Full Length Article

IN-VITRO ANTIBACTERIAL EFFECT OF COMBINING VITAMIN C WITH ENROFLOXACIN AGAINST OUINOLONE RESISTANT Escherichia coli (EXPEC) ISOLATED FROM BROILER CHICKEN

M. Pavithra¹, T. Ramasamy*², S. Ramesh³, A. Elamaran², G. Lavanya¹ and B. Samuel Masilamoni Ronald⁴

Department of Veterinary Pharmacology and Toxicology Madras Veterinary College Tamil Nadu Veterinary and Animal Sciences University Chennai, Tamil Nadu India

ABSTRACT

Avian pathogenic E. coli (APEC) is the causative agent of colibacillosis in broiler chicken and various antibacterials used to control the infection may lead to the development of multidrug-resistant (MDR) and pan drug-resistant bacteria. Further, antibacterial resistant bacteria also emerge as a result of inappropriate use of antibacterials in chicken, reducing the efficacy of antibacterials used for medical purposes. Keeping this in view, this study was conducted to evaluate the in vitro antibacterial property of vitamin C against resistant bacteria when used along with enrofloxacin. A total of 60 liver swabs collected from the field were used in this study. E. coli were isolated using selective media and were genotypically confirmed by amplification of Adk gene. The resistant genes (qnrA, qnrB and qnrS) were detected through PCR. E. coli isolates were subjected to antimicrobial screening against enrofloxacin and vitamin C (L- ascorbic acid) both by qualitative method and quantitative method. Kirby-Bauer disc diffusion revealed enrofloxacin resistance in 83.33 percent of samples. The MIC of enrofloxacin against resistant isolates was 90.25 µg/ml, but when vitamin C was administered, the MIC was non-significantly lowered to 86.16 µg/ml in the macro broth dilution method. It was also found that vitamin C alone exhibited antibacterial activity at a concentration of ≥ 5 mg/ml. Hence, it is likely that vitamin C may improve antibacterial effects of enrofloxacin in poultry.

Keywords: Antimicrobial resistance, Ascorbic acid, Broiler Chickens, Colibacillosis, Enrofloxacin

Received: 29.01.2022 Revised: 11.05.2022 Accepted: 12.05.2022

Corresponding author; email id: drrams19@gmail.com INTRODUCTION

- Post graduate scholar
- Assistant Professor
- Professor and Head
- Professor, Department of Veterinary Microbiology

Colibacillosis caused bv pathogenic E. coli (APEC) is one of the leading causes of economic loss, accounting for 20% mortality and a 20% drop in bird growth rate (Dho-Moulin and Fairbrother, 1999). Though E. coli is a commensal in both animal and human intestinal tracts, some pathogenic virulent strains can cause disease, making them a potential source for infections in humans such as urinary tract infection, which can lead to cystitis, pyelonephritis, uro-sepsis, meningitis, septicemia, enteritis, and other complications (Kaper et al., 2004). Antibiotics are routinely used in chickens to treat a variety of bacterial infections, as well as to prevent infection and enhance growth. As a result of the antibiotic selection pressure, resistance is developed in both commensal and pathogenic E. coli. Emergence of multidrug resistant (MDR)) organisms has become major health threat to both humans and animals. The prevalence of MDR in avian pathogenic E. coli (APEC) was found to be 81% and among them 45% were capable of forming biofilm (Goudarztalejerdi et al., 2021).

Fluroquinolones are the commonly used antibacterial agents against E. coli infection in humans as well as in poultry and this has led to development of resistance (Zhao et al., 2005). Lack of stewardship in antimicrobial use in poultry is making, antimicrobial resistance (AMR) a potential health threat. Various approaches followed to overcome the AMR include vaccination immunomodulation, against diseases. replacing antibiotics with pro and prebiotics in feeds, combination therapy and use of engineered bacteriophages and various natural compounds as antibacterial resistance breakers (Rahal and Kumar, 2021).

Vitamin C is a nutritional supplement with antioxidant property and is used as an adjuvant in cancer therapy. Apart from this it is also found to have antibacterial property in *invitro* studies (Verghese *et al.*, 2017a). Present study was carried out to evaluate the effect of vitamin C (L- ascorbic acid) as antibiotic resistance breaker along with enrofloxacin, a veterinary specific fluoroquinolone.

MATERIALS AND METHODS

Study area and sample collection: Swabs were taken from dead broiler birds aseptically from various integrated poultry farms in Tamil Nadu and transported to laboratory under refrigerated condition

Isolation of bacteria: Collected liver swabs were enriched with nutrient broth and incubated at 37° C overnight. From that a loopful of broth was streaked on MacConkey agar and incubated at 37°C for 18 hours. The dry, pink donut shaped presumptive *E.coli* colonies from MacConkey were sub cultured on Eosin Methylene Blue (EMB) agar and incubated overnight at 37° C.

Identification of bacteria: *E.coli* identification was done based on colony characteristics on selective media MacConkey and EMB agar, gram staining and biochemical tests such as methyl red, VogesProskauer, Indole production and citrate utilization tests

Antimicrobial sensitivity screening: Isolated *E. coli* samples were screened for antimicrobial susceptibility against enrofloxacin, L- ascorbic acid and combination of both by Kirby-Bauer disc diffusion method. Enrofloxacin 15 mcg from HiMEDIATM and Vitamin C

(L- ascorbic acid) from SRL Chem was used in this study. Vitamin C stock solution was prepared by diluting 10 mg of L- ascorbic acid in 1 ml of sterile distilled water. Sterile discs were impregnated with 15 ul of vitamin C stock solution and air dried for 30 minutes. For screening of antimicrobial activity of combination of vitamin with antibiotic, enrofloxacin discs were impregnated with 8 and 15 µl of vitamin C stock solution and used after 30 minutes of air drying. In quantitative screening, broth macrodilution method was followed as per CLSI M07, 2018 guidelines for determining MIC of enrofloxacin and its combination with ascorbic acid against extra intestinal pathogenic E. coli. Mueller Hinton broth (HiMEDIATM) was used for determining MIC. Stock solution of enrofloxacin (Sigma Aldrich) was prepared by dissolving 10 mg of enrofloxacin powder with 400 ul of 0.1 N NaOH and volume was made into 1 ml using sterile distilled water. Equal volume of enrofloxacin (10 mg/ml) and vitamin C (10 mg/ml) were added to first tube and then serial two- fold dilution was carried out.

DNA extraction: A single bacterial colony from overnight grown bacterial culture on nutrient agar was picked up using sterilized metal loop and suspended in 150 μ l of nuclease free water (NFW). The suspension was boiled at 100°C in water bath for 10 minutes and then chilled immediately at - 20°C for 5 minutes. Then cooled suspension was centrifuged at 10000 rpm for 2 minutes. The supernatant containing DNA template was transferred into a sterile 1 ml Eppendorf tube was used for PCR reactions.

Polymerase Chain Reaction: 20 µl of reaction mixture for resistance genes was prepared by

adding 10 μ l of PCR red dye master mix, 1 μ l forward primer and 1 μ l reverse primer of respective resistant genes, 2 μ l DNA template and 6 μ l of NFW. The primer sequences for identification of *E. coli* and their resistant genes are depicted in table 1. The cyclical conditions of polymerase chain reaction for *Adk*, *qnrA*, *qnrB* and *qnrS* genes are given in table 2 and 3

Statistical analysis: MICs of enrofloxacin alone and its combination with ascorbic acid was statistically analyzed using Mann Whitney test (GraphPad Prism6 software).

RESULTS AND DISCUSSION

The phenotypic (Fig.1) and biochemical analysis showed 80 per cent and 60 per cent prevalence respectively for *E. coli*. The genotypic prevalence was found to be 60 per cent (Fig. 2). The results were found to be similar to earlier studies reported by Ramasamy et al. (2021). When these isolates were tested for antimicrobial resistance to enrofloxacin, 83.33 percent were found to be resistant, while 5.56 percent showed intermediate susceptibility (Fig. 3), which is similar to the findings of Wang et al. (2010). Widespread use of enrofloxacin to treat illnesses including colibacillosis and chronic respiratory disease (Grakh et al. 2020) could possibly be the reason for this.

The genotypic validation of the quinolone resistance in isolated *E.coli* was done through polymerase chain reaction. The resistance genes in *E.coli* of poultry origin were 34.3 per cent of *qnrS* and 15.62 per cent of *qnrB* for enrofloxacin (Fig. 4 & 5) and, there was no expression of *qnrA*

Table 1. Nucleotide sequences for primers used in this study

Genes	Primer sequence (5' to 3')	Size (bp)	Reference
Adk	F: ATTCTGCTTGGCGCTCCGGG R: CCGTCAACTTTCGCGTATTT	590	Wirth et al., 2006
qnrA	F: TCAGCAAGAGGATTTCTCA R: GGCAGCACTATTACTCCCA	627	Wang et al., 2004
qnrB	F: GATCGTGAAAGCCAGAAAGG R: ACGATGCCTGGTAGTTGTCC	469	Gay et al., 2006
qnrS	F: ACGACATTCGTCAACTGCAA R: TAAATTGGCACCCTGTAGGC	417	Gay et al., 2006

Table 2. PCR cyclical conditions for Adk gene

Steps	Temperature	No. of cycles	
Initial denaturation	95 ° C for 2 minutes	1	
Denaturation	95° C for 1 minutes		
Annealing	54 ° C for 1 minute	30	
Extension	72 ° C for 1 minute		
Final extension	72 ° C for 5 minutes	1	

Table 3. PCR cyclical conditions for resistant genes

Genes Targeted	Initial Denaturation	Denaturation	Annealing	Extension	Final extension
qnr (A)	94°C for 5	94° for 45	48°C for 45	72°C for 60	72°C for 5
	minutes	seconds	seconds	seconds	minutes
		Repeated for 32 cycles			
qnr (B)	94°C for 5	94°C for 45	55°C for 45	72°C for 1	72°C for 5
	minutes	seconds	seconds	minute	minutes
		Repeated for 32 cycles			
qnr (S)	94°C for 5	94°C for 45	53°C for 45	72°C for 1	72°C for 5
	minutes	seconds	seconds	minute	minutes
		Repeated for 32 cycles			

gene. The resistances to fluoroquinolones developed due to spontaneous mutation in QRDR (Quinolone Resistance Determining Region) in chromosome such as *gyrA*, *gyrB*, *parC* and *parE* would alter the binding affinity to antibiotics. Other than mutation in QRDR, altered drug permeation and presence of plasmid-mediated quinolone resistance (PMQR) determinants such as *qnrA*, *qnrS*, *qnrB*, *qnrC*, *qnrD* and *qnrVC* also contribute to quinolone resistance. In Enterobacteriaceae species, coexistence of mutation in QRDR and

transferrable PMQR determinants contribute to resistance (Hooper and Jacoby, 2015) (Kotb *et al.*, 2019).

The MIC of enrofloxacin against resistant isolates in this study was $90.25 \mu g/ml$ with a range of 2.44 to $156.25 \mu g/ml$ (Table 4). This is consistent with the findings of Seo and Lee, (2021) that fluoroquinolones resistant *E. coli* had high MIC of $\geq 128 \mu g/ml$ against enrofloxacin and they also reported that these highly resistant isolates had mutations in gyrA and parC gene in chromosome.

Table 4. MIC of enrofloxacin and vitamin C

Group	MIC (μl/ml) (Mean± SE); (n=32)		
Enrofloxacin	90.25 ± 18.11		
Enrofloxacin + Vitamin C	86.16 ± 16.58		
P value	$0.923^{ m NS}$		

In broth macro dilution method vitamin C exhibit antimicrobial property at concentration ≥ 5 mg/ml against *E. coli*. Vitamin C did not exhibit any antibacterial property in disc diffusion test even in increasing concentrations; and also it did not improve the zone of inhibition of enrofloxacin. When the enrofloxacin was used along with vitamin C against ExPEC isolates the MIC of enrofloxacin was non-significantly decreased to 86.16µg/ml from 90.25 µg/ml. A study by Verghese et al. (2017b) for the combined effect of ascorbic acid and ciprofloxacin on uropathogenic E. coli, did not reveal any synergistic effect with ciprofloxacin. However, it produced concentration dependent inhibition against E. coli when used alone. Further studies are required to confirm the ability of

vitamin C to decrease the MIC of enrofloxacin with large sample size.

CONCLUSION

Combining vitamin C with enrofloaxicin non-significantly decreased the MIC of enrofloxacin against $E.\ coli.$ Further as observed in broth macro dilution method, vitamin C alone also exhibited some antibacterial activity at concentration $\geq 5\ \text{mg/ml}$ against $E.\ coli.$ Further studies are required to explore the possibility of combining vitamin C with enrofloxacin to overcome the problem of AMR in poultry.

ACKNOWLEDGMENT

Authors are thankful to Tamil Nadu Veterinary and Animal Sciences University,

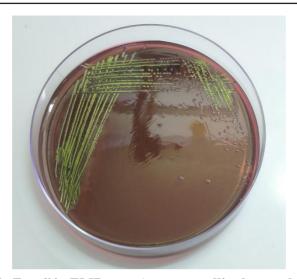


Fig. 1. E. coli in EMB agar (green metallic sheen colonies)

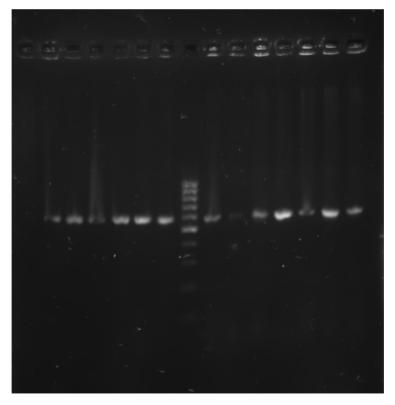


Fig. 2. PCR for E. coli (Adk gene) confirmation

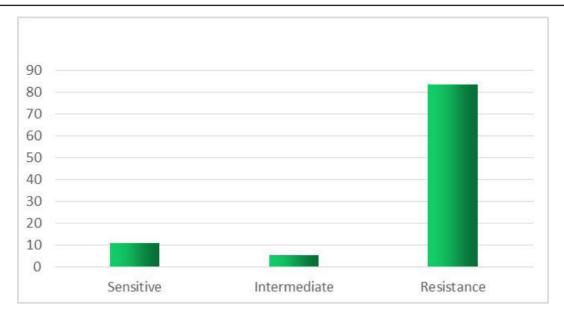


Fig. 3. Antibiotic resistance pattern of E. coli against enrofloxacin

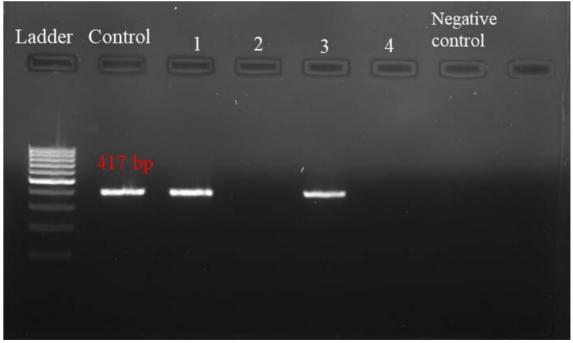


Figure. 4. Agarose gel electrophosed qnrS gene PCR

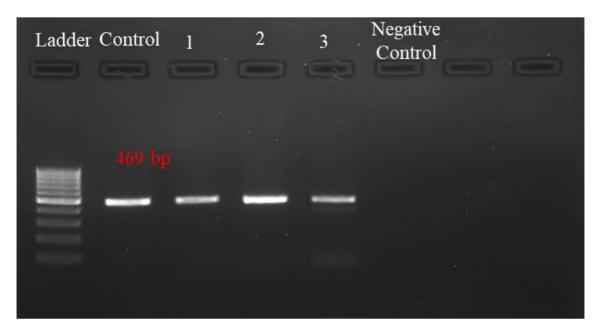


Fig. 5. Agarose gel electrophosed qnrB gene PCR

Chennai, Tami Nadu, India for providing the facilities required to conduct this study.

REFERENCES

Dho-Moulin, M. and Fairbrother, J.M. (1999). Avian pathogenic *Escherichia coli* (APEC). *Veterinary Research*. **30**(2-3):299-316.

Gay, K., Robicsek, A., Strahilevitz, J., Park, C.H., Jacoby, G.A., Barrett, T.J., Medalla, F., Chillera, T.M. and Hooper, D.C. (2006). Plasmid-mediated quinolone resistance in Non-Typhi serotypes of *Salmonella enterica*. *Clinical Infectious Diseases*. **43** (3):297-304.

Goudarztalejerdi, A., Mohammadzadeh, A., Niazi, K. and Mohammad Mirzaei, M. (2021). High Prevalence of Multidrug Resistance and Biofilm-Formation Ability Among Avian *Escherichia coli* Isolated from Broilers in Iran. *Microbial Drug Resistance*. Doi: https://doi.org/10.1089/mdr 2021 0091

Grakh, K., D. Mittal, A. Parkash and Y.C. Bangar, 2020. Assessing the potential risk factors associated with avian colibacillosis using a questionnaire survey. Haryana Vet. **59**(1): 71-74.

Hooper, D.C. and Jacoby, G.A. (2015). Mechanisms of drug resistance:

- quinolone resistance. Annals of the New York Academy of Sciences. 1354(1):12.
- Kaper, J.B., Nataro, J.P. and Mobley, H.L. (2004). Pathogenic *Escherichia coli. Nature Reviews Microbiology.* **2**(2):123-140.
- Kotb, D.N., Mahdy, W.K., Mahmoud, M.S. and Khairy, R.M. (2019). Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. *BMC Infectious Diseases.* **19**(1):1-8.
- Rahal, A. and Kumar, A. (2021). Strategies to combat antimicrobial resistance in Indian scenario. *The Indian Journal of Animal Sciences*. **91**(2):79-90.
- Ramasamy, T., Keerthana, S., Srinivasan, M.R., Chandrasekar, D., Porteen, K., Borthakur, A., Elamaran, A. and Sriram, P. (2021). Molecular Characterization of Antibiotic Resistance Gene Pattern of *Staphylococcus aureus* and *Escherichia coli* in Mastitis Affected Dairy Cows . *Indian Journal of Animal Research*. **55**(4): 463-468.
- Seo, K.W. and Lee, Y.J. (2021). Molecular characterization of fluoroquinolone-resistant *Escherichia coli* from broiler breeder farms. *Poultry Science*. 101250. doi: https://doi.org/10.1016/j. psj.2021.101250.

- Verghese, R.J., Mathew, S.K. and David, A. (2017a). Antimicrobial activity of Vitamin C demonstrated on uropathogenic *Escherichia coli* and *Klebsiella pneumoniae*. *Journal of Current Research in Scientific Medicine*. **3**(2):88.
- Verghese, R.J., Ramya, S. and Kanungo, R. (2017b). *In vitro* antibacterial activity of vitamin C and in combination with ciprofloxacin against uropathogenic *Escherichia coli*. *Journal of Clinical & Diagnostic Research*. 11:1-5.
- Wang, M., Sahm, D.F., Jacoby, G.A. and Hooper, D.C. (2004). Emerging plasmid-mediated quinolone Resistance associated with the qnr gene in *Klebsiella pneumoniae* clinical isolates in the United States. *Antimicrobial Agents Chemotherapy.* **48**(4): 1295–1299.
- Wang, X.M., Liao, X.P., Zhang, W.J., Jiang, H.X., Sun, J., Zhang, M.J., He, X.F., Lao, D.X. and Liu, Y.H. (2010). Prevalence of serogroups, virulence genotypes, antimicrobial resistance, and phylogenetic background of avian pathogenic *Escherichia coli* in south of China. *Foodborne Pathogens and Disease*. **7**(9): 1099-1106.
- Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L.H., Karch, H., Reeves, P.R., Maiden, M.C.,

Ochman, H. and Achtman, M. (2006). Sex and virulence in *Escherichia coli*: an evolutionary perspective. *Molecular Microbiology.* **60**(5): 1136-51

Zhao, S., Maurer, J.J., Hubert, S., De Villena, J.F., McDermott, P.F.,

Meng, J., Ayers, S., English, L. and White, D.G. (2005). Antimicrobial susceptibility and molecular characterization of avian pathogenic *Escherichia coli* isolates. *Veterinary Microbiology*. **107**(3-4):215-224.