Full Length Article

EFFECT OF SEX ON GROWTH AND CARCASS CHARACTERISTICS OF COMMERCIAL BROILERS

R. Richard Churchil*1 and Sagar2

Department of Poultry Science Madras Veterinary College Tamil Nadu Veterinary and Animal Sciences University Chennai – 600 007

ABSTRACT

An experiment was conducted to study the effect of sex on growth pattern and carcass characters of commercial broilers. One hundred and twenty numbers of day-old chicks were wing banded, weighed and reared up to 40 days of age. The body weight was individually recorded from all the birds on 7, 14, 21, 28, 35 and 40 days of age to assess the influence of gender on body weight. At the end of the experiment 12 males and 12 females were subjected to slaughter studies to assess the carcass characters. The body weight between males and females were similar up to 14 days of age and thereafter, males recorded significantly (p < 0.01) higher body weights on 21, 28, 35, 40 days of age, weighing 35.79, 107.69, 179.73, 211.88 g respectively higher than females. The ready-to-cook weight (%) and dressed carcass (%) were significantly (p<0.05) higher in males; whereas, New York carcass (%) was significantly (p < 0.05) higher in females. Among the cut of parts, the drumstick percentage was significantly (p<0.05) higher in males, whereas, the wings percentage was significantly (p<0.05) higher in females. Among processing yields and losses, only shank & feet and abdominal fat (%) showed significant (p<0.05) difference between sexes; while, feather, blood, head, viscera, kidney and total offal yields had non-significant difference between sexes. Among giblets, only the heart yield was significantly (p<0.05) different between sexes with higher value in females. The results showed that the males attain marketable weight early, therefore can be marketed early. The males can be slaughtered earlier than females for producing specialized products from drumstick; whereas, females can be slaughtered early to harvest drumette.

Keywords: Commercial broiler, male and female, effect of sex, growth pattern, carcass characters

Received: 23.10.2023 Revised: 26.11.2023 Accepted: 26.11.2023

INTRODUCTION

Commercial broiler farming has undergone a significant transformation,

currently contributing over 50% of the total meat production in India. The intensive genetic selection that has been applied in commercial broiler breeding has led to remarkable advancements in traits such as growth rate and feed efficiency (Zuidhof and

^{1*}Professor and Head, Corresponding author Email id: drchurchil@gmail.com

²Post graduate Student

Schneider, 2014). As a result, the marketing age has been substantially reduced to just 35 days. In commercial broiler farming, it is common practice to rear straight-run broilers. Numerous studies have indicated that gender is among the various factors influencing growth rates, with males exhibiting faster growth and achieving marketing weight at an earlier stage. Previous studies have consistently demonstrated the significant impact of gender on various carcass characteristics like abdominal fat content, meat quality, carcass weight, as well as the weights of breast and leg muscles, edible giblets, back, and drumsticks (Madilindi et al., 2018, Ikusika et al., 2020, Kamporn and Deeden, 2022). However, the majority of these studies were conducted in other countries, often with sex-separate flocks. Studies on sex difference in growth rate and carcass characteristics will help in deciding the marketable age of males and females. Therefore, our current study was specifically designed to evaluate sex-related variations in both body weight and carcass characteristics among broilers raised in straight-run flocks. The findings from this research can be invaluable to breeders, farmers, and processors, aiding them in making informed decisions that can enhance their business operations. By comparing these traits, breeders can identify the most desirable qualities exhibited by each gender, facilitating product development tailored to consumer preferences. Moreover, a deeper understanding of sex differences in growth and carcass characteristics is essential for optimizing the utilization of different cutup parts in the market.

MATERIALS AND METHODS

A total of 120, day-old commercial broiler chicks (Vencobb400Y) were utilized for this study. All chicks were wing-banded, individually weighed, and then randomly distributed into six replicates of straight-run groups. They were reared in a deep litter system of management. Throughout the study, the birds were provided with ad libitum access to feed. They received a broiler starter diet containing 23% crude protein (CP) and 3000 kcal metabolizable energy (ME) per kilogram from day-old to 7 days of age. Subsequently, from 8 to 21 days of age, they were fed a starter diet containing 22% CP and 3100 kcal ME/kg. Finally, from 22 to 40 days of age, they were given a finisher feed containing 20% CP and 3200 kcal ME/kg, following the guidelines of BIS (2007). Water and feed were available ad libitum to the birds, and standard management practices were followed commonly to all the birds. Individual body weights were recorded at 7, 14, 21, 28, 35, and 40 days of age. On the 40th day, 24 birds (12 males + 12 females) were selected using a simple random sampling method for carcass studies. Humane slaughter was conducted, and various parameters were recorded, including pre-slaughter weight, processing losses (blood, feathers, head, and shank), New York dressing percentage, eviscerated carcass yield percentage, and ready-to-cook percentage. Organ weights, such as the heart (without pericardium), liver (without gall bladder), and gizzard (without inner horny lining), were also recorded. Carcasses were further divided to determine the weights of breast, back, wings, thighs, and drumsticks, expressed as percentages of live weight. Additionally, the lengths of the small and large intestines and their respective measurements were recorded. The relative weights organs and the relative length of intestines were calculated using the following formulae.

$$\begin{array}{c} \text{Relative} \\ \text{organ} \\ \text{weight} = \end{array} \begin{array}{c} \frac{\text{Weight of the organ (g)}}{\text{Live weight (g)}} & \frac{X}{100} & (\%) \\ \\ \text{Relative} \\ \text{length of} \\ \text{intestines} = \frac{\text{Total length of intestines}}{\text{Live weight (g)}} & \frac{X}{100} & (\text{cm/g}) \\ \\ \end{array}$$

Statistical analysis by student's t-test using IBM SPSS Statistics software (Version 25) was performed to examine mean differences between genders.

RESULTS AND DISCUSSION

Body weight

The sex-separated body weight at different age of commercial broilers is given in the Table 1. During the first two weeks of the study (7 and 14 days of age), gender did not have any significant influence on weekly body weight. However, from 21 days onwards, there was a notable and statistically significant (p < 0.05) dimorphism observed, with males consistently exhibiting higher (p < 0.01) body weights than females. Most of the previous studies (Young *et al.*, 2001, Kidd *et al.*, 2005, Nascimento *et al.*, 2018, Kamporn and Deeden, 2022) confirmed this finding, although non-significant difference in carcass yield has also been reported earlier (Tanachai *et al.*, 2017;

Suchon et al., 2017). Benyi et al. (2015) have obtained mixed results of significant (p < 0.05) sex differences in body weight in Cobb strain broilers on days 21 and 35; while, Ross strain broilers showed significant (p < 0.05) differences only on day 21, with no significant differences on day 35. The other studies have reported similar sex differences at the end of the experiments, including Ross strain broilers on day 42 (Young et al., 2001), Ross strain at 55 days (Kidd et al., 2005), Ross 308 and 708 strains at 48 days (Da Costa et al., 2017) and Avian48 and Cobb strains on day 35 (Madilindi et al., 2018; Tanachai et al., 2017). The main factor on gender differences in body weight and muscularity may be attributed to its predetermination during embryonic development when the number of myofibres is established (Henry and Burke, 1998).

Weekly body weight gain

The difference in weekly body weight gain between males and females did not show statistical significance during the first (0-7 days; 0.33 g) and second (8-14 days; 6.99 g) weeks of the study (Fig.1). However, significant differences emerged during the third (15-21 days; 28.78 g; p < 0.01), fourth (22-28 days; 71.96 g; p < 0.01), fifth (29-35)days; 72.04 g; p < 0.01), and sixth (36-40 days; 32.15 g; p < 0.05) weeks of age. These findings partially align with those of Benyi et al. (2015), who observed significant (p<0.05) gender difference in body weight gain from days 8-21 and 22-35 in the Cobb strain, but not with the Ross strain during days 22-35. Kamporn and Deeden (2022) investigated average daily gain in Arbor Acres, Ross 308, and Cobb 500 strains, finding significantly (p<0.05) higher gain in males compared to females during the fourth and fifth weeks of age, but not during earlier stages. A similar study by Abdullah *et al.* (2010) reported significantly (p<0.05) higher average daily gain in Lohman, Hubbard JV, Hubbard Classic, and Ross strains during the second, fourth, fifth, and seventh weeks of age. Shim *et al.* (2012) obtained similar results of sex differences (p<0.01) in a factorial study involving six commercial cross-broiler strains.

Processing yields

In this study, males exhibited significantly (p<0.05) higher live weights than females (Table 2). This difference was also reflected as significantly (p<0.05) higher dressed carcass, and ready-to-cook carcass yields in males. However, the New York dressed carcass yield was significantly (p<0.05) higher in females. Shim et al. (2012), who compared the interaction of strain crosses from 4 male and 3 female parent stocks with genders and found that hot and chilled carcass percentages were significantly (p<0.05) higher in males compared to females. Similarly, Olawumi and Fagbuaro (2011) recorded significantly (p<0.05) higher values of live body weight and eviscerated carcass weight in Arbor Acres, Mashall and Hubbard broiler strains. These findings are consistent with the results of the present study. Several earlier studies have also supported our results, confirming sex differences with males having higher slaughter weight (Isidahomen et al., 2012), carcass weight (Olawumi and Fagbuaro,

2011; Isidahomen *et al.*, 2012; Shafey *et al.*, 2013; Nascimento *et al.*, 2018; Kamporn and Deeden, 2022), and dressing percentage (Isidahomen *et al.*, 2012; Ikusika *et al.*, 2020). However, few other researchers observed no gender effect on dressing percentage in their respective studies (Olawumi and Fagbuaro, 2011; Tanachai *et al.*, 2017; Suchon *et al.*, 2017).

Processing losses

Among the processing losses, loss in shank and feet (%) was significantly (p<0.05) higher in males; while that of abdominal fat was more in females. On the other hand, the losses due to feather, blood, head, viscera and kidney showed no sex difference in the present study (Table 2). The higher per cent abdominal fat in females compared to males has been reported earlier by several authors in Cobb (Benyi et al., 2015; Nikolova et al., 2007) Arbor Acres (Azahan et al., 2007) Hubbard Classic (Nikolova et al., 2007) and Ross (Kidd et al., 2005; Shafey et al., 2013; Madilindi et al., 2018) broilers. Whereas, Abdullah et al. (2010) did not record any sex difference for per cent abdominal fat in Lohman and Hubbard broilers. Higher fat accumulation in the abdominal fat pad in females compared to males is attributed to the impact of female hormones (Le Bihan-Duval, 1998)) and also the fact that females start to store fat earlier than males (Almasi et al., 2012). Contrast to the findings of the present study, earlier researchers have recorded significantly higher (p < 0.05) yield of shank in females and significantly higher (p < 0.05) yields of head and neck in males (Isidahomen *et al.*, 2012).

Cut-up parts

The percentages of drumsticks and wings exhibited significant (p<0.05) gender differences, with males having a higher drumstick percentage and females having a higher wings percentage compared to the opposite sexes (Table 3). The percentages of other carcass cuts, such as thigh, breast, back, and neck, in this study were not influenced by gender. Our findings confirm the findings of Young et al. (2001), Olawumi and Fagbuaro (2011), Isidahomen et al. (2012) and Shafey et al. (2013) who reported higher yields of drumsticks in males. A few earlier studies confirm the current findings of no gender influence on thigh (Shafey et al., 2013, Tanachai et al., 2017), breast (Shim et al., 2012; Shafey et al., 2013, Benyi et al., 2015, Tanachai et al., 2017), back (Shafey et al., 2013) and neck (Shafey et al., 2013) yields. However, the literature presents highly variable information on other cutup part yields. In contrast to our study, few studies have found significantly (p < 0.05) higher percentages of breast yield in males (Hassani-Vaslan, 2010; Isidahomen et al., 2012) and females (Merkley et al., 1980; Young et al., 2001; Kidd et al., 2005), higher thigh yield in males (Becker et al., 1981; Hassani-Vaslan, 2010; Olawumi and Fagbuaro, 2011; Isidahomen et al., 2012) and females (Madilindi et al., 2015), higher leg (Merkley et al., 1980; Shim et al., 2012; Benyiet al., 2015) and wing (Isidahomen et al.,

2012; Shafey *et al.*, 2013; Benyi *et al.*, 2015 yields in males, higher back yield in males (Olawumi and Fagbuaro, 2011; Isidahomen *et al.*, 2012), and higher neck yields in females (Madilindi *et al.*, 2015).

Giblets weight and intestinal length

In the present study, we observed significantly (p<0.05) higher heart weight and significantly (p<0.05) longer small intestine and total intestines in females compared to males. However, gender did not have a significant influence on the weights of giblets, such as the liver and gizzard, or on the lengths of intestinal segments like the large intestine and caeca. These findings contrast with earlier studies, which reported varying results. Some studies found significantly (p<0.05) higher liver (Benyi et al., 2015; Madilindi et al., 2018), heart (Hassani-Vaslan, 2010; Madilindi et al., 2018), and gizzard (Benyi et al., 2015; Madilindi et al., 2018) weights in males, while others found similar weights of the liver, heart, and gizzard in both sexes (Olawumi and Fagbuaro, 2011). It is worth noting that information regarding the influence of sex on intestinal length is limited in the literature, making comparisons with our results not possible.

In can be concluded that the males can be marketed early with better live weight and dressed carcass weights and both sexes can be diversely utilized for the different cut-up parts in the processing and by-products industry.

Table 1. Body weight (g) of male and female commercial broilers at different age

Sex	7 days	14 days	21 days	28 days	35 days	40 days
Males	150.57 ±1.41 (n=113)	374.13 ±4.41 (n=110)	807.33 ±8.85 (n=109)	1290.44 ±11.93 (n=109)	1764.39 ±15.55 (n=107)	2162.65 ±18.27 (n=107)
Females	150.61 ±1.16 (n=107)	367.18 ±4.48 (n=106)	771.6 ±7.44 (n=104)	1182.75 ±9.73 (n=102)	1584.66 ±15.99 (n=102)	1950.77 ±16.19 (n=101)
t-statistic	0.03	1.26	3.5	7.8	8.7	9.59
Significance	NS	NS	p<0.01	p<0.01	p<0.01	p<0.01

NS – Not significant (P>0.05)

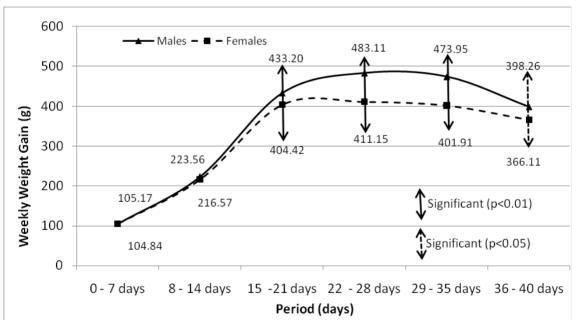


Fig. 1. Sex separated weight gain (g) during different periods in commercial broilers

Table 2. Carcass yields and cut-up parts of male and female commercial broilers at 40 days of age (n=12)

		Proce	rocessing yields (%)	s (%)			\mathbf{P}_1	rocessing	Processing losses (%)	(%)		
Sex	Live Weight	New York dressed carcass	Dressed	Ready- to-cook carcass	Feather	Blood	Shank & feet	Head	Viscera	Kidney	Abdomi- nal Fat	Total offal
Males	2404.77	86.68	70.87	75.48	7.80	2.22	3.96	2.87	11.32	0.24	0.72	29.13
	± 98.55	± 0.59	± 1.03	± 0.92	± 0.54	± 0.16	± 0.31	± 0.14	± 0.46	± 0.02	± 0.06	± 1.03
Females	2119.36	90.04	90.89	72.79	7.22	2.74	4.95	3.05	12.9	0.26	0.81	31.94
	± 118.06	± 0.67	± 0.56	± 1.25	± 0.48	± 0.24	± 0.44	± 0.18	± 0.86	± 0.03	± 0.04	± 1.56
t-statistic	2.07	2.11	2.23	2.07	0.82	1.9	2.17	0.85	1.7	0.73	2.67	2.07
Significance P<0.0	P<0.05	p<0.05	p<0.05	p<0.05	NS	NS	p<0.05	NS	NS	NS	p<0.05	NS

NS – Not significant (P>0.05)

Table 3. Cut-up parts, organ yields and relative length of intestine organ yields of male and female commercial broilers at 40 days of age (n=12)

23		-	Cut-up 1	Jut-up parts (%)	(Gible	Giblets (%)		Relativ	e length c	Relative length of intestine	(cm/g)
Sex	Drum- stick	dgidT	Breast	Васк	gniW	Меск	Liver	Heart	bra-szið	Giblets	Ilsm2 əniteətni	- Large sintestine	Бэеса	Total sənitsətni
Males	12.57	10.79	36.58	27.57	7.20	5.28	1.97	09.0	1.93	4.61	7.79	0.44	0.75	8.90
	± 0.41	± 0.72	± 1.16	± 1.05	± 0.22	± 0.34	± 0.13	± 0.04	± 0.13	± 0.25	± 0.37	± 0.04	± 0.05	± 0.42
Females	11.47	11.78	34.11	29.23	8.15	5.26	1.93	0.74	1.93	4.73	9.15	0.48	0.83	10.37
	± 0.39	± 0.56	± 1.13	± 1.72	± 0.36	± 0.41	± 0.20	± 0.06	± 0.13	± 0.37	± 0.54	± 0.03	± 0.06	± 0.62
t-statistic	2.12	1.09	1.58	0.94	2.44	0.05	98.0	2.10	0.03	0.27	2.23	0.80	1.24	2.15
Significance p<0.(p<0.05	NS	NS	NS	p<0.05	ns	NS	P<0.05	NS	NS	p<0.05	ns	ns	p<0.05

NS - Not significant (P>0.05)

REFERENCES

- Abdullah, A.Y., Al-Beitawi, N.A., Rjoup, M.M.S., Qudsieh, R.I. and Ishmais, M.A.A. (2010). Growth performance, carcass and meat quality characteristics of different commercial crosses of broiler strains of chicken. *The Journal of Poultry Science*, **47**: 13 21.
- Almasi, A., Suto, Z., Budai, Z., Donko, T., Milisits, G. and Horn, P. (2012). Effect of age, sex and strain on growth, body composition and carcass characteristics of dual purpose type chicken. World Poultry Congress 2012, Salvador, Bahia, Brazil, 5-8 August 2012. Worlds Poultry Science Journal, 68 (1): 285 288.
- Azahan, E.A.E., Marhi, A.M. and Norazha, M. (2007). Evaluation of the effects of sex on growth and carcass characteristics of broilers. *Journal of Tropical Agriculture and Food Science*, **35**: 313 318.
- Becker, W.A., Spencer J.V. and Verstrate, J.A. (1981). Abdominal and carcass fat in five broiler strains. *Poultry Science*, **60**: 693 697.
- Benyi, K., Tshilate, T.S., Netshipale, A.J. and Mahlako, K.T. (2015). Effects of genotype and sex on the growth performance and carcass characteristics of broiler chickens. *Tropical Animal Health and Production*, **47**(7): 1225 1231.

- BIS (2007). Indian Standard Poultry Feeds Specification (fifth Revision). Bureau of Indian Standards, Manak Bhavan, No. 9, Bhadur Shah Zafar Marg, New Delhi 110 002.
- Da Costa, M.J., Zaragoza-Santacruz, S., Frost, T.J., Halley, J. and Pesti, G.M. (2017). Straight-run vs. sex separate rearing for 2 broiler genetic lines Part 1: Live production parameters, carcass yield, and feeding behavior. *Poultry Science*, **96**(8): 2641 2661.
- Hassani-Vaslan, S.I., Gollan, A.R.A., Motaghini, G., Namvari, M. and Hamedi, M. (2010). Comparison of growth performance and carcass characteristics of broiler chicken fed diets with various energy and constant energy to protein ratio. *Journal of Animal and Veterinary Advances*, 9: 2565 2570.
- Henry, M.H. and Burke, W.H. (1998). Sexual dimorphism in broiler chick embryos and embryonic muscle development in late incubation. *Poultry Science*, 77(5): 728 736.
- Ikusika, O., Falowo, A., Mpendulo, C., Zindove, T. and Okoh, A. (2020). Effect of strain, sex and slaughter weight on growth performance, carcass yield and quality of broiler meat. *Open Agriculture*, **5**: 607 616.
- Isidahomen, C.E., Iori, B.M. and Akano, K. (2012). Genetic and sex differences in

- carcass traits of Nigerian indigenous chickens. *Journal of Animal Science Advances*, **2**: 636 648.
- Kamporn, K. and Deeden, B. (2022). Effect of strain and gender on production performance, carcass characteristics and meat quality of broiler chickens. *International Journal of Agricultural Technology*, **18**(2): 567 578.
- Kidd, M.T., Corzo, A., Hoehler, D., Miller, E.R. and Dozier, W.A. III. (2005). Broiler responsiveness (Ross x 708) to diets varying in amino acid density. *Poultry Science*, **84**(9): 1389 1396.
- Le Bihan-Duval, E., Mignon-Grateau, S., Millet, N. and Beaumont, C. (1998). Genetic analysis of a selection on increased body weight and breast muscle weight as well as on limited abdominal fat weight. *British Poultry Science*, **39**: 346 353.
- Madilindi, M.A., Mokobane, A., Letwaba, P.B., Tshilate, T.S., Banga, C.B., Rambau, M.D., Bhebhe, E. and Benyi, K. (2018). Effects of sex and stocking density on the performance of broiler chickens in a subtropical environment. *South African Journal of Animal Science*, **48**(3): 459 468.
- Merkley, J.W., Weinland, B.T., Malone, G.W. and Chaloupka, G.W. (1980). Evaluation of five commercial broiler crosses. 2. Eviscerated yield and

- component parts. *Poultry Science*, **59**: 1755 1760.
- Nascimento, do D.C.N., Dourado, L.R.B., Siqueira, de J.C., Lima, de S.B.P., Silva, da M. da C. M., Silva, da G.G., Sakomura, N.K., Ferreira, G.J.B. de C. and Biagiotti, D. (2018). Productive features of broiler chickens in hot weather: effects of strain and sex. *Ciencias Agrarias*, **39**: 731 745.
- Nikolova, N., Pavlovski, Z., Milosevic, N. and Peric, L. (2007). The quality of abdominal fat in broiler chickens of different genotypes from fifth to seventh week of age. *Biotechnology in Animal Husbandry*, **23**: 331 338.
- Olawumi, S.O. and Fagbuaro, S.S. (2011).

 Productive performance of three commercial broiler genotypes reared in the derived Savannah zone of Nigeria. *International Journal of Agricultural Research*, **6**: 798 804.
- Shafey, T. M., Alodan, M. A., Hussein, E.O.S. and Al-Batshan, H.A. (2013). The effect of sex on the accuracy of predicting carcass composition of Ross broiler chickens. *The Journal of Animal and Plant Sciences*, **23**(4): 975 980.
- Shim, M.Y., Tahir, M., Karnuah, A.B., Miller, M., Pringle, T.D., Aggrey, S.E. and Pesti, G.M. (2012). Strain and sex effects on growth performance and carcass traits of contemporary

- commercial broiler crosses. *Poultry Science*, **91**(11): 2942 2948.
- Suchon, T., Tanachai, T., Prajit U., Watcharin, K., Supunsa, A. and Boonlom, C. (2017). Comparison of production performance and carcass composition of commercial broiler strains 1. Cobb, Arbor Acres and Ross. *The Journal of Agricultural Science*, **2**: 210 216.
- Tanachai, T., Suchon, T., Prajit, U., Watcharin, K., Supunsa, A. and Boonlom, C. (2017). Comparison of production performance and carcass composition

- of commercial broiler strains 2. Cobb and Ross. *Agricultural Science Journal*, **48**: 217 224.
- Young, L.L., Northcutt, J.K., Buhr, R.J., Lyon, C.E. and Ware, G.O. (2001). Effects of age, sex, and duration of postmortem aging on percentage yield of parts from broiler chicken carcasses, *Poultry Science*, **80**(3): 376 379.
- Zuidhof, M.J. and Schneider, B.L. (2014) Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. *Poultry Science*, **93**(12): 2970 – 2982.