Case Report

SUCCESSFUL MANAGEMENT OF CENTRAL VESTIBULAR DISEASE WITH PROGESTERONE IN A KANNI DOG – A CASE REPORT

P.K. Ramkumar¹, M. Saravanan², K. Karthika^{3*}, S. Yogeshpriya⁴, S. Savitha⁵, K. Jayalakshmi⁶ and N. Premalatha⁷

Department of Veterinary Medicine Veterinary College and Research Institute Tamil Nadu Veterinary and Animal Sciences University Orathanadu - 614 625

ABSTRACT

A 2-year-old male Kanni dog was presented to the Veterinary College and Research Institute, Orathanadu with a history of head tilt, unable to balance while walking and with suspicion of traumatic brain injury. On clinical examination, neurological signs like compulsive walking, head tilt, circling, nystagmus, staggering gait, decreased proprioception and tactile reflexes were observed. The blood samples were analyzed for hematological and biochemical profile analysis and all parameters were in normal range except mild leukocytosis. The cerebro-spinal fluid was collected and neuron specific enolase (NSE), a neural biomarker was estimated. The CSF was red-tinged and had elevated NSE value (41.42 ng/ml). Based on history, clinical signs and NSE values, the case was diagnosed as central vestibular disease. The animal was treated with polyionic fluids – inj. ringers lactate @ 10ml/kg I/V, inj. hydroxyprogesterone caproate @ 2mg/kg, I/M, inj. cefotaxime @ 25 mg/kg I/V and Inj. B Complex vitamins, I/V. The animal was prescribed with oral micronized progesterone @ 5 mg/kg. On day 7, only mild head tilt and nystagmus were noticed. On day 14 post therapy, the clinical signs were resolved and NSE value became normal.

Keywords: Kanni dog, central vestibular disease, neuron specific enolase, progesterone.

Received: 30.05.2025 Revised: 25.08.2025 Accepted: 03.09.2025

INTRODUCTION

The vestibular system, also known 'special proprioception' is classified into two components namely central vestibular system and peripheral vestibular system [Rossmeisl, 2010; Lahunta and Glass, 2009]. The peripheral components consist of the inner ear and its receptor along with

¹ Assistant Professor, Veterinary Clinical Complex

²Associate Professor, VCRI, Theni

³Assistant Professor, *Corresponding author Email id: karthika1988.6@gmail.com

⁴Assistant Professor.

⁵Under Graduate Student

⁶Assistant Professor, Veterinary Clinical Complex

⁷Professor and Head, Veterinary Preventive Medicine, Madras Veterinary College, Chennai

peripheral axon of vestibulocochlear nerve whereas the central vestibular system includes medullar nuclei and neurons of cerebellum [Lowrie and Vetmb, 2012]. The most common clinical sign of vestibular disease is vomiting followed by head tilt, ataxia, pathological nystagmus and strabismus [Radulescu et al., 2020]. Some of the common etiologies for central include vestibular disease infectious causes like canine distemper encephalitis, rickettsial encephalitis, fungal encephalitis, granulomatous meningoencephalitis and non-infectious causes like traumatic brain injury, metronidazole toxicity and neoplasia related to middle and inner ear [Thomas, 2000]. Even though findings of neurological examination are essential for the diagnosis of vestibular syndrome, its reliability to differentiate between central and peripheral vestibular syndrome is uncertain. Therefore, using advanced diagnostic aids like magnetic resonance imaging (MRI), computed tomography (CT) and cerebrospinal fluid (CSF) analysis are more reliable [Boudreau et al., 2018]. Some human study findings claim that vestibular signs are more commonly seen in acute traumatic brain injury with ataxia being the most common sign [Marcus et al., 2019].

Progesterone has been observed to promote the repair of the blood-brain barrier, reduce edema and dampen the inflammatory response. Furthermore, progesterone's protective effects may involve safeguarding or reconstructing the blood-brain barrier, decreasing the development of cerebral edema, suppressing the inflammatory cascade and limiting cellular necrosis

and apoptosis [Stein *et al.*, 2008]. These mechanisms are all plausible explanations for its neuroprotective properties. In studies involving animal models of traumatic brain injury, progesterone has demonstrated neuroprotective effects, including the reduction of edema and infarct/lesion volume, the regulation of the inflammatory response and the promotion of neurological recovery [Stein, 2008; Jiang *et al.*, 2011].

This article reports the successful management of central vestibular disease with traumatic brain injury in a Kanni dog with progesterone.

CASE PRESENTATION

A 2-year-old male Kanni dog weighing around 20 kg was referred to Veterinary College and Research Institute, Orathanadu with the history of vomiting, head tilt, unable to balance while walking and the owner suspecting traumatic injury. On physical examination, the dog had dull and depressed mentation while other clinical parameters like rectal temperature, conjunctival mucous membrane and lymph nodes were unremarkable. On the day of presentation (Day 0), a complete neurological examination including postural reflexes, cranial nerve reflexes and spinal reflexes was performed and the results were recorded (Tables 1, 2 and 3). The observation included the presence of ataxic gait, head tilt towards right side, spontaneous vertical nystagmus of both eyes and medial strabismus of the right eye (Figure 1). All other reflexes were unremarkable.

The degree of encephalitis was graded using Meyer's criteria and the signs showed that the dog was in grade 3 while presented. Other diagnostic tests included hematological and serum biochemical estimation. otoscopic examination. radiography cerebro-spinal and examination. The results of hematological and biochemical profile were normal except mild leukocytosis. No abnormalities were detected in lateral radiographic view of skull and no signs of internal injuries were seen in otoscopic examination. Under general anesthesia, cerebro spinal fluid was collected from cerebellomedullary cistern according to the standard procedure and the CSF was red tinged in color. Estimation of Neuron specific enolase (NSE) enzyme was done on the collected fluid. NSE was measured by solid phase enzyme immuno assay using commercial ELISA kit of XEMA Medica Co. Ltd., Russia. The concentration of NSE in the sera sample was calculated based on the ELISA test absorbance at 450 nm and the standard concentrations in BioTek Gen 5 by Standard curve analysis. The result revealed an elevated NSE value of 41.42 ng/ ml (Normal range – 5-20 ng/ml) in the CSF collected on the day of presentation. Based on this value the dog can be diagnosed to have traumatic brain injury with central vestibular disease.

TREATMENT

A treatment plan with progesterone was made for the dog. The animal was treated with polyionic fluids – inj. ringers lactate @ 10ml/kg I/V, inj. hydroxyprogesterone caproate @ 2mg/

kg, I/M, inj. cefotaxime @ 25 mg/kg I/V and inj. B complex vitamins, I/V. Oral progesterone administration was initiated on Day 1 and the animal was prescribed with oral micronized progesterone - (Tab. Sustan 200mg) at a dose rate of 5 mg/kg PO along with supportives. On day 7 - mild head tilt and nystagmus were noticed and on day 14 clinical signs were resolved (Figure 2). The NSE examination was performed on day 14 and the value was within the normal range of 15.68 ng/ml.

RESULT AND DISCUSSION

Progesterone commonly known as pregnancy hormone, is a steroid hormone synthesized from corpus luteum, placenta and adrenal glands. In recent years, it has been discovered that progesterone has various functions apart from its role in reproduction. Progesterone and its analogues have neuroprotective, anti-inflammatory, immune-modulatory and to a certain extent anti-neoplastic effects [Nagy et al., 2021]. Progesterone is considered a neurosteroid as it is also synthesized locally in the nervous system [Guennoun et al., 2015]. Extensive and pre-clinical studies have been conducted in human medicine to determine the neuroprotective effects of progesterone in multiple sclerosis, alzheimer's, parkinson's disease, stroke, traumatic brain injury, spinal cord trauma, central and peripheral neuropathies [González, 2020]. The exact mechanism of action of progesterone in neurological cases is unclear. However, studies conducted on laboratory animal models claim that there are numerous progesterone receptors (PR) in the neurons which exhibit various signaling pathways during neuronal damage [Kraus *et al.*, 1993]. Progesterone also showed good response in mitigating the demyelination experimental studies with cuprizone-induced mice [Ye *et al.*, 2013].

Enolase is a glycolytic enzyme that is exhibited in the form of three isomers namely enolase α , enolase β and enolase γ . Of these three isomers, enolase γ is more specific to neurons and neuroendocrine cells and hence termed as neuron-specific enolase (NSE). Any damage to the neurons will lead to release of NSE into the blood circulation and hence it acts as a potential biomarker for neurological cases especially for traumatic brain injury cases. The amount of NSE in serum or CSF corresponds to the extent of the damage.

CONCLUSION

Unlike human medicine, the research studies on effects of progesterone in neurological cases in veterinary medicine is

limited. Based on the literature review, this is the first case report showing successful management of a neurological disorder with progesterone therapy in a dog in India.

CONFLICT OF INTEREST

None of the authors have any conflict of interest to report.

ACKNOWLEDGEMENT

The authors thank Dean, Veterinary College and Research Institute, Orathanadu and Director of Clinics, Tamil Nadu Veterinary and Animal Sciences University for the facilities provided. We also thank the Department of Veterinary Medicine, Veterinary College and Research Institute, Orathanadu.

Table 1. Neurological observations done on the day of presentation

Mentation	Inappropriate	
Gait	Vestibular ataxia	
Posture	Head tilt towards right	

Table 2. Results of cranial nerve examinations

Test	Right	Left
Menace response	Normal	Normal
Direct Pupillary light reflex	Normal	Normal
Palpebral reflex	Normal	Normal
Spontaneous nystagmus	Present (vertical)	Present (vertical)
Positional strabismus	Present (medial)	Absent
Jaw tone	Normal	Normal
Gag reflex	Normal	Normal

Table 3. Results of Spinal reflexes examination.

Spinal reflexes	Right	LEFT
Flexor withdrawal (thoracic limbs)	Delayed	Normal
Crossed extensor (thoracic and pelvic limb)	Normal	Normal
Flexor withdrawal (pelvic limbs)	Normal	Normal

Fig.1. Before treatment

Fig.2. After treatment

REFERENCE

- Boudreau, C.E., Dominguez, C.E., Levine, J.M., Mankin, J., Anderson, K.M., Voges, A.K. and Fosgate, G.T. (2018). Reliability of interpretation of neurologic examination findings for the localization of vestibular dysfunction in dogs. *Journal of the American Veterinary Medical Association*, **252**(7): 830-8.
- González, S.L. (2020). Progesterone for the treatment of central nervous system disorders: the many signaling roads for a single molecule. *Neural Regeneration Research*, **15**(10): 1846-7.
- Guennoun, R., Labombarda, F., Deniselle, M.G., Liere, P., De Nicola, A.F. and Schumacher, M. (2015). Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. *The Journal of steroid biochemistry and molecular biology,* **146**:48-61.
- Jiang, C., Cui, K., Wang, J. and He, Y. (2011). Microglia and cyclooxygenase 2: possible therapeutic targets of progesterone for stroke. *International immunopharmacology*, **11**(11): 1925-31.
- Kraus, W.L., Montano, M.M. and Katzenellenbogen, B.S. (1993). Cloning of the rat progesterone receptor gene 5'-region and identification of

- two functionally distinct promoters. *Molecular endocrinology.* **7**(12):1603-16.
- Lahunta, D.A. and Glass, E. (2009). Vestibular system: special proprioception. *Veterinary neuroanatomy and clinical neurology*. 319.
- Lowrie, M and Vetmb, M. (2012). Vestibular disease: anatomy, physiology, and clinical signs. Compendium: Continuing Education for Veterinarians, 34(7):E1.
- Marcus, H.J., Paine, H., Sargeant, M., Wolstenholme, S., Collins, K., Marroney, N., Arshad, Q., Tsang, K., Jones, B., Smith, R., and Wilson, M.H. (2019). Vestibular dysfunction in acute traumatic brain injury. *Journal of neurology*, **266**:2430-3.
- Nagy, B., Szekeres-Barthó, J., Kovács, G.L., Sulyok, E., Farkas, B., Várnagy, A., Vértes, V., Kovács, K. and Bódis, J. (2021). Key to life: physiological role and clinical implications of progesterone. *International Journal of Molecular Sciences*, **22**(20):11039.
- Radulescu, S.M., Humm, K., Eramanis, L.M., Volk, H.A., Church, D.B., Brodbelt, D. and O'Neill, D.G. (2020). Vestibular disease in dogs under UK primary veterinary care: epidemiology and clinical management. *Journal of Veterinary Internal Medicine*, 34(5):1993-2004.

- Rossmeisl, J.H. (2010). Vestibular disease in dogs and cats. *Veterinary Clinics: Small Animal Practice*, **40**(1):81-100.
- Stein, D.G., Wright, D.W. and Kellermann, A.L. (2008). Does progesterone have neuroprotective properties? *Annals of Emergency Medicine*, **51**(2):164-72.
- Stein, D.G.,(2008). Progesterone exerts neuroprotective effects after brain injury. *Brain Research Reviews*. **57**(2):386-97.

- Thomas, W.B. (2000). Vestibular dysfunction. *Veterinary Clinics of North America: Small Animal Practice*, **30**(1):227-49.
- Ye, J.N., Chen, X.S., Su, L., Liu, Y.L., Cai, Q.Y., Zhan, X.L., Xu, Y., Zhao, S.F. and Yao, Z.X. (2013). Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. *PLoS One*. **8**(1): e54590.