# Case Report

# CONCURRENT HYDROSALPINX AND OVARIAN HYDROBURSITIS IN A CROSSBRED JERSEY COW

S. Raja<sup>1\*</sup>, M. Murugan<sup>2</sup>, Bhavna Dabas<sup>3</sup>, D. Gopikrishnan<sup>4</sup>, V. Prabaharan<sup>5</sup>, M. Palanisamy<sup>6</sup> and M. Selvaraju<sup>7</sup>

Department of Clinics Veterinary College and Research Institute Tamil Nadu veterinary and Animal Sciences University Namakkal - 637 002

#### **ABSTRACT**

A crossbred Jersey cow was referred with a history of repeat breeding syndrome. Routine gynaeco-clinical examination revealed normal uterine tract with palpable cyst-like structures near the right ovary and uterine tube. Transrectal ultrasonography confirmed the presence of large, anechoic, cystic structure adjacent to the right ovary, consistent with an ovarian hydrobursitis coupled with hydrosalpinx. Early and accurate ultrasonographic diagnosis is essential for guiding clinical decision-making, particularly in repeat breeding cases, as timely intervention can significantly enhance reproductive outcomes and declare the fertility potential of valuable breeding animals

Keywords: crossbred Jersey cow, hydrosalpinx, ovarian hydrobursitis,

Received: 04.07.2025 Revised: 14.07.2025 Accepted: 30.08.2025

# INTRODUCTION

Reproductive tract pathologies, particularly involving the ovaries and oviducts, are significant contributors to infertility in bovines. Among these, hydrosalpinx, characterized by fluid-filled

distension of the oviduct, and ovarian hydrobursitis or cystic bursa ovarica, marked by excessive fluid accumulation within the ovarian bursa, are relatively rare but clinically significant conditions (Hatipoglu et al., 2002). This report underscores the pivotal role of ultrasonographic imaging in the differential diagnosis of adnexal pathologies in bovines, enabling accurate identification of reproductive abnormalities such as tuboovarian cysts and ovarian hydrobursitis. Furthermore, this case contributes to the limited clinical documentation available on hydrosalpinx and cystic bursa ovarica in a crossbred Jersey cow highlighting the diagnostic value of advanced imaging in veterinary reproductive medicine.

<sup>&</sup>lt;sup>1</sup>Assistant Professor

<sup>\*</sup>Corresponding Author email: argoraja@gmail.com,

<sup>&</sup>lt;sup>2</sup>Assistant Professor

<sup>&</sup>lt;sup>3</sup>Final Year UG Student

<sup>&</sup>lt;sup>4</sup>Assistant Professor, Department of Veterinary Gynaecology and Obstetrics

<sup>&</sup>lt;sup>5</sup>Professor, Department of Veterinary Gynaecology and Obstetrics

<sup>&</sup>lt;sup>6</sup>Professor and Head, Department of Veterinary Gynaecology and Obstetrics

<sup>&</sup>lt;sup>7</sup>Dean, Veterinary College and Research Institute, Namakkal 637 002

# CASE HISTORY AND OBSERVATION

A 5-year-old pluriparous Jersey crossbred cow on its 4th parity was presented the Veterinary Clinical Complex, Namakkal, with a history of repeat breeding and was inseminated 20 days back. There was no history of puerperal complications. On external examination the vulva was shrunken with pink and moist vaginal mucous membrane without any evidence of discharge. On rectal examination, the uterus was observed to be flaccid and symmetrical with the closed cervix. Further palpation of the genital tract revealed both ovaries; however, a soft fluctuating mass was palpated adjacent to the right ovary extending towards the oviduct. Transrectal ultrasonographic examination (Sonoray DS 50 plus) with 7.5MHz trans rectal linear transducer revealed a corpus luteum (14.4 mm) and a small follicle (4.7 mm) on the right ovary (Fig 1), indicative of ovarian cyclicity. On further observation. a well-defined. solitary thin-walled, anechoic structure (approximately 40.0 mm in diameter) was visualized cranial to the right ovary (Fig 2). Linear anechoic structure suggestive of fluid filled right oviduct was also visualized. Fluid filled oviduct was confirmed by the absence of Colour Doppler signals in the anechoic region (Fig.3). Left ovary had a regressed corpus luteum (10.0 mm) without any abnormalities (Fig.4). Based on the gynaeco-clinical and ultrasonographic findings the case was diagnosed as 'Ovarian hydrobursitis with hydrosalpinx'.

### DISCUSSION

Hydrosalpinx refers to the abnormal dilation of the oviduct caused by fluid accumulation, typically resulting from chronic salpingitis or adhesions surrounding the ovary (Purohit, 2014). Similarly, cystic bursa ovarica occurs due to excessive fluid collection within the ovarian bursa. potentially associated with trauma or inflammatory sequelae (Arun et al., 2017). Reports from slaughterhouse studies have documented the incidence of hydrosalpinx (0.36%) and cystic bursa ovarica (0.18%) as uncommon but significant causes of infertility in cows (Hatipoglu et al., 2002). Acquired tubo-ovarian cysts are typically secondary inflammatory to chronic conditions such as salpingitis or oophoritis, which promote adhesion formation between the fimbrial end of the oviduct and the ovary, ultimately resulting in fluid entrapment and cyst development (Azawi and Ali, 2015; Purohit, 2014). Though both conditions may be asymptomatic initially, they can impair fertility by physically obstructing gamete transport or ovum release.

Tubo-ovarian cysts in cattle are rare and often misdiagnosed as ovarian follicular cysts or para-ovarian cysts during routine palpation due to their similar anatomical location and cystic structure. In the present case, ultrasonographic examination was critical in identifying the solitary cystic structure. The anechoic, fluid-filled mass was detected adjacent to the ovary with no evidence of parenchymal continuity with

the ovary, consistent with the findings of Purohit (2014) and Satheshkumar *et al.* (2019). Ultrasonographic differentiation is vital, as it offers real-time imaging of fluid characteristics, location, and anatomical relationships (Sofi and Singh, 2018). The lack of ovarian enlargement and presence of corpus luteum supported the non-functional nature of the cyst.

Unlike follicular cysts, the tuboovarian cysts originate from the mesosalpinx or periovarian structures (Azawi and Ali, 2015) and hence not associated with hormonal imbalance (Purohit, 2014; Patra et al., 2012). They may become clinically relevant only when they are large enough to cause mechanical interference with gamete transport (Dawood, 2010). Even though the present case was a unilateral pathology, extensive periovarian fluid accumulation and tubal changes, even in cyclic animals, may compromise fertility if ovulation and fertilization are hindered mechanically as emphasized by Satheshkumar et al. (2019).

Ultrasonography enables real-time visualization of ovarian and peri-ovarian structures, offering superior diagnostic precision and thus aid in differential diagnosis from follicular cysts, by which unnecessary

hormonal therapies can be avoided. Early diagnosis helps avoid repeated unsuccessful inseminations and improves reproductive outcomes (Roberts, 1986; Noakes *et al.*, 2009). Depending on the size and impact on fertility, management may range from monitoring to surgical excision (laparotomy or laparoscopy in high-value animals). In this case, no surgical intervention was undertaken, and the cow was monitored for subsequent estrous cycles and reproductive performance.

Concurrent hydrosalpinx and cystic ovarian bursa are uncommon yet clinically important reproductive pathologies in cattle. Accurate diagnosis via ultrasonography is essential to distinguish these lesions from functional ovarian cysts and to assess fertility prognosis. While unilateral cases may retain reproductive potential, early identification is critical for timely management in breeding animals.

# **ACKNOWLEDGEMENT**

The authors thank the Dean, Veterinary College and Research Institute, Namakkal and the Director of Clinics, TANUVAS, Chennai -7 for the facilities provided for the study.

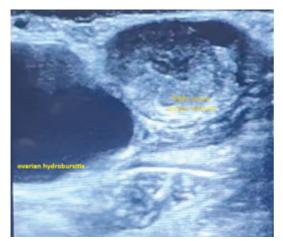



Fig.1. Right Ovary with CL

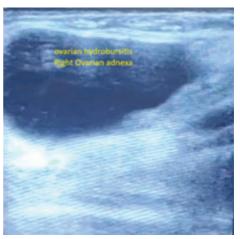



Fig.2. Hydrobursitis adjacent to right ovary

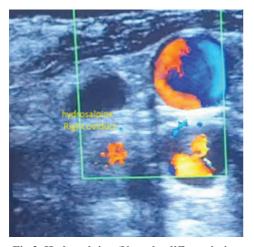



Fig.3. Hydrosalpinx (Note the differentiation between blood vessel and fluid filled oviduct)

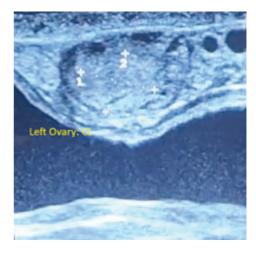



Fig.4. Left ovary with regressed CL

### REFERENCES

- C., Satheshkumar, S. Arun, and Rajasundaram, C. (2017). Cystic ovarian bursa and tubo ovarian rare periovarian cyst: bilateral complications in a crossbred heifer. Abstract presented in TANUVAS 9th clinical case conference on farm and companion animal practice for veterinary students at Chennai, 3 & 4th August, 2017. Paper ID 8825 pp 237.
- Azawi, O.I. and Ali, A.J. (2015). A study on the prevalence of pathological abnormalities of the ovaries and oviducts diagnosed at postmortem of buffaloes in Mosul. *Buffalo Bulletin*, **34**(1): 51-62.
- Dawood, K.E. (2010). Hydrosalpinx and hydrobursitis in infertile goats. *Turkish Journal of Veterinary and Animal Sciences*, **34**(5): 477-480.
- Hatipoglu, F., Tekin, K. and Kurar, A. (2002). An abattoir study of genital pathology in cows: I. Ovary and oviduct. *Agricultural and Food Sciences*, **153**(1): 29-33.

- Noakes, D.E., Parkinson, T.J. and England, G.C.W. (2009). Arthur's Veterinary Reproduction and Obstetrics, 9th ed. Philadelphia: Saunders Elsevier.
- Patra, M.K., Ravi, S.K., Islam, R., Loyi, T. and Kumar, H. (2012). Bilateral hydrosalpinx in buffalo a case report. *Buffalo Bulletin*, **31**: 99-101.
- Purohit, G.N. (2014). Ovarian and oviductal pathologies in the buffalo: occurrence, diagnostic and therapeutic approaches. *Asian Pacific Journal of Reproduction*, **3**(2): 156-168.
- Roberts, S.J. (1986). Veterinary Obstetrics and Genital Diseases (Theriogenology), 3rd ed. Woodstock, VT: Veterinary Medicine Publishing Co.
- Satheshkumar, S., Raja, S. and Rajasundaram, R.C. (2019). Ultrasonographic diagnosis of ovario burso tubal cyst in a heifer. *Intas Polivet*, **20**(1): 69 -70.
- Sofi, K.A. and Singh, M.M. (2018). Ultrasonography and laparoscopy as a diagnostic tool for evaluation of genitalia in cows. *Indian Journal of Animal Sciences*, **88**(11): 1262-1265.