Haematobiochemical examination and urinalysis in dogs with renal disease

Vaishali Chauhan a*, Ajay Katoch a, Ankur Sharma a, R.D. Patil b and Adarsh Kumar c

- ^a Department of Veterinary Medicine, DGCN College of Veterinary and Animal Sciences, Palampur, Himachal Pradesh, India.
- ^b Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, Palampur, Himachal Pradesh, India.
- ^c Department of Veterinary Surgery and Radiology, DGCN College of Veterinary and Animal Sciences, Palampur, Himachal Pradesh, India.

Abstract

Early detection of renal diseases in canines is crucial for improving prognosis and extending quality of life. Urinalysis plays major role in identifying renal dysfunction. This study was aimed to evaluate different haemato-biochemical parameters along with urinalysis in dogs with Stage I and II of renal disease. Study was conducted on 13 dogs with Stage I and II renal disease. Mean values of TEC, PCV, Sodium, Potassium and Calcium were decreased while mean values of TLC, Monocytes, MCH, MCHC, Creatinine and ALT were increased. The urine pH of 10 dogs ranged from 5.0-6.5 whereas 3 dogs had pH 8. Mean value of UP:C was found to be significantly increased. Crystaluria (5), struvites (4) and bilirubin crystals (1) were found.

Keywords: Urinalysis- renal dysfunction – dogs

Introduction

Renal diseases are among the most prevalent and potentially life-threatening conditions affecting canines, often progressing silently until significant kidney function is lost. Early detection is critical for improving prognosis, guiding therapeutic interventions, and enhancing the quality of life in affected dogs. Among various diagnostic modalities, urinalysis remains a cornerstone in veterinary nephrology due to its non-invasive nature, affordability, and diagnostic value. Diagnosing kidney issues in dogs primarily relies on their medical history, clinical assessment, and elevated levels of serum creatinine.

Urinalysis provides essential information about the physical, chemical, and microscopic characteristics of urine, reflecting both renal and systemic health. Parameters such as urine specific gravity, proteinuria, haematuria, and the presence of casts or crystals indicate renal pathology before clinical signs or serum biochemical changes become evident. The present study includes detailed clinical examination, haemato-biochemical examination and urinalysis to assess renal diseases in canines.

The present study was carried out on dogs presented during the period of November 2024 to May 2025 in the Department of Veterinary Medicine, Veterinary Clinical Complex, College of Veterinary & Animal Sciences, CSKHPKV Palampur (H.P). Initial screening was done on the basis of patient's history and presenting clinical signs as inappetence, dehydration, fever, occasional vomiting, diarrhoea, urine dribbling, oliguria and halitosis. Haemato-biochemical estimation, electrolytes analysis and urinalysis were performed. Physical, chemical and microscopic examination of urine samples were done. Thirteen dogs in Stage I and II based on IRIS CKD classification were included for the study. Ten apparently healthy dogs presented for general checkup and vaccination were included as control group.

Results and Discussion

Out of 13 dogs, 53% (7/13) were in Stage I while 46.15% (6/13) were in Stage II of renal disease. Different aetiologies in these dogs are presented in Table 1. Most common clinical signs observed were urine dribbling, occasional vomiting, halitosis, inappetence, fever, dehydration and weight loss. Clinical, haematobiochemical parameters of dogs in Stage I and II of renal disease are presented in Table 2

Materials and Methods

^{*}Corresponding author: vaichauhan2000@gmail.com

Table 1: Etiologies in dogs with Stage I and II of renal disease

S.No.	Etiology	No. of cases (n=13)
1.	Haemoprotozoan infection	4/13 (30%)
2.	Cystitis	3/13 (23%)
3.	Urethral Calculi	2/13 (15%)
4.	Haematuria	2/13 (15%)
5.	. Megaesophagus 1/13 (7.6%)	
6.	Endometrial hyperplasia 1/13 (7.6%)	

Table 2: Clinical, Haematobiochemical parameters of dogs in Stage I and II of renal disease

Sl.No.	Parameter	Healthy control (n=10)	Stage I and II renal disease (n=13)		
Clinical parameters					
1.	Rectal temperature (°F)	101.88±0.17	101.01±0.54		
2.	Heart rate (per minute)	132.40±2.78	120±5.46		
3.	Respiratory rate (per minute)	32.40±1.24	35.27±2.43		
Haematology					
4.	Hb (g/dl)	13.47±0.34	12.28±1.021		
5.	PCV (%)	38.87±1.04	33.85±2.63		
6.	TEC (10 ¹² /L)	6.49±0.21	5.21±0.42*		
7.	TLC (10 ⁹ /L)	11.13±0.6	21.14±5.24		
8.	N (%)	79.68±0.85	79.5±2.75		
9.	L (%)	15.3±0.62	12.53±2.60		
10.	M (%)	4.04±0.27	6.16±0.70*		
11.	E (%)	1.35±0.18	2±0.73		
12.	PLT (10 ⁹ /L)	299.2±23.72	279.23±48.29		
13.	MCV (fl)	61.57±0.47	64.43±1.97		
14.	MCH (pg)	21.88±0.4	24.16±0.45**		
15.	MCHC (g/dl)	35.18±0.58	375.84±8.27***		
	Biocl	hemical Parameters			
16.	Creatinine (mg/dL)	1.01±0.08	1.8±0.306*		
17.	BUN (mg/dL)	25.14±4.54	82.88±29.14		
18.	Total Protein (g/dL)	6.6±0.35	6.723±0.265		
19.	Glucose (mg/dL)	102.67±2.66	102.60±5.732		
20.	Bilirubin (mg/dL)	0.22±0.04	0.76±0.366		
21.	AST (U/L)	38.05±3.98	175.56±112.36		
22.	ALT (U/L)	33.92±2.4	110.78±23.738*		
23.	ALP (U/L)	79.25±8.72	307.29±97.23		
Serum electrolytes					
24.	Sodium (mmol/L)	151.8±1.71	146.20±1.64*		
25.	Potassium (mmol/L)	4.7±0.16	3.97±0.24*		
26.	Chloride (mmol/L)	110.05±1.85	109.53±1.121		
27.	Calcium (mg/dl)	10.56±0.27	9.825±0.218*		

^{*}Significant at 5% (P<0.05); ** Significant at 1% (P<0.01); ***Significant at 0.1% (P<0.001)

The mean rectal temperature (101.01 ± 0.54) , heart rate (120 \pm 5.46) and respiratory rate (35.27 \pm 2.43) of the dogs with renal dysfunction were non-significant compared to respective values of apparently healthy animals. Mean values of TEC (5.21±0.42) were found to be significantly lower in dogs with renal dysfunction and are similar to the findings of Senthil et al. (2024) and Devipriya et al. (2018). Low values of TEC, PCV and Hb suggested dogs suffered from mild anaemia due to decreased erythropoietin production by diseased kidneys. These findings are in accordance with Silverberg et al. (2002). Mean values of ALT (110.78±23.738) and creatinine (1.8±0.306) were found to be significantly higher in the dogs with renal dysfunction and was similar to the observations of Devipriya et al. (2018). Sonu et.al. (2019) reported that the increase in creatinine could be due to diminished renal excretion and enhanced tubular absorption of urea. The mean values of sodium (146.20±1.64), potassium (3.97±0.24) and calcium (9.825±0.218) showed significant decrease as compared to healthy group.

Urine pH of 76.9% (10/13) dogs had acidic pH with (pH 5-6.5) whereas 23% (3/13) dogs had alkaline (pH=8). The mean values of urinary pH and specific

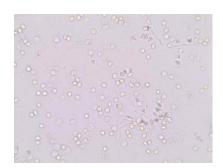


Plate 1. Abundant RBCs, WBCs along with few bacteria, 20X

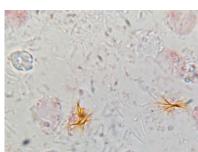


Plate 3. Bilirubin crystals characterised by vellow-brown granular appearance, 20X

gravity were 6.42±0.29 and 1.017±0.002 respectively. These values are in accordance with Oburai et al. (2015) The decrease in urine specific gravity is a result of decreased concentrating ability of kidneys. The color of urine was colorless (30.76%), yellow (38.46%), red (15.38%) and brown (15.38%). Increased levels of urinary proteins in (23.07%) +++, (15.38%) ++, (7.6%)+, (23.07%) trace were observed which are similar to the findings of Sonu et al. (2024). UP:C ratio (1.38±0.36) was found to be significantly increased which could be due to glomerular damage as observed by Oburai et al. (2015). Sonu et al. (2024) in his study reported that the most common cause for renal tubular injury in protein losing disease could be increased tubular uptake of filtered proteins or protein bound substances. Microscopic examination of urine of dogs with renal disease (Table 5) revealed presence of pus cells in 53.84% (7/13), increased number of RBCs in 38.46% (5/13) dogs (Plate 1). Crystaluria was found in 38.5% (5/13) dogs with struvite (triple phosphate) crystals in 4 dogs and bilirubin crystals in 1 dog (Plates 2 and 3). Epithelial cells were found in 69.23% (9/13) dogs (Plate 4). These findings are in accordance with Punia et al. (2018).

Plate 2. Struvite crystal with typical coffin-lid appearance, 20X

Plate 4. Cellular cast, containing variety of cells (Epithelial cells, WBCs), 20X

Acknowledgment

Authors are thankful to the facilities provided by CSKHPKV Palampur to the department of Veterinary Medicine which helped in completing above study.

References

- Athaley, A., Bhojne, G.R., Khanolkar, V.M., Dhoot, V.M., Upadhye, S.V. and Panchbhai, C.K., 2018. Urine analysis and ultrasonographic findings of dogs suffering from renal failure. *Journal homepage*, 7(10).
- Devipriya, K., Lavanya, C., Selvaraj, P. and Napolean, R.E. 2018. Early diagnosis of renal insufficiency in dogs with haemato: Biochemical findings. *Journal of Entomology and Zoology Studies*, **6(5):**703-5.
- Kumar, G.C., Kamran, C.A. and Ramesh P.T. 2020. Hematological Changes in Different Stages of Canine Chronic Kidney Disease. *International Journal of Livestock Research*, 10(2):1.
- Sharma, A., Ahuja, A., Srivastava, M. and Kachhawa, J.P. 2015. Haemato-biochemical changes in Dogs suffering from chronic renal failure. *Indian Journal of Canine Practice*. **7(2)**:102-7.
- Silverberg, D.S., Wexler, D., Blum, M., Tchebiner, J., Sheps, D., Keren, G., Schwartz, D., Baruch, R., Yachnin, T.,

- Shaked, M. and Zubkov, A. 2002. The correction of anemia in severe resistant heart failure with erythropoietin and intravenous iron prevents the progression of both the heart and the renal failure and markedly reduces hospitalization. *Clinical Nephrology*, **58**:37-45.
- Sonu, A.K., Charaya, G., Bangar, Y., Agnihotri, D. and Kumar, T. 2019. Haemato-biochemical alterations in dogs suffering from chronic renal failure. Indian Journal Veterinary Medicine, 39(1):31-5.
- Subapriya, S., Vairamuthu, S., Chandrasekar, M., Balagangatharathilagar, M., Ramesh, S., Areshkumar, M. and Thangaraj, M.J. 2020. Clinicopathological profile of canine renal disorders. *Journal of Entomology and Zoology Studies*, **8(2):**770-774.
- Oburai, L.N., Vaikunta Rao, V. and Naik, B.R., 2015. Clinical and nephrosonographic findings in canine chronic renal failure: A Prospective Study. *IOSR Journal of Agriculture and Veterinary Science*, **8(6)**:11-16.
- Yogeshpriya, S., Pillai, U.N., Ajithkumar, S. and Unny, M. 2018. Clinico-haemato-biochemical profile of dogs with urinary tract infection: A retrospective study of 32 cases (2010-2012). *International Journal of Current Microbiology and Applied Sciences*, 7(9):2797-2802.