Full Length Article

MELATONIN RECEPTOR GENE (MTNR1A) POLYMORPHISM AND ITS ASSOCIATION WITH AGE AT FIRST CALVING IN BUFFALOES

R.S. Kathiravan^{1*}, R. Chitra², N. Murali³ and M. Arthanarieswaran⁴

Department of Animal Genetics and Breeding Veterinary College and Research Institute Tamil Nadu Veterinary and Animal Sciences University, Namakkal – 637 002

ABSTRACT

A total of 203 blood samples were collected along with data on age at first calving from Murrah / graded Murrah buffaloes maintained at different organized farms. Genomic DNA isolation and Polymerase Chain Reaction (PCR) were performed to amplify the PCR products and were digested with HpaI restriction enzymes overnight. Population genetic indices was calculated based on basic statistical tools. At the MTNR1A / HpaI locus, three genotypes viz., CC, CT and TT identified, with frequencies of 0.225, 0.505 and 0.270 respectively. The allele frequencies of C and T alleles were 0.478 and 0.522 respectively. The overall means of age at first calving was 1385.76 ± 24.31 days. Individuals with the CT and TT genotypes (1356.78 ± 33.03 and 1378.38 ± 37.66 days) had shorter age at first calving than CC genotype (1422.14 ± 53.01 days) and the differences were statistically significant (P < 0.05).

Keywords: MTNR1A polymorphism, PCR –RFLP, AFC

Received: 11.06.2023 Revised: 18.07.2023 Accepted: 18.07.2023

¹Farm Manager, Post Graduate Research Institute in Animal Sciences, Kattupakkam, Chengalpattu. Corresponding author Email id: drrskathiravan@gmail. com

²Professor, Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Salem

³Professor and Head, Alambadi Cattle Research Station, Karimangalam, Dharmapuri

⁴Professor and Head, Department of Veterinary Microbiology, Veterinary College and Research Institute, Udumalpet

INTRODUCTION

The Livestock plays a significant role in the agricultural economy of many developing countries including India by providing milk, meat and draught power (Gordon, 1996). The reproductive performance of buffaloes is commonly affected due to late maturity, poor expression of estrous, anestrous, inactive ovaries, prolonged postpartum interval, seasonal

cyclicity and silent estrous (Brar and Nanda, 2004). The reproductive performance of buffaloes is affected by many hormones viz. Estrogen, Melatonin, Follicle-stimulating hormone and Luteinizing hormone (Sarla *et al.*, 2015, Yi *et al.*, 2012, Terzano *et al.*, 2012).

Elevated secretion of melatonin is responsible for the induction of ovarian cycle in buffaloes. Melatonin (MTNR1A) gene has been repeatedly proposed as a candidate gene and seems to play a key role in the control of circadian concentrations of melatonin (Dubocovich, 1988 and Weaver et al., 1996)

In Italy, however, where buffaloes are fed with a constant balanced diet, a distinct seasonal reproductive pattern is also found, and the inference from a series of studies is that seasonality is influenced by photoperiod, mediated by melatonin secretion (Zicarelli, 2010). In India, where summer heat stress is severe, high prolactin secretion has been identified as a factor contributing to acyclicity and poor fertility by lowering progesterone secretion during the summer months (Roy and Prakash, 2007).

Messer *et al.* (1997) reported that identification and characterization of genes responsible for reproduction traits may be a powerful tool in animal breeding programme. On realising the importance of the functions played by melatonin hormone receptor gene in reproduction, the present study was undertaken to reveal the association of polymorphic variants of *MTNR1A*, gene with age at first calving of buffaloes.

MATERIALS AND METHODS

Experimental animal and DNA extraction

Blood samples were collected from 203 Murrah / graded Murrah buffaloes maintained at different organized farms and farmer's herd (Table 1). About 5 ml of blood samples were collected in the vacutainer containing 8 % EDTA.K3 solution (Improvacuter®, Germany). The reproductive performance data viz. date of birth (DOB) and age at first calving (AFC) of buffalo was collected from farm register / pedigree sheets. Genomic DNA was extracted by using the standard high salt method as described by Miller *et al.* (1988).

Polymerase Chain Reaction

A 824 bp fragment of exon 2 of *MTNR1A* gene was amplified by using a set of forward (5' TGT GTT TGT GGT GAG CCT GG 3') and reverse (5' ATG GAG AGG GTT TGC GTT TA 3') primers (Carcangiu *et al.*, 2011). PCR was carried out in 25 μl volume containing 12.5 μl of 2 X PCR master mix, 9.5 μl of nuclease free water 1 μl of each primer (10 pM) and 1 μl of genomic DNA. PCR cycle conditions were as follows: initial denaturation at 94°C for 5 min followed by 35 cycles denaturation at 94°C for 1 min, annealing at 62°C for 1 min, extension at 72°C for 1 min and final extension 72°C for 10 min (Bio-Rad T¹⁰⁰).

Restriction Fragment Length Polymorphism

The PCR products were digested with *Hpa*I restriction enzyme at 37 °C overnight

with a final reaction volume of 15 μ l (Takara Bio USA, Inc.). The restriction fragments (10 μ l) were subjected to electrophoresis in two per cent agarose gel in 1 X TAE buffer containing ethidium bromide to determine the genotypes. The gels were visualised under UV and the images were documented (Bio-Rad Gel DocTM).

Statistical analysis and association studies

The allele and genotype frequencies were calculated by direct counting method. The expected heterozygosity (H_e) was measured as per the formula given by Nei, (1973). Effective number of alleles was calculated as per the formula given by Kimura and Crow (1964). The polymorphism information content (*PIC*) was calculated using the formula explained by Botstein *et al.* (1980).

Testing of Hardy – Weinberg Equilibrium was done by Chi-square test (Falconer and Mackay, 2009). The allele frequency, effective number of alleles, Hardy – Weinberg equilibrium proportions, heterozygosities and heterozygote deficiency or excess (F_{IS}) were drawn using POPGENE 32 (Version 1.32) programme by Yeh *et al.* (2000). The effect of genotypes and different locations were worked out using least squares analysis of variance as described by Harvey (1986) for non-orthogonal data.

RESULTS AND DISCUSSION

PCR - RFLP

The mean yield of DNA isolated was 450.88 ng/ μ l. Digestion of MTNR1A

PCR product with *HpaI* restriction enzyme revealed three genotypes *viz.*, *CC*, *CT* and *TT*. The resulted fragments were 824, 745 and 79 bp and the genotypes observed were *CC* (745 and 79 bp), *CT* (824, 745 and 79 bp) and *TT* (824 bp) (Figure 1).

Similar to the present findings, presence of CC, CT and TT genotypes were reported in Mediterranean Italian buffaloes by Paludo et al. (2011); Luridiana et al. (2012) and Brazil buffaloes by Zetouni et al. (2014); Barbosa et al. (2016). Pandey et al. (2019) and Gunwant et al. (2018) also reported the same three genotypes in Indian water buffaloes. Cheema et al. (2016) revealed three genotypes using three different set of primers and restriction enzymes (MnII, RsaI and Hpall) in Indian Murrah buffaloes. In the present study, C and T alleles were equally contributed in the Indian buffalo population and were comparable to the values reported in both Indian and Mediterranean buffaloes. In many locations, higher frequencies of CT genotype similar to present study was reported in Indian and Mediterranean buffaloes.

Population genetic Indices

The observed genotype and allele frequencies along with their expected genotypic frequencies for *MTNR1A/HpaI* gene were presented in Table 2. The *C* and *T* allele were equally contributed in the buffalo population. Analysis revealed, no significant differences between observed and expected genotype frequencies in the studied population and was consistent with Hardy-Weinberg equilibrium (P>0.05). The distribution of genotypic

Table 1. Details on the location and number of blood samples collected

S. No	Location of farm	No. of blood samples
1	Post Graduate Research Institute in Animal Science (TANUVAS), Kattupakkam, Tamil Nadu.	34
2	Buffalo Research Station, Venkataramanna Gudem, S.V.V.U, West Godavari District, Andhra Pradesh	86
3	Saraswathi Krishi Vigyan Kendra, Karur District, Tamil Nadu.	19
4	Central Cattle Breeding Farm, Alamadhi, Chennai, Tamil Nadu.	20
5	Farmers herd, Namakkal, Tamil Nadu	44
	Total	203

Table 2. Distribution of genotypes and allele frequencies at MTNR1A/HpaI locus in buffaloes

Sample		rved Ger frequenc		_	lele 1ency	Expected Genotype frequency		χ² value	P value	
size	CC	CT	TT	C	T	CC	CT	TT		value
203	0.227 (46)	0.502 (102)	0.271 (55)	0.478	0.522	0.229 (46.38)	0.499 (101.30)	0.272 (55.31)	0.0097 ^{NS}	0.9215

Figures in parentheses are the number of observations; NS: Not significant (P>0.005)

Table 3. Heterozygosity statistics and genetic diversity at MTNR1A/HpaI locus in buffaloes

Sample size	Observed homozygosity	Observed heterozygosity	Expected homozygosity	Expected heterozygosity	$N_{_{e}}$	PIC	F _{IS}
203	0.498	0.502	0.501	0.499	1.996	0.499	-0.006

 $Ne = Effective number of alleles; PIC = Polymorphic information content; F_{IS} = Fixation index$

Table 4. Location and genotype effects on age at first calving in buffaloes for MTNR1A / HpaI gene

Main effects / subclass	Age at first calving
Overall Mean	1385.76 ± 24.31
	(57)
Location	*
Central Cattle Breeding Farm (CCBF), Alamadhi,	$1514.26^{b} \pm 38.09$
Chennai	(20)
Buffalo Research Station (BRS), Andhra Pradesh	-
Post Graduate Research Institute in Animal Science	$1335.18^{a} \pm 47.01$
(PGRIAS), Kattupakkam	(17)
Commendative and the second se	$1307.86^a \pm 40.72$
Saraswathi Krishi Vigyan Kendra, Karur District	(20)
Genotype	*
CC	1422.14 ^b ±53.01
	(12)
CT	1356.78°±33.03
CT	(24)
TT	1378.38ab± 37.66
TT	(21)

() = No. of observations

Table 5. Means (±S.E) of age at first calving for MTNR1A / HpaI genotypes in buffaloes

Danuaduativa tuaita	Genotype					
Reproductive traits	CC	CT	TT			
Age at first calving	1467.33 b± 59.02	1361.25 ab ± 36.48	1340.43 a± 34.16			
Age at first carving	(12)	(24)	(21)			

() = No. of observations

Table 6. Means (\pm S.E) (in days) of age at first calving for MTNR1A / HpaI genotypes in buffaloes at different locations

Locations	CC	CT	TT	Over all mean
Central Cattle Breeding Farm, Alamadhi, Chennai	1553.57 ^a ± 85.38 (7)	1432.44 a ± 71.61 (9)	1556.75 a± 57.31 (4)	1499.70 ± 45.56 (20)
Post Graduate Research Institute in Animal Science, Kattupakkam	1405.50 ° ± 60.50 (2)	1312.75 ^a ± 65.24 (8)	1287.29 ^a ± 54.98 (7)	1313.18 ± 38.08 (17)
Saraswathi Krishi Vigyan Kendra, Karur District	1307.33 a± 40.57 (3)	1325.14 a ± 35.74 (7)	1291.10 a± 32.05 (10)	1305.45 ± 20.57 (20)

() = No. of observations

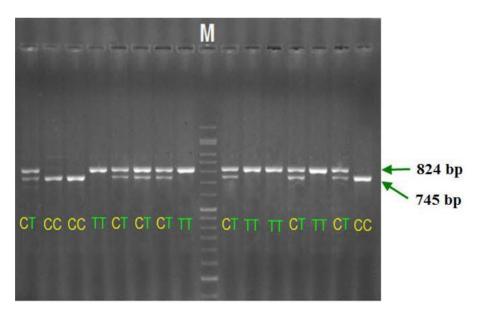


Fig. 1. PCR-RFLP patterns of MTNR1A / HpaI gene in buffaloes.

frequencies revealed a heterozygosity value of 0.505 which was almost equal to the expected heterozygosity (0.499) and effective number of alleles (*Ne*) was 1.996. Estimated Polymorphic information content (PIC) for the gene was 0.4990 and it falls in the medium range of 0.25 to 0.5. Fixation index (*F*IS) values were negative and showed an excess of heterozygosity that was strongly accentuated in *MTNR1A* / *HpaI* locus (Table 3).

Association of MTNR1A / Hpa1 Polymorphism with age at first calving

The least-squares means of age at first calving for MTNR1A / Hpa1 genotypes and non-genetic effect are presented in Table 4. The mean age at first calving for different genotypes is presented in Table 5. Significant effect of location (p<0.05) was observed in age at first calving. Individuals with the CT and TT genotypes had shorter age at first calving and the differences were statistically significant (P<0.05). In contrary to present findings, Paludo et al. (2011) and Luridiana et al. (2012) reported non-significant effect on age at first calving.

Significantly (P<0.05) higher age at first calving was noticed in CC genotypes than TT geneotypes. Zetouni *et al.* (2014) reported a shorter age at first calving for *TT* genotype and longer period for *CC* and *CT* genotypes however the differences were not statistically significant. Generally, individuals with the *CC* genotype had more age at first calving in all the government organized farms however, the differences were not statistically significant (Table 6).

In conclusion, in the present study there was an association found to exist between the MTNR1A gene polymorphism and age at first calving in buffaloes. Based on association with small sample size, suggestion could not be made that the polymorphism might be considered as a genetic marker to identify reproduction capacity in buffaloes. To improve the reproduction performance of Indian buffaloes, more studies are warranted with large numbers of animals in different Indian buffalo populations and may lead to genetic variation and that can be used for selection of animals for reproduction.

REFERENCES

Barbosa, E.M., Souza, B.B., Guimaraes, R.C., Azevedo, J.S.N., Goncalves, E.C., Ribeiro, H.F. L., RolimFilho, S.T. and Silva Filho, E. (2016). Polymorphism in the melatonin receptor gene in buffalo populations of the Brazilian Amazon. *Genetic Molecular Research*, **15**(2): doi: 10.4238/gmr.15027960.

Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *The American Journal of Human Genetics*, **32**: 314 - 331.

Brar, P.S. and Nanda, A.S. (2004). Impact of conventional managemental practices on reproductive performances of rural

- buffaloes. *Indian Journal of Animal Reproduction*, **25**: 94 96.
- Carcangiu, V., Mura, M. C., Pazzola, M., Vacca, G. M., Paludo, M., Marchi, B., Daga, C., Bua, S. and Ludriana, S. (2011). Characterization of the Mediterranean Italian buffaloes melatonin receptor 1A (MTNR1A) gene and its association with reproductive seasonality. Theriogenology, 76: 419 426.
- Cheema, R. S., Kaur, A., Ghuman, S. and Dhindsa, S. S. (2016). Melatonin receptor 1a gene polymorphism in murrah buffaloes with possible impact on summer anestrous. *Journal of Bio Innovation*, **5**(3): 386 394.
- Dubocovich, M.L. (1988). Pharmacology and function of melatonin receptors. FASEB J., 2: 2765-2773.
- Falconer, D. S. and Mackay, T.F.C. (2009). Introduction to quantitative genetics. (4th edn). Pearson Education Ltd, United Kingdom.
- Gordon, I. (1996). Controlled reproduction in cattle and buffaloes. Vol. 1. CABI; Wallingford, UK: 452.
- Gunwant, P., Pandey, A. K., Kumar, A., Singh, I., Kumar, S., Phogat, J.B., Kumar, V., Patil, C.S., Tomar, P., Kumar, S. and Magotra, A. (2018). Polymorphism of melatonin receptor (*MTNR1A*) gene and its association with seasonal reproduction in water buffalo (*Bubalu sbubalis*). Animal Reproduction

- Science, 199: 51 59.
- Harvey, W.R. (1986). User's guide for LSMLMW: Mixed least-squares maximum likelihood computer program PC-1 version. Ohio State University, Columbus.
- Kimura, M. and Crow, J.F. (1964). The number of alleles that can be maintained in a finite population. *Genetics*, **49**: 725 738.
- Luridiana, S., Mura, M.C., Pazzola, M., Paludo, M., Cosso, G., Dettori, M.L., Bua, S., Vacca, G. M. and Carcangiu, V. (2012). Association between melatonin receptor 1A(MTNR1A) gene polymorphism and the reproductive performance of Mediterranean Italian buffaloes. Reproduction, Fertility and Development, 24: 983 987.
- Messer, L. A., Wang, L., Tuggle, C. K., Yerle, M., Chardon, P. and Pomp, D. (1997). Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep and cattle. *Mammalian Genome*, **8**: 368 370.
- Miller, S.A., Dykes, D.D. and Polesky, H.F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Research*, **16**: 1215.
- Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceeding of National Academy of Sciences, **70**: 3321 3323.

- Paludo, M., Mura, M.C., Luridiana, S., Pazzola, M., Daga, C., Vacca, G.M., Bua, S., Bodano, S., Sanna, G.A. and Carcangu, V. (2011). Genotype of melatonin receptor mt1 (MTNR1A) and puberty in Mediterranean Italian buffalo. Agriculturae Conspectus Scientificus, 76(3): 157 160.
- Pandey, A.K., Gunwant, P., Soni, N., Kavita, Kumar, S., Kumar, A., Magotra, A., Singh, I., Phogat, J.B., Sharma, R.K., Bangar, Y., Ghuman, S.P.S. and Sahu, S.S. (2019). Genotype of *MTNR1A* gene regulates the conception rate following melatonin treatment in water buffalo. *Theriogenology*, **128**: 1 7.
- Roy, K.S. and Prakash, B.S. (2007). Seasonal variation and circadian rhythmicity of the prolactin profile during the summer months in repeat-breeding Murrah buffalo heifers. *Reproduction*, *Fertility and Development*, **19**: 569 575.
- Sarla, Mahesh Kumar, Phulia, S.K. and Vinod, C. (2015). Genetic polymorphism in exon 13 of estrogen receptor-α (ERα) gene in Murrah buffalo (*Bubalus bubalis*). *Annals of Applied Biology*, **31**(1): 41-45.
- Terzano, G.M., Barile, V.L. and Borghese, A. (2012). Overview on reproduction endocrine aspects in buffalo. *Journal of Buffalo Science*, **1**: 126 138.

- Weaver, D.R., Liu, C. and Reppert, S.M. (1996). Nature's knock out: the Mel 1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. *Molecular Endocrinology,* **10**: 1478 1487.
- Yeh, F.C., Yang, R.C., Boyle, T.B.J., Ye, Z.H. and Mao, J.X. (2000). POPGENE 32, Microsoft windows based software for population genetic analysis. Version 1.32, Molecular Biology and Biotechnology Centre, University of Alberta, Alberta, Canada.
- Yi, Y., WEn-Jlng, X., Lel, Y., li, M. and Hu, M. (2012). Polymorphism of follicle-stimulating hormone receptor gene in Ningxia Tan sheep. *Animal Feed Science*, **4**(1): 1 2.
- Zetouni, L., Camargo, G.M.F., Fonseca, P.D.S., Cardoso, D.F., Monsalves Gil, F.M., Hurtado-Lugo, N.A., Aspilcueta-Borquis, R.R., Cervini, M. and Tonhati, H. (2014). Polymorphisms in the *MTRN1A* gene and their effects on the productive and reproductive traits in buffaloes. *Tropical Animal Health Production*, **46**: 337 340.
- Zicarelli, L. (2010). Enhancing productive performance in domestic dairy water buffalo (*Bubalus bubalis*). Society of Reproduction and Fertility Supplement Journal, **67**: 443 455.