Impact of Synbiotic and Antibiotic growth promoter (AGP) Supplementation on Duodenal Morphology in Broiler Chicken

Ankur Pandey¹, Abhinov Verma^{2*}, Shriprakash Singh³, MM Farooqui⁴, Archana Pathak⁵, Varsha Gupta⁶, Rupam Sinha⁷ and Anand Singh⁸

Department of Veterinary Anatomy, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India, 281001

Received: 01 November 2024; Accepted: 27 December 2024

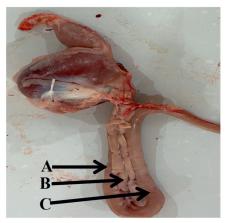
ABSTRACT

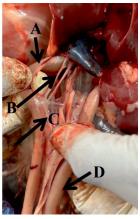
Under present investigation, ninety (n=90) day-old broiler chicks were reared and assigned to 03 treatments groups consisting of three replicates of 10 birds in each pen. It was divided into three groups viz; Group-I (control/basal diet feed), Group-II (antibiotic growth promoter-AGP treatment) and Group-III (synbiotic treatment) comprised of 30 birds in each group. A ventro-abdominal incision was made, and dissection was performed and different biometrical measurements of the duodenum were taken on the empty duodenum. Duodenum was the first segment of the small intestine which originated from the right antero-dorsal surface of the gizzard. In all age groups and experimental treatments, two bile ducts and two pancreatic ducts opened close to each other in the ascending part of the duodenum near its termination. The supplementation with synbiotics significantly increases weight, length and width of duodenum in broiler chickens as compared to control and AGP group. This increment in morphometric parameters might be corelated with the composition of the diet and the supplements used.

Key words: Duodenum, Morphology, Supplement

INTRODUCTION

The poultry industry is one of the fastest growing industries of global livestock production (Mottet et al., 2017). The production of sufficient amount of food for the global population is one of the major current challenges. In poultry industries the antibiotics (ABs) have been used for prevention and treatment of infectious diseases and when added at sub-therapeutic level in the diet may act as a growth promoter commonly called Antibiotic growth promoter (AGP). The antibiotics (ABs) exhibits negative effects on animals and human health when used continuously at subtherapeutic dose for long time cause antimicrobial resistance (AMR) (Grenni et al., 2018). Therefore, the importance of using alternative of antibiotic growth promoters such as prebiotic, probiotic and their combination, the synbiotic is evident. The synbiotics were envisaged to combine both prebiotics and probiotics. Intestine plays an important role in absorption, digestion of nutrients from food and passes the digested food into blood-stream. The duodenum is largely responsible for the breakdown of food using enzymes (Verma et.


MATERIALS AND METHODS


For the proposed work ninety (n=90) day-old Cobb-400 strain broiler chicks were reared under ideal husbandry conditions in Poultry Farm, DUVASU, Mathura and randomly assigned to 03 treatments groups consisting of three replicates of 10 birds in each pen. It was divided into three groups viz; Group-I (control/basal diet feed), Group-II (antibiotic growth promoter-AGP treatment) and Group-III (synbiotic treatment) comprised of 30 birds in each group. Each group was subdivided into 3 replicates, with 10 birds per pen. The birds had free access to water and feed. Climatic conditions and the lighting program were maintained according to commercial recommendations. Two birds were sacrificed from each replicate of each group (with humane method) at different age groups viz. 2, 4, and 6 weeks of age. A ventro-abdominal incision was made, and dissection was performed and different biometrical measurements of the duodenum were

al.,2020). The aim of this project was to explore the changes in anatomy of duodenum of broiler chicken after supplementation of Antibiotic growth promoter (AGP) and synbiotic with a logical and sequential approach. Hence, the present work has been designed.

^{1. 1,} MVSc Scholar, 2,7&8 Assistant Professor, 3,6. Associate professor 4. Professor & Head, 5- Professor

^{*}Corresponding Author: E-mail: abhinovverma281283@gmail.com

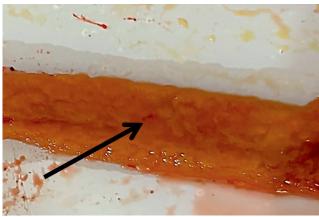


Fig. 1: Photograph of 04-week-old chicken (Control group) showing Descending duodenum (A), Pancreas (B), and Ascending duodenum © Fig. 2: Photograph of 06-week-old chicken (Synbiotic group) showing Ascending duodenum (A), bile duct (B), pancreatic duct (C), and Descending duodenum (D)

Fig. 3: Photograph of 06 week old chicken (Synbiotic group) duodenum under stereo zoom microscope showing mucosal surface (Arrow).

taken on the empty duodenum. Length, width and weight of duodenum were measured using a digital vernier calliper and a weighing balance. The data generated by the biometrical observations was subjected to statistical analysis.

RESULTS AND DISCUSSION

Duodenum was the first segment of the small intestine which originated from the right anterodorsal surface of the gizzard. It extended caudoventrally along with the right abdominal wall towards the pelvic inlet, forming an elongated Ushaped loop with a proximal descending portion and a distal ascending portion that encircled the pancreatic tissue between its loops. (Fig. 1). The morphology of duodenum in broiler chicken in different treatment groups was identical as the descriptions of Bradley and Grahame (1960) in fowl, McLelland (1975), Nickel et al. (1977) in avian species, Dyce et al. (2009) in fowl, and Hamdi et al. (2013) in the black-winged kite. In all age groups and experimental treatments, two bile ducts and two pancreatic ducts opened close to each other in the ascending part of the duodenum near its termination similar with those reported by Getty (1977) in fowl and Igwebuike and Eze (2010) in the African pied crow (Fig. 2). Both the ascending and descending part of the duodenum were connected by a narrow fold of mesentery. The descending portion of the duodenum was the most ventral segment of the intestine. The presence of pancreatic tissue in Ushaped loop was similar to the findings of Dyce et al. (2009) in fowl. The mucous membrane of duodenum has a velvety appearance due to presence of villi as reported by Khaleel and Aetia (2017) in indigenous

ducks (Fig.3).

Biometric Analysis:

Weight (gm): In this study, duodenum weight at 2, 4, and 6 weeks showed a highly significant 'F' value difference (P<0.01) between age and treatment group, and maximum weight was gained by synbiotic feed group (Table 1). Similar to the Kalita (2009) in fowl observed significant (p<0.05) increase in terms of duodenum weight from day 1 to day 56, Aslam (2010) in Giriraj and BV 300-layer breeds of poultry observed that the weight of duodenum increased with the advancement of age, Levi et al. (2013) in anak and marshal quail breed of poultry show a significant (P<0.05) increase in duodenum weight from 2 to 8 weeks, Ahmad et al. (2012) in Japanese quails observed significant (P<0.05) difference in duodenum weight from 3rd week to or 6th week, Kalita et al. (2012) in kadaknath fowl observed significant (p<0.05) increase in terms of duodenum weight from 1st week to 6th week, Nasrin et al. (2012) in broiler postnatal growth observed that the weight of duodenum was significantly greater at 4th week as compared to 2nd week, with differences statistically significant (P<0.01), Karad et al. (2024) in Japanese quail noticed that duodenum weight from 1st week to 6th week were significantly increased (p<0.05). Fernandes *et al.* (2014) observed significant increase in weight (p<0.05) after treatment of probiotic, prebiotic products (synbiotics) as compare to antimicrobial agent in broilers.

Length (cm): In current work the duodenum length at 2, 4, and 6 weeks showed a highly significant 'F' value difference (P<0.01) between age and

Table 1: Table showing the morphometric analysis of duodenum in different groups

Parameter			Weight of duodenum (gm)	Length of duodenum (cm)	Width of duodenum (mm)
Group-I	Range	2 week	2.14-3.15	15-17.8	1.5-2.03
		4 week	7.19-7.99	22.5-26	3.45-4.18
		6 week	9.88-11.25	25-27.4	2.2-3.3
	Mean	2 week	2.49 ^C ±0.15	16.41°±0.36	1.81 ^b ±0.084
		F-value	18.84**	19.77**	8.44**
		4 week	7.40°±0.12	24.66 °±0.62	3.84 b±0.09
		F-value	180.31**	11.44**	6.73**
		6 week	10.42 °±0.18	26.11 °±0.39	2.84 °±0.15
		F-value	11.34**	16.74**	13.46**
Group-II	Range	2 week	3.05-4.01	17.3-18.5	1.79-2.59
		4 week	8.76-9.42	24.5-28	3.2-4.91
		6 week	10.54-13.35	26.25-30	3.2-3.91
	Mean	2 week	3.55b±0.15	17.93 b±0.20	2.24 ^b ±0.12
		F-value	18.84**	19.77**	8.44**
		4 week	8.97 b±0.12	26.33 b±0.57	3.89 b±0.27
		F-value	180.31**	11.44**	6.73**
		6 week	11.91 b±0.48	27.92 b±0.57	3.50 b±0.12
		F-value	11.34**	16.74**	13.46**
Group- III	Range	2 week	3.31-5.15	18.5-22.5	2.01-3.62
		4 week	10.72-11.89	27.5-30	4.05-5.28
		6 week	10.9-14.5	28.5-30.4	3.26-5.07
	Mean	2 week	4.19 ^a ±0.26	20.36°a±0.65	$2.76^{a}\pm0.23$
		F-value	18.84**	19.77**	8.44**
		4 week	11.24 °±0.18	28.33 a±0.40	4.73 a±0.16
		F-value	180.316**	11.447**	6.73**
		6 week	13.24 ^a ±0.50	29.65 a±0.26a	4.30 ^a ±0.28 ^a
		F-value	11.34**	16.74**	13.46**

n=90, Figures in parenthesis, a, b, c, superscript showed the significant difference between groups. *in superscript representing significant difference between the groups.; ** in superscript representing highly significant difference between the groups

treatment group, and maximum length was gained by synbiotic feed group (Table 1). Aslam (2010) in Giriraj and BV 300-layer breeds of poultry observed that the length of duodenum increased with the advancement of the age, Kalita (2009) in fowl observed a significant (p<0.05) increase in duodenum length from a day 1 to day 7 and day 7 to day 14, Kalita *et al.* (2012) in post hatch kadaknath fowl observed significant (p<0.05) increase in duodenum length from day 21/week 3rd to day 42/6th week while non-significant (p>0.05) from day 7 or 1st week to day 14 or 2nd week to day, Nasrin et al.

(2012) in broiler postnatal growth observed that the length of the duodenum was significantly greater at day $28 / 4^{th}$ week compared to days 1 and day $14 / 2^{nd}$ week, with difference statistically significant (P<0.01), Ahmad *et al.* (2012) in Japanese quails observed significant (P<0.05) difference in terms of duodenum length from day $21 / 3^{rd}$ week to day $42 / 6^{th}$ week, Mandal *et al.* (2012) in broiler at 48^{th} day showing significant (P<0.05) difference in duodenum length, Levi *et al.* (2013) in anak and marshal quail breed of poultry showed a significant (P<0.05) increase in duodenum length from 2 to 8

weeks, Saini (2018) in broiler after supplementation of feed additives (Prebiotic and Probiotic) at 1st week or day 7 found significant (P<0.05) while at day 35 or 5th week of age found non-significant (P>0.05) in duodenum length, Karad *et al.* (2024) in Japanese quail noticed that duodenum length was maximum at day 42 / 6th week showing significance (p<0.05) while no significant difference was observed at day 7 / week 1 and day 14 / 2 week (p>0.05) and showed significant (p<0.05) difference at day 21 / week 3.

Width (mm):

The duodenum width at 2, 4, and 6 weeks showed a highly significant 'F' value difference (P<0.01) between age and treatment group, and maximum width was gained by synbiotic feed group (Table 1). Aslam (2010) in Giriraj and BV 300 layer breeds of poultry observed the parameters such as diameter of duodenum was increased with the advancement of the age. Kalita (2012) in post hatch kadaknath fowl observed significant (p<0.05) increase in terms of duodenum weight from day 7 or 1st week to day 14/2nd week to day 21/week 3rd to day 42 / 6th week, Ahmad *et al.* (2012) in Japanese quails noticed significant (P<0.05) difference in terms of duodenum width from day 21/3rd week to day 42/6th week, Karad et al. (2024) in Japanese quail noticed significant (p<0.05) increase of duodenum width from 2nd week to 3rd week and to 6th while nonsignificant difference (p>0.05) from 1st week to 2nd week.

The above results also conicide with the results of Saini (2018) in broilers supplemented with prebiotic and probiotic. This increment in morphometric parameters were directly correlated with the composition of the diet and the supplements used (Bogucka *et al*, 2018 and Wang *et al*. 2016).

From this study we concluded that the supplementation with synbiotics significantly increased various parameters of duodenum in broiler chickens as compared to control and AGP group.

ACKNOWLEDGEMENTS

Sincere thanks to Department of Poultry Science, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura for support in poultry rearing.

REFERENCES

Ahmad, J.M., Mamde, C.S., Patil, V.S., Khandare, S.M. 2012. Gross anatomical study of small

- intestine in Japanese quail (Coturnix coturnix japonica). Indian Journal of Veterinary Anatomy, 24:82-83.
- Aslam, SAG. 2010. Comparative gross anatomical and histomorphological studies on small intestine of Giriraj and BV 300 layer breeds of poultry (*Gallus gallus domesticus*). Thesis submitted to Maharashtra Animal and Fishery Sciences University, Nagpur.
- Bogucka J, Bednarcz, Y. K. M., Ribeiro, D.M., Costa, R.R. 2018. Effect of Synbiotic Dietary Supplementation on Histological and Histopathological Parameters of Pectoralis Major Muscle of Broiler Chickens. Czech Journal of Animal Science, 1:63.
- Bradley, O.C., Grahame, T. 1960. In "*The structure of the fowl*", 4th Edn. Publ. Oliver and Boyd, Edinburgh, London. pp. 31-50.
- Dyce, K.M., Sack, W.O. and Wensing, C.J.G., 2009. Textbook of veterinary anatomy-E-Book. Elsevier Health Sciences.
- Fernandes, B.C., Martins, M.R., Mendes, A.A., Milbradt, E.L., Sanfelice, C., Martins, B.B., Aguiar, E.F., Bresne, C. 2014. Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. *Brazilian Journal of Poultry Science*, 16:417-24.
- Getty, R. 1977. In "Sisson and Grossman's, *The Anatomy of The Domestic Animals*", 5th edition, W. B. *Sunders Company, Philadelphia, USA Pp.* 1872-1874.
- Grenni, P., Ancona, V., Caracciolo, A.B. 2018. Ecological effects of antibiotics on natural ecosystems: a review. *Microchemical Journal*, 136:25-39.
- Hamdi, H., El Ghareeb, A.W., Zaher, M, AbuAmod F. 2013. Anatomical, histological, and histochemical adaptations of the avian alimentary canal to their food habits: II–Elanus caeruleus. *International Journal of Scientific & Engineering Research*, 4: 1306-1316.
- Igwebuike, U. M. and U. U. Eze, 2010. Morphological Characteristics of the Small Intestine of the African Pied Crow (Corvus albus). *Animal Research International Journal* 7: 1116–1120.

- Kalita, P.C., Singh, G.K., Kalita, A. 2012. Gross morphological and morphometrical studies of small intestine in post hatch Kadaknath fowl. *Indian Journal of Veterinary Anatomy*, 24:74-75.
- Kalita, PC. 2009. Gross morphometric, light-and electron microscopic studies on the small intestine of the kadaknath fowl. Thesis submitted to Govind Ballabh Pant University of Agriculture & Technology, Pantnagar.
- Karad, N., Thakur, P., Mamde, C. 2024. Morphometrical observations of intestine in Japanese quail. *The Indian Journal of Animal Sciences*, 94:243-246.
- Khaleel, I.M., Atiea, G.D. 2017. Morphological and histochemical study of small intestine in indigenous ducks (Anas platyrhynchos). *Journal of Agriculture and Veterinary Science*, 10:19-27.
- Levi, U.I., Okafor, C., Adaka, N., Onyiche, E.T., Nwaogu, C.I., Ezeasor, N.D. 2013. Gross and histomorphometric changes in the small intestine of Anak and Marshal Broiler Hybrids. *Indian Journal of Veterinary Anatomy*, 25:76-78.
- Mandal, A.K., Das, R.K., Mishra, U.K. 2012. Morphological changes in gastrointestinal tract of post-hatch broiler chicken. *The Indian Journal of Field Veterinarians*, 7:26-30.
- McLelland, J. 1975. Aves Digestive System. In: Getty R. Sisson and Grossman's The Anatomy of the Domestic Animals. 5th Edn. Publ. W. B. Saunders Company, Philadelphia.pp. 1857-1882.

- Mottet, A., De Haan, C., Falcucci, A., Tempio, G., Opio, C. and Gerber, P., 2017. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. *Glob Food Sec* 14:1–8.
- Nasrin, M., Siddiqi, M.N., Masum, M.A., Wares, M.A. 2012. Gross and histological studies of digestive tract of broilers during postnatal growth and development. *Journal of the Bangladesh Agricultural University*, 10:69-77.
- Nickel, R.,, Schummer A., Seiferle, E. 1977. Anatomy of the Domestic Birds (Translated by WJ Siller, PAL Wright). Verlag Paul Parey, Berlin. pp. 75-81.
- Saini, J. 2018. Effects on morphometry of small intestine of broiler (*Gallus domesticus*) by using various feed additives. *Indian Journal of Veterinary Anatomy*, 30:49-51.
- Verma, A., Farooqui, M.M., Prakash, A. Pathak, A. Singh S.P., Gupta, V, and Kumar, P.2020. Topographical and biometrical anatomy of duodenum in prenatal goats. *Indian journal of small ruminants*, 26:214-218.
- Wang X., Y. Z. Farnell, E. D. Peebles, A. S. Kiess, K. G. S. Wamsley, and W. Zhai 2016 Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. *Poultry Science* 95: 1332 1340.