A Concurrent tuberculosis and paratuberculosis in a beetal goat

Geeta Devi Leishangthem*, Tanu Sharma, Sonam Sarita Bal, Nittin Dev Singh and Gursimran Filia Department of Veterinary Pathology and Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India

Address for Correspondence

Geeta Devi Leishangthem, Department of Veterinary Pathology and Animal Disease Research Centre, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, E-mail: drgeetapatho@gmail.com

Received: 15.1.2025; Accepted: 14.2.2025

ABSTRACT

A two year old female beetal goat was presented with history of diarrhea and progressive weight loss. On hematology, severe anaemia (Hb = 2.9g/dl) and neutrophilic leukocytosis were observed. Ante-mortem fecal examination revealed positive for acid fast bacilli. The animal succumbed to death. On postmortem examination, the carcass showed emaciation and diarrhoeic feces found to be adhered in the perineal and tail region. Grossly, lung revealed edema, congestion along with hard caseated nodules in focal areas and trachea was frothy. Intestine revealed catarrhal enteritis, and also showed thickening of the intestinal mucosa at the caeco-iliac junction. Mesenteric lymph nodes were swollen and caeseated. Impression smear from intestine and lung were positive for acid fast bacilli. Histopathologically lung exhibited focal to multifocal necrotizing lesion at the centre and surrounded by epitheloid cells and Langhan's giant cell, indicating typical TB granuloma. Further, immunohistochemistry and PCR using specific primers for *Mycobacterium tuberculosis* complex and *Mycobacterium avium* subsp paratuberculosis confirmed the presence of tuberculosis and paratuberculosis respectively.

Keywords: Acid fast bacilli, beetal goat, johne's disease, tuberculosis

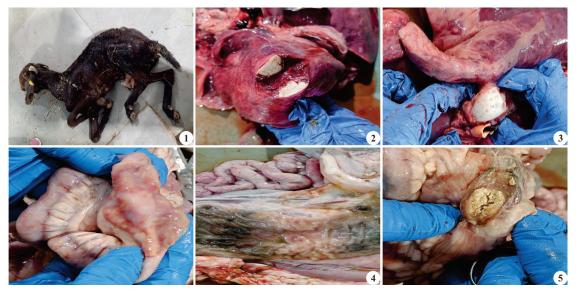
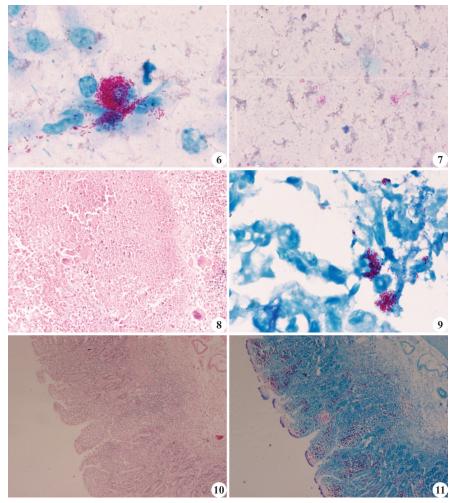
Tuberculosis and paratuberculosis are mycobacterial diseases where in goat tuberculosis is caused by Mycobacterium bovis and Mycobacterium caprae and paratuberculosis is caused by Mycobacterium avium subsp paratuberculosis (MAP)¹. Both diseases have serious impact on production and economic losses. Having a wide host range M. bovis is a huge concern as a zoonotic agent². Tuberculosis transmission occurs primarily through inhalation but can also spread via ingestion of contaminated substances, secretions, and through the placenta to the fetus³. However, Paratuberculosis is mainly transmitted via the fecal-oral route, with animals getting infected by grazing on contaminated pasture or sucking contaminated teats⁴. Both the diseases are more associated with crowded population of animals or animals kept under stressful conditions. Tuberculosis causes emaciation, fever, inappetance, and chronic moist cough, while paratuberculosis features are persistent diarrhea, submandibular edema, and emaciation, both leading to significant economic losses to the farmers^{5,6}. Mycobacterial diseases are diagnosed through clinical signs, gross observation, histopathology, microscopic examination on sputum, fecal sample or any other secretion with Z-N staining, and molecular assays like PCR, immunohistochemistry.

A two year old female beetle goat was presented to Guru Angad Dev Veterinary and Animal Sciences, Hospital with the history of diarrhea and progressive weight loss. Haematological and faecal smear examination using Ziehl-Neelsen staining was done. Animal was treated symptomatically but could not survive and after death, it was presented for post-mortem examination. Systemic necropsy examination was conducted and gross findings were recorded. Impression smear of the lungs and intestine were prepared and stained with Modified Ziehl-Neelsen staining for detection of acid fast bacilli. For histopathology, lungs, lymph nodes and intestine were collected in 10% neutral buffered formalin. The fixed tissue was embedded with paraffin and 4-µm thickness tissue sections were cut and then stained with routine hematoxylin and eosin (H&E). Stained

How to cite this article : Leishangthem, G.D., Sharma, T., Bal, S.S., Singh, N.D. and Filia, G. 2025. A Concurrent tuberculosis and paratuberculosis in a beetal goat. Indian J. Vet. Pathol., 49(2): 168-171.

sections were viewed under microscope (Olympus BX 61) and photomicrographs were taken. Immunohistochemical staining and PCR were done for additional confirmation.

Hematological investigation revealed presence of severe anaemia (with Hb = 2.9g/dl) and neutrophilic leukocytosis with TLC = 15800/ul. Faecal sample stained with Ziehl-Neelsen stain showed positive result for acid fast bacilli. On external examination, the carcass showed emaciation (Fig. 1) and the anal area was soiled with faeces. Upon doing systemic necropsy examination, caseous nodules were observed on the lungs along with congestion and edema (Fig. 2). The trachea was filled with frothy exudates (Fig. 3). Intestine

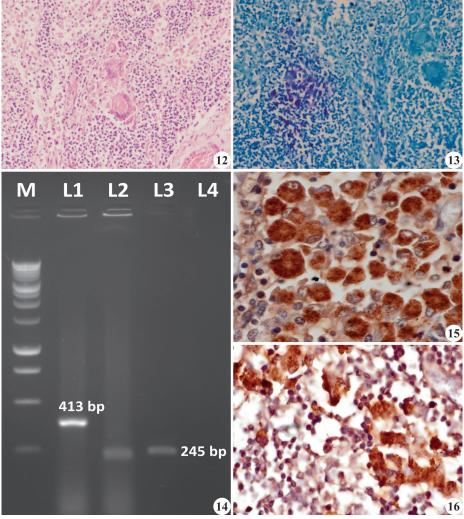

Fig. 1. Goat: Emaciated carcass of Beetal goat; Fig. 2. Lung showing caseous nodule; Fig. 3. Trachea filled with froth; Fig. 4A & B. Intestine with thickened and corrugated mucosa; Fig. 5. Mesenteric lymphnode showing caseation and mineralization.

Fig. 6. Intestine: Impression smear showing acid fast bacilli with Ziehl-Neelsen stain; **Fig. 7.** Lungs: Impression smear showing acid fast bacilli within the inflammatory cell with Ziehl-Neelsen stain; **Fig. 8.** Lungs: Granuloma showing caseous necrotic area surrounded by inflammatory cells and giant cells (H&E x200); **Fig. 9.** Lungs: Acid fast bacilli within the inflammatory cells (ZN stain x1000); **Fig. 10.** Intestine: Thickened intestinal mucosa with mononuclear cells infiltration within the mucosa and sub-mucosa (H&E x100); **Fig. 11.** Intestine: Acid-Fast bacilli in the mucosa as well as within the mononuclear infiltrating cells (ZN x100).

showed generalized congestion and the mucosa of the intestine was thickened and corrugations at the ileo-caecal junction were observed (Fig. 4). Mesenteric lymph nodes were diffusely swollen and had pale and thick capsule and it had firm consistency along with caseous necrosis and mineralized matrix (Fig. 5). Microscopically, examination of impression smear prepared from intestine and lung showed positive for acid fast bacilli when stained with Ziehl-Neelsen stain (Fig. 6, 7). Histopathologically, lung showed typical tuberculous granuloma with central caseous necrosis surrounded by inflammatory cells and Langhan's giant cells (Fig. 8). Acid fast bacilli were present within the inflammatory cells and necrotic area (Fig. 9). In intestine the thickened intestine mucosa and sub-mucosa had diffused infiltration of mononuclear cells along with congestion (Fig. 10). Upon doing Z-N staining, acid fast bacilli were also appreciated within mononuclear cells of the intestinal mucosa (Fig. 11). In lymph node, there was caseous necrosis with infiltration of giant cells and mononuclear cells (Fig. 12). Similar to the intestine in the lymph node acid fast bacilli were observed within mononuclear cells and necrosed area (Fig. 13).

Additionally, DNA was extracted from tissue samples using a commercial kit (Applied Biosystems™ High-Capacity cDNA Reverse Transcription Kit) for amplification of IS6110 PCR for detection of *Mycobacterium tuberculosis complex* (MTC) and IS900 PCR for detection of *Mycobacterium avium* subsp. paratuberculosis (MAP) (Table 1). PCR was performed for these 2 genes with cycling parameter of 94°C for 5 min (initial denaturation) followed by 30 cycles of 1 min at 94°C, 1 min at 60°C and 1 min at 72°C followed by final extension of 7 min at 72°C. Thermal cycling was performed in Gradient

Fig. 12. Lymph node showing giant cells and lymphocytes (H&E 20X); **Fig. 13.** Acid-Fast bacilli within the mononuclear cells in lymph node (ZN x200); **Fig. 14.** Gel electrophoresis of PCR product showing 413 bp for MAP in intestine sample and 245 bp for MTC in lung sample. M = DNA ladder (1Kb); L1 = Intestine sample; L2, 3 = Lung sample; **Fig. 15.** Immunolocalization of *Mycobacterium* antigen within the mononuclear cells (IHC, DAB, x1000); **Fig. 16.** Immunolocalization of *Mycobacterium* antigen within the mononuclear cells in lymph node (IHC, DAB, x1000).

Table 1.					
Organism	Primer	Sequence	Gene	Gene Product size Reference	Reference
Mycobacterium tuberculosis complex	INS1 (forward)	INS1 (forward) 5'-CGT GAG GGC ATC GAG GTG GC-3'	IS6110	IS6110 245 bp	Filia et al.º
(MTC)	INS2 (reverse)	INS2 (reverse) 5'-GCG TAG GCG TCG GTG ACA AA-3'			
Mycobacterium avium subspecies	P90B (forward)	90B (forward) 5'-GAA GGG TGT TCG GGG CCG TCG CTT AGG-3' IS900	006SI	413 bp	Millar $et\ al.^{10}$
paratuberculosis (MAP)	P91B (reverse)	91B (reverse) 5'-GGC GTT GAG GTC GAT CGC CCA CGT GAC-3'			

Thermocycler (Thermo Scientific). The presence of amplified DNA was visualized by agarose gel electrophoresis. Gel electrophoresis of PCR product showing 413 bp for MAP in intestine sample and 245 bp for MTC in lung sample (Fig. 14). The animal was found to be positive for both the diseases. Immunohistochemical characterization of the acid fast bacteria was done in the lungs, intestine, lymphnode sample using *Mycobacterium bovis* antigen and positive immunolocalization of *Mycobacterium bovis* antigen found within the mononuclear cells (Fig. 15, 16). Thus, based on gross, cytology, histopathology, IHC and PCR, the case was confirmed as concurrent tuberculosis and paratuberculosis infection.

Mycobacterial diseases are chronic diseases and they have long asymptomatic period and even before manifesting clinical signs they start shedding organism, making it difficult to eliminate the disease⁷. Animals kept in crowded space with poor ventilation are more prone. Tuberculosis commonly presents with emaciation, fever, inappetance, and a chronic moist cough, while paratuberculosis is marked by persistent diarrhea, protein loss, sub-mandibular edema, and emaciation^{5,6}. In advanced cases, affected animals may become reluctant to move and may die. Both diseases cause significant economic losses due to reduced weight gain, lower milk production, decreased fertility, and they also costs associated with diagnosis and treatment. Tuberculosis and paratuberculosis are very common diseases; however, concurrent infection of both diseases is rare. In India, goats are reared by poor people who usually are nomads and due to negligence the disease is often not properly reported and diagnosed so making it difficult to eradicate. Diagnosis of mycobacterial diseases can be made by observing clinical signs, gross observation and histopathology. Also, the same can be done by performing microscopic examination on sputum, fecal sample or any other relevant secretion using Z-N staining procedure and molecular assay like PCR which increases the sensitivity for diagnosis of the disease⁸. Mycobacterial disease are highly infectious so while diagnosing screening should be done for whole herd. Animals in crowded, poorly ventilated spaces are more susceptible, so proper hygiene, ventilation, and biosecurity measures are crucial. Sick animals should be isolated, and farmers, especially nomadic goat herders, need education on disease signs and reporting. Early detection tests are essential to control mycobacterial diseases effectively.

REFERENCES

- Álvarez J, de Juan L, Bezos J, Romero B, Sáez JL, Gordejo FR, Briones V, Moreno MÁ, Mateos A, Domínguez L and Aranaz A. 2008. Interference of paratuberculosis with the diagnosis of tuberculosis in a goat flock with a natural mixed infection. Vet Micro 128: 72-80.
- Lema AG and Dame IE. 2022. Bovine tuberculosis remains a major public health concern: A review. AJVS & AH 9: 1085.
- 3. Vidal E, Grasa M, Perálvarez T, Martín M, Mercader I and de Val BP. 2018. Transmission of tuberculosis caused by Mycobacterium caprae between dairy sheep and goats. *Small Rumin Res* **158**: 22-25.
- 4. Sweeney RW. 1996. Transmission of paratuberculosis. Vet Clin North Am Food Anim Pract 12: 305-312.
- Quintas H, Pires I, Prada J, da Conceição Fontes M and Coelho AC. 2017. Diagnosis of Mycobacteriosis in Goats: Tuberculosis and Paratuberculosis. In Sustainable Goat Production in Adverse Environments: Volume I: Simões J, Gutiérrez C, Eds.; Springer International Publishing: Cham, Switzerland, pp. 247-266.
- 6. Quintas H, Reis J, Pires I and Alegria N. 2010. Tuberculosis in goats. Vet Rec 166: 437.
- 7. Cosma CL, Sherman DR and Ramakrishnan L. 2003. The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57: 641-676.
- Bates Mand Zumla A. 2016. The development, evaluation and performance of molecular diagnostics for detection of Mycobacterium tuberculosis. Expert Rev Mol Diagn 16: 307-322.
- Filia G, Leishangthem GD, Mahajan V and Singh A. 2016. Detection of Mycobacterium tuberculosis and Mycobacterium bovis in Sahiwal cattle from an organized farm using antemortem techniques. Vet World 9: 383-387.
- Millar D, Ford J, Sanderson J, Withey S and Tizard Mand Doran T. 1996. IS900 PCR to detect Mycobacterium paratuberculosis in retail supplies of whole pasteurized cow's milk in England and Wales. *Appl Environ Microbiol* 62: 3446-3452.