sustenance of spice industry in the country and fetching more foreign exchange.

**Keywords:** ACr-3, high yielding, essential oil, powdery mildew.

## Introduction

Coriander (*Coriandrum sativum* L., 2n = 22) is a seed spice crop which is nativeto the Mediterranean region, belongs to *Apiaceae* family and is considered an annual herb. Coriander plant is considered as a medicinal herb in traditional medicine system as it has various properties like they act as antioxidant, anti-inflammatory, analgesic, antibacterial, antifungal, and insecticidal properties (Kiralan *et al.*, 2009; Lo Cantore *et al.*, 2004). In addition to this, coriander seeds are a good source of secondary plant metabolites such as polyphenols, especially phenolic acids, and flavonoids (Tylewicz *et al.*, 2018).

Its leaves and seeds are used as a condimentand for culinary purposes. (Coskuner and Karababa, 2006). Its green leaves, containing proteins, vitamins and minerals (like calcium, phosphorus, and iron), fibres and carbohydrates and it is used as vegetable and salad. It is also rich in varying components, which provides typical flavour, when added to the food products and acts as preservative (Kalemba *et al.*, 2003). India is the major coriander producing country in the world. In India, coriander is largely cultivated in Rajasthan, Madhya Pradesh, Andhra Pradesh, Tamil Nadu, Orissa, Uttar

Pradesh, and Uttaranchal (Msaada et al., 2007). Rajasthan is major coriander growing state with its share of about 60% in the total area and production of the country. In India, annual coriander seed production was 7,56,000 tonnes in 2019-20, grown on 6,29,000 ha with a productivity of 1202 kg ha<sup>-1</sup> (Anonymous, 2019-20). The major components were found linalool (75.30%), geranyl acetate (8.12%) and alph-pinene (4.09%), Singh et al., (2006). Ganesan et al., (2013) was reported that matured coriander leaves are rich in moisture (87.9%), protein (3.3%), carbohydrate (total sugar 6.5%) and total ash (1.7%). It was also reported that potential source of high-value compoundsfor functional foods and nutraceuticals value. Molecular techniques for detecting differences in the DNA of individual plants to examine variability in cultivar are useful for identification of potential parental lines. These differences in general are called molecular marker and have characterization as well as various phylogenic analysis in various plant species with reliable and authentic results. Despite the large demand and cultivation of this crop in India, the average seed yield of coriander is low compared to other countries due to a lack of improved varieties. Powdery mildew, caused by Erysiphe polygoni DC, is a significant disease that has been a major constrain in quality leaf and seed production. Development of a resistant variety of coriander is an environmentally friendly way to manage powdery mildew (Amin et al., 2017). Considering the above facts, there was a need to develop a high-yielding coriander variety that is disease resistant as well. A new coriander variety ACr-3 was developed and released in 2019 for coriandergrowing areas of Rajasthan by ICAR-NRCSS Ajmer. This variety is performing well in the farmers' fields and the adoption of ACr-3 by the coriander growers will increase their farm productivity and income, thus improving their livelihood besides better sustenance of spice industry in thecountry.

# Materials and methods

The present study was carried out in rabi season during 2015-18 at five centers across the country under all India coordinated trails (Ajmer, Jobner, Kota, Jagudan, Pantnagar). The study was carried out with 28 genotypes of coriander including checks (RCr-728 & Hissar Anand). The experiment was laid in Randomized block design (RBD) design. Plot size 4 X 2.5, row to row spaced 50 cm apart. Plant spacing within rows was maintained 20 cm. The recommended package of practices was adopted for raising healthy crop. Twenty plants were randomly selected from each line and observations were recorded on plant height, primary branches, umbel per plant, umbellate per umbel, seeds per umbellate, test weight and yield (g). Essential oil extracted using hydro distillation in Clevenger type apparatus.

**Pedigree:** This variety (population) has been developed from the germplasm which was collected in the region of Mehsana, Gujarat (IC-630755). Breeding method was used recurrent selection for developing this variety. This variety was entered for testing under AICRPs network project during 2013-18 by code ACr-4, Cor-109, Cor-136 & Cor-160. Seed shape was oval.

**Selection procedure**: The selected superior high yielding plants are evaluated under replicated trail in RBD design for seed yield performance & powdery mildew resistance for the three year at NRCSS-Ajmer from 2015-2018 at Ajmer, Johner, Kota, Jagudan, Pantnagar. The variety was recommended for release in Annual Group Meet XXIX AICRPS workshop held at Dr.YSPUH & F Solan (H.P.) during 4-6th Oct.2018.

## Results and discussion

#### Varietal description

# Yield performance in multi-location AICRP trials

Variety was evaluated for five years at 5 locations (2013-18) across all regions of country, however, variety performed well in across the country. The

| Trait                    | Description                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Plant                    | Medium in height, semi-erect, branched plant type                                                                        |
| Seeds                    | Seeds are bold and oval in shape.                                                                                        |
| Maturity                 | Main season variety with maturity 120-130 days                                                                           |
| Biotic stress resistance | This variety is resistant to powdery mildew disease                                                                      |
| Quality traits           | Seeds have good aroma with volatile oil 0.55 %.                                                                          |
| IC number                | IC-630755                                                                                                                |
| Other attributes         | Dry cool and frost free environment particularly in January is most suitable for exploitation of full genetic potential. |

# Int. J Seed Spice,13 (1 & 2), January & July 2023

**Table 1.** Summary of performance of coriander varieties in Station and coordinated trials at different locations across the State for Seed yield (kg ha<sup>-1</sup>)

| Particulars                          | Proposed entry<br>(ACr-3) | National check<br>Hisar Anand | National check<br>RCr-728 |
|--------------------------------------|---------------------------|-------------------------------|---------------------------|
| Years of testing                     | 2013-14 to 2017-18        | 2013-14 to 2017-18            | 2013-14 to 2017-18        |
| Total yield over the locations/years | 28708                     | 18821                         | 21399                     |
| No of locations / years              | 17                        | 15                            | 15                        |
| Mean                                 | 1688.6                    | 1254.7                        | 1426.6                    |
| % increase over national             | check Hisar Anand         | 34.6                          |                           |
| % increase over state ch             | eck Rcr-728               | 18.3                          |                           |

**Table 1a.** Seed yield (kg ha<sup>-1</sup>) of coriander varieties in Station and coordinated trials at different locations across the country (2013-18).

| Year                                         | Location                | ACr-3  | Hisar Anand | RCr-728 |
|----------------------------------------------|-------------------------|--------|-------------|---------|
| 2013-14                                      | SCT Ajmer               | 1820   | -           | -       |
| 2014-15                                      |                         | 2111   | -           | -       |
| 2015-16                                      | Ajmer                   | 1374   | 681         | 1049.3  |
| 2016-17                                      |                         | 2116   | 1800        | 1870    |
| 2017-18                                      |                         | 2066   | 1113        | 1504    |
| 2015-16                                      | Jobner                  | 1582   | 1162        | 1043    |
| 2016-17                                      |                         | 1981   | 1894        | 2078    |
| 2017-18                                      |                         | 1502   | 1729        | 1384    |
| 2015-16                                      | Kota                    | 1125   | 229         | 792     |
| 2016-17                                      |                         | 1535   | 2170        | 1545    |
| 2017-18                                      |                         | 1104   | 1392        | 1252    |
| 2015-16                                      | Jagudan                 | 1221   | 603         | 777     |
| 2016-17                                      |                         | 1552   | 2029        | 1628    |
| 2017-18                                      |                         | 757    | 812         | 431     |
| 2015-16                                      | Pantnagar               | 2319   | 1023        | 2083    |
| 2016-17                                      |                         | 2477   | 1296        | 2000    |
| 2017-18                                      |                         | 2065   | 1500        | 1963    |
|                                              | Mean                    | 1688.6 | 1254.7      | 1426.6  |
| % increase over Hisar Anand (National Check) |                         |        | 34.6        |         |
| % increase over F                            | RCr-728 (National Check | )      |             | 18.37   |

**Table 2.** Trial on screening of coriander entries against powdery mildew disease of coriander under natural condition at Jobner

| Entry      | 2015-16 | 2016-17 | 2017-18 | Reaction             |
|------------|---------|---------|---------|----------------------|
| ACr-3      | 76.67   | _       | 38.33   | Moderately resistant |
| RCr-728    | 68.33   | -       | 55.00   | Susceptible          |
| HisarAnand | 75.00   | -       | 55.00   | Susceptible          |

# Int. J Seed Spice,13 (1 & 2), January & July 2023



Fig. 1. Average seed yield performance of ACr-3 at different locations during 2015 to 2018.

**Table 3.** Essential oil (%) content in seed of the proposed variety tested at Jobner centre (*Rabi* 2012-13 to 2014-15)

| S. No. | Name of entries | Essential oil | % higher than<br>Hisar Anand | % higher than RCr-728 |
|--------|-----------------|---------------|------------------------------|-----------------------|
| 1      | ACr-3           | 0.55          | 22.2                         | 7.84                  |
| 2      | HisarAnand      | 0.45          |                              |                       |
| 3      | RCr-728         | 0.51          |                              |                       |

Table 4. Constituent of essential oil in ACr-3 genotype as compared to ACr-1 Variety (check)

| Compound              | ACr-3 | ACr-1  |
|-----------------------|-------|--------|
| Alpha pinene          | 1.149 | 4.223  |
| Beta pinene           | 0.121 | 0.202  |
| Cymene                | 1.628 | 2.281  |
| Gama terpinene        | 3.040 | 6.856  |
| Linalool              | 75.42 | 69.986 |
| 4-allyl anisol        | 0.213 | 0.993  |
| Geraniol              | 2.179 | 2.033  |
| Anethole + estryragol | 0.430 | 1.267  |
| Geranyl acetate       | 15.58 | 11.637 |

Table 5. Allele size observed in samples

| Primer name |       | Samples |       |
|-------------|-------|---------|-------|
| ISSR 12     | ACr-1 | ACr-2   | ACr-3 |
| 1600        | 1     | 1       | 1     |
| 1450        | 1     | 1       | 1     |
| 1200        | 1     | 1       | 1     |
| 800*        | 1     | 0       | 0     |
| 700         | 1     | 1       | 1     |
| 600         | 1     | 1       | 1     |
| 400         | 1     | 1       | 1     |
| 300*        | 1     | 1       | 0     |

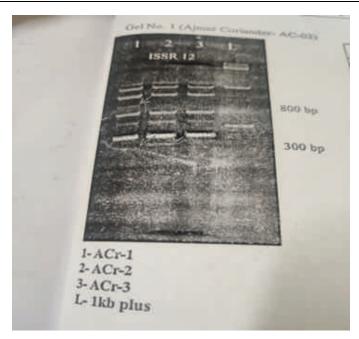



Fig. 2. Allele size observed in samples



Field view and seed of ACr-3

results are described below-In replicated trial at different locations over the country variety gives average seed yield 1688.6 kg ha<sup>-1</sup>. The seed yield was higher than 34.6% over the national check Hisar Anand and 18.3% higher than state check RCr-728. (Table 1 & Table 1a).

ACr-3 gave average performance of seed yield in Ajmer (1852 kg ha<sup>-1</sup>), Jobner (1688 kg ha<sup>-1</sup>), kota (1254 kg ha<sup>-1</sup>), Jagudan (1176 kg ha<sup>-1</sup>), Pantnagar (2287 kg ha<sup>-1</sup>) which is higher than check variety Hisar Anand & RCr-728. (Table 1a & Fig 1).

## Disease resistance:

The three year trial conducted on screening of coriander entries against powdery mildew disease of coriander under natural condition at Jobner. The variety ACr-3 found moderately resistant while the check varieties (RCr-728 & Hisar Anand) found susceptible. (Table. 2).

**Essential oil:** The three year trail conducted on essential oil (%) content in seed of the proposed variety tested at jobner centre. Essential oil (%) found 0.55 which was higher (22.2) than Hisar Anand (Table 3).

Essential oil Constituent: Essential oil of ACr-3 seeds constituents alpha pinene (1.149), beta pipene (0.121), cymene (1.628), gamaterpinene (3.040), linalool (75.42), 4-allyl anisol (0.213), geraniol (2.179), anethole + estryragol (0.430) and geranyl acetate (15.58). The high linalool persent as compare to check is indicates that ACr-3 have more aroma, So the variety also can be use for aromatic purpose also (Table 4).

**DNA finger printing of ACr-3:** DNA fingerprinting of the variety was done using ISSR primers (ISSR 12). The primer generated polymorphic bands and showing clear-cut difference between the check (ACr-1 & ACr-2) and released variety (ACr-3). The ISSR band 300 is showing presence in ACr-1 & ACr-2 where as it was absent in ACr-3 (Table 5 & Fig -2).

**Distinguishing morphological characteristics**: The ACr-3 plant has 6-10 basal leaves which is raised with 45 degree angle. Its plants have semi-erect growth habit, medium primary branches (6-10), tall plant height, good seeds per umbellate and oval shape seed colour.

# Agronomic management

The optimum seed yield can be obtained by adopting standard agronomical practices. Best sowing time was

recorded 2 and 3<sup>rd</sup> week of October, Seed rate of this variety is needed approximately 10-12 kg ha<sup>-1</sup>. Line to line distance 30 cm and plant to plant 20 cm distance should be maintained respectively. This variety is suitable for loamy and clay loam soils having good drainage facility. 5-6 irrigations are required to get good seed yield depending on soil type and climatic conditions in conventional method and when irrigation is given by drip method water should be given at 0.8 IW/CPE ratio. Fertilizer and manuresare required 5-10 t ha<sup>-1</sup> FYM, 60 kg N, 30 kg P<sub>2</sub>O<sub>5</sub> and 20 kg K<sub>2</sub>O ha<sup>-1</sup> to get good yield.

**Conclusion**: Compared to existing varieties, coriander variety ACr-3 demonstrated a high seed yield and resistance to diseases.It is performing well on farmer's fields and adopting ACr-3 by coriander growers will increase their farm productivity.

**Conflicts of Interest :** The authors declare no conflicts of interest.

## References

- Amin, A.M., Patel, N.R., Prajapati, B.G. and Patel, D.G. 2017. Field evaluation of coriander genotypes against powdery mildew. *Int. J Seed Spice.*, 7(1):86-88.
- Anonymous, 2019-20. Area and production statistics of horticultural crops, National Horticulture Board, Govt. of India.
- Coskuner, Y. and Karababa, E. 2006. Physical properties of coriander seeds (*Coriandrum sativum*L.). *J Food Engi.*, 80:408-416.
- Ganesan, P., Phaiphan, A., Murugan, Y., Baharin, B.S. 2013. Comparative study of bioactive compounds in curry and coriander leaves: an update. *J Chem. Pharm. Res.*, 5:590-4.
- Kalemba, D., Kunicka, A. 2003. Antibacterial and antifungal properties of essential oils. *Curr. Med. Chem.*, 10:813-29.
- Kiralan, M., Calikoglu, E., Ipek, A., Bayrak, A. and Gurbuz, B. 2009. Fatty acid and volatile oil composition of different coriander (*Coriandrum* sativum) registered varieties cultivated in Turkey. Chem. Natu. I comp., 45(1):100-102.
- Lo Cantore, P., Iacobellis, N.S., De Marco, A., Capasso, F. and Senatore, F. 2004. Antibacterial activity of *Coriandrum sativum* L. and *Foeniculum*

- *vulgare* Miller var. vulgare (Miller) essential oils. *J Agri. Food chem.*, 52(26):7862-7866.
- Msaada, K., Hosni, K., Taarit, M.B., Chahed, T., Kchouk, M.E., Marzouk, B. 2007. Changes on essential oil composition of coriander (*Coriandrum sativum* L.) fruits during three stages of maturity. *Food Chem.*, 102(4):1131-1134.
- Singh, G., Maurya, S., De Lampasona, M.P., Catalan, C.A.N. 2006. Studies on the essential oils, part 41: chemical composition, antifungal, antioxidant and
- sprout suppressant activities of Coriander (*Coriandrum sativum*) essential oil and its oleoresin. *Flav. Frag. J*, 21: 472–479.
- Tylewicz, U., Nowacka, M., Martín-García, B., Wiktor, A. and Caravaca, A.M.G. 2018. Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, Recovery, and Applications, Woodhead Publishing. pp. 135-175.