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ABSTRACT
Optimal gut health is of vital importance to the performance of animals. Gut is responsible for regulating physiological 

homeostasis that provides the host the ability to with stand infectious and non-infectious stressors. The gut microbiota confers 
health benefits to the host, including aiding in the digestion and absorption of nutrients, contributing to the construction of the 
intestinal epithelial barrier, development and function of the host immune system and competing with pathogenic microbes to 
prevent their harmful propagation. Modulating gut health in animals involves manipulating the gut microbiome to improve overall 
animal health and productivity. This can be achieved through various strategies like dietary adjustments, prebiotics, probiotics, 
postbiotics and even faecal microbiota transplantation. These methods aim to shift the balance of gut microbes toward a more 
beneficial composition, thereby enhancing nutrient utilization, boosting immunity and reducing the risk of disease.
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INTRODUCTION
According to Hippocrates 460-370 BC, "all disease begins in the gut and 

health is determined by the microbiota in the gut!". The intestine represents one 
of the largest interfaces of the animal body with the external environment. The 
gastrointestinal tract is responsible for regulating physiological homeostasis that 
provides the host the ability to with stand infectious and non-infectious stressors¹. 
Most of the studies addressing health and animal production have been focused 
on gut microbiota, which is justified by the crucial role of these microorganisms 
in nutrition, fitness and performance traits2. Public concerns about the use of 
growth-promoting antibiotics (AGPs) in animal agriculture have led to significant 
policy changes. The European Union has banned AGPs, while the United States 
is reassessing their use. These actions stem from growing evidence that AGP use 
contributes to antibiotic resistance, posing a threat to both animal and human 
health3. In India, several antibiotics are banned and some are restricted for use 
in livestock and poultry, primarily to combat antimicrobial resistance. Removal 
of AGPs from animal feeds results in an increase in enteric disorders, infections 
as described4,5. The ban on AGP has triggered a renewed scientific interest in the 
intestinal health of animals. While in the past, the focus of gut health research 
was almost exclusively on the veterinary aspects of pathogenic organisms 
invading the intestine and/or intestinal tissues, causing severe damage to the 
host mucosa and resulting in clinical symptoms of disease6. The current focus 
is on the fundamental aspects of the numerous complex and subtle interactions 
between the host mucosa, the intestinal content and all organisms residing in 
the intestinal tract.

Gut health is defined as “a steady state where the microbiome and the intestinal 
tract exist in symbiotic equilibrium and where the welfare and performance of 
the animal is not constrained by intestinal dysfunction”7. In animals raised 
for food, gut health is closely related to animal health and is directly related 
to the animals' growth and performance. A damaged gut can have a negative 
impact on feed conversion ratio, digestion and nutrient absorption, which can 
result in financial loss and increased susceptibility to disease8,9. However, a 

healthy gut is essential for the 
well-being of companion animals, 
and alterations in gut microbiota 
have already been linked to a 
number of illnesses, including 
allergies, cardiovascular disease 
and inflammatory bowel disease 
(IBD)10,11.

Recently, it has also been 
shown that there is extensive 
communication between the 
brain and the microbiota via 
the brain-gut-microbiome axis. 
Through this bidirectional 
communication, signals from 
the brain can influence the motor, 
sensory and secretory functions 
of the gut and visceral messages 
from the gut can influence brain 
function12. Similarly, the gut-
kidney axis involves the interplay 
between the  gut microbiome, 
intestinal barrier, microbial 
metabolite production and renal 
physiology13.
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The intestine is the site of the highest antigen load 
caused by microbial and feed antigens in the gut lumen.
The intestine is made up of an epithelium, a robust and 
diverse immunological system that contains most of the 
body's immune cells and commensal bacteria, which 
outnumber the host cells overall. Understanding of the 
interaction between all these interrelated components of 
the gut is what cumulatively makes the gut the basis for 
the health of animals9.

Intestinal barrier
The intestinal homeostasis is determined by the 

intestinal epithelium, gut microbiome and host immune 
system. This functional unit is entirely dependent on 
the integrity of the gut epithelium, which is maintained 
by junctional proteins such as adherent junctions, tight 
junctions and desmosomes that join neighbouring 
epithelial cells and provide a physical barrier together 
with the lamina propria14. The glycocalyx on the surface of 
intestinal epithelial cells contributes to barrier function by 
preventing exogenous molecules and live bacteria from 
gaining access to the epithelial brush border membrane15. 
Key cell types in the physical barrier are absorptive 
enterocytes, Paneth cells and goblet cells. The epithelial 
cells in the small intestine form a continuous layer and 
the space between the cells is sealed by tight junctions. 
These tight junctions are a critical element of the gut 
barrier. Although Paneth cells produce antimicrobial 
peptide AMPs, goblet cells have a key role in barrier 
function by producing gel-forming (MUC2 and MUC6) 
or transmembrane (MUC3, MUC12, MUC13, MUC15 
and MUC17 in the small intestine; MUC4, MUC20 
and MUC21 in the large intestine) mucins. The mucus 
layer which prevents bacterial adhesion. Lysozyme and 
secretory IgA are key factors of the chemical barrier16.

Changes in the expression level and functioning 
of tight junctions cause gut leakage, characterized by 
body fluids leaking into the intestinal lumen, which 
may ultimately result in diarrhoea17. In this context, 
the organised intestinal barrier prevents uncontrolled 
microbial induced immune reactions in the gut. 
Disruptions of the intestinal barrier result in substantial 
alterations to the delicate equilibrium between luminal 
antigens and the local immune system. Consequently, 
a leaky gut permits the translocation of bacteria, other 
microorganisms and luminal antigens into the bowel wall, 
thereby inducing an overwhelming proinflammatory 
mucosal immune response18,19.

Intestinal mucosa maintains immune tolerance to 
a wide array of antigens while also inducing appro-
priate immune responses to external pathogens20. To 
maintain the health of intestine, its mucosa contains 
variety of innate and adaptive immune cells, including 
innate lymphoid cells, granulocytes, dendritic cells, 
macrophages, B cells and both α-β and γ-δ T cells. These 

cells can support barrier function through direct killing 
of invading pathogens, production of soluble mediators, 
such as cytokines (IL-10, IL-17 and IL-22), neutrophil 
extracellular trap formation or the local induction of 
protective immune responses against antigens, which 
form an immune barrier towards invading antigens and 
pathogens21. Innate and adaptive immune responses 
in the intestine are constrained by the local production 
of anti-inflammatory cytokines (e.g. IL-10 and TGFβ), 
which suppress effector functions of multiple immune 
cell lineages and promote the population expansion of 
regulatory T cell responses22. This homoeostatic cytokine 
balance is crucial for preventing excessive inflammatory 
responses in the intestine.

Intestinal barrier dysfunction
Dysfunction of intestinal barrier and alterations in 

intestinal permeability is also known as “leaky gut.” 
The effects of pathogenic organisms on host intestinal 
epithelial cells are complex. These primary pathogen-host 
interactions may result in disturbances in the normal 
intestinal barrier, activation of the inflammatory cascade 
and alterations of normal fluid and electrolyte secretion. 
Enteric pathogens can bind to the cell surface and induce 
changes in the expression of tight junction proteins23. 
In addition, the production of toxins by pathogens 
can promote cellular damage through disruption of 
intracellular protein interactions, leading to increased 
cellular permeability and ultimately triggering cell 
death24.

IBD affect both human and animal patients and 
are associated with gastrointestinal dysfunction due to 
infiltration of the mucosa, submucosa or lamina propria 
with abnormal populations of immune cells. In dogs with 
IBD compared with normal controls, the expression of 
the protein E-cadherin was lower in the villus epithelium, 
suggesting the role of this protein in the pathogenesis 
of IBD in dogs. In horses with large intestinal disease, 
a significant difference in TNF-α expression was found 
in diseased mucosa, suggesting a possible role for this 
cytokine in the pathogenesis of equine IBD. TNF-α 
increases myosin light chain kinase phosphorylation, 
which may alter paracellular permeability through its 
association with actin and myosin. Myosin light chain 
kinase expression and enzymatic activity are increased 
in cases of IBD and correlated with disease activity25.

Gut microbiota
The gut microbiome of domestic animals is a complex 

community of microorganisms; viruses, bacteria, fungi, 
protozoa and other microbes residing in their digestive 
tracts, with each region harbouring distinct microbial 
populations. The intestinal microbiota contributes to 
several physiological, protective (pathogen displacement, 
nutrient competition, receptor competition, production 
of antimicrobial factors), structural (GIT barrier fortifi-
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cations, induction of IgA, apical tightening of tight 
junctions, immune system development) and metabolic 
functions (ferment non-digestible dietary residue and 
endogenous epithelial-derived mucus, synthesize 
vitamins, control intestinal epithelial cell differentiation 
and proliferation, ion absorption)26-29. Several of the 
metabolites produced by the microbiota also stimulate 
the neuroendocrine cell in the GIT and therefore, the 
microbiota plays an important role in the endocrine 
regulation of gastrointestinal functionality7,30.

The microbiome is dynamic and changes depending 
on things including nutrition, age and environment. The 
makeup of this microbiome can affect many facets of an 
animal's health, such as immunity, digestion and even 
behaviour31. The gut microbiome of cattle and sheep 
is dominated by Bacteroidetes and Firmicutes32. The 
dominant bacterial phyla in the poultry gut microbiome 
are  Firmicutes, Bacteroidetes, Proteobacteria and 
Actinobacteria. Lactobacilli are predominant in the upper 
and middle GIT of poultry33. The canine gut microbiome 
is primarily composed of three dominant bacterial phyla; 
Firmicutes, Bacteroidetes and Fusobacteria. These phyla, 
along with others like Actinobacteria and Proteobacteria, 
contribute to a diverse and dynamic gut ecosystem34.

The microbiome has a direct effect on the development 
and function of the mucosal immune system. The gut 
microbial alterations in animal gastrointestinal system 
or the differences in gut microbiome composition 
and function have been associated with a variety 
of diseases, ranging from metabolic conditions and 
gastrointestinal inflammation leading to colitis and 
respiratory illnesses35,36. Age, gender and species are 
important internal factors that influence the composition 
and structure of the gut microbiota37. Additionally, 
external factors such as heavy metals, antibiotics and 
pesticides can markedly disrupt the gut microbiota 
composition, leading to dysbiosis38. Moreover, the 
effects of the gut microbial community extend beyond 
the gastrointestinal system and can cause other systemic 
diseases36.

From eubiosis to dysbiosis
Eubiosisis the balance of the intestinal microbial 

environment, which has positive impacts on the animal as 
a whole. Overall, healthy gut microbial communities are 
characterized by high taxa diversity, high microbial gene 
richness and a stable functional core of microbiome39. Gut 
dysbiosis is defined as an imbalance in the composition 
of the gut microbiota that may result in modifications to 
the transcriptome, metabolome or proteome of micro-
organisms40.

Neonatal calf diarrhoea is the leading cause of 
neonatal morbidity and mortality globally. The bacterial 
pathogens associated with calf diarrhoea include E. coli, 

Salmonella  spp., Clostridium perfringens and Clostridium 
difficile. The two main viruses implicated in calf diarrhoea 
are bovine coronavirus and bovine rotavirus (BRoV). Calves 
with rotaviral diarrhoea had a lower relative abundance 
of Firmicutes and Bacteroidetes and a high abundance of 
Proteobacteria compared to their healthy counterparts41. 
At the genus level, the genera  Escherichia,  Clostridium 
and Streptococcus   increased in BRoV-infected 
calves, while  Blautia ,   Bacteroides ,   Lactobacillus 
and Coprococcus decrease42. Irrespective of the causative 
agent responsible for the onset of calf diarrhea, there 
are significant changes in bacterial communities of 
the gut microbiota43. During diarrhoea there is a shift 
from obligate anaerobes to facultative anaerobes 
in the GIT, resulting in dysbiosis44. The abundance 
of  Faecalibacterium prausnitzii, Lachnospiraceaesp. and 
Ruminococcacea sp. bacteria associated with gastrointestinal 
health decreases significantly during calf diarrhoea45. 
Concurrently, an increase in Lactobacillus, Streptococcus 
and Enterobacteriaceae, especially E. coli is observed46. 
It is frequently noted that diarrheal calves have higher 
levels of Enterobacteriaceae bacteria47. Dysbiosis associated 
with inflammation results in alterations in the metabolites 
available to and originating from bacteria in the GIT of 
calves, resulting in an environment that favours the growth 
of Enterobacteriaceae. Salmonella  spp. and E. coli benefit 
from the production of ethanolamine, lactate, glucarate/
galactarate 1, 2, propanediol, succinate and L-serine 
during dysbiosis48. Infection with Cryptosporidium parvum 
in calves results in a reduction in the microbial diversity, 
and this reduction is proportional to the number of 
oocytes detected in the feces. Furthermore, an increase 
in the fecal abundance of Fusobacterium  is reported in 
diarrheic calves infected with C. parvum  compared to 
uninfected calves49,50.

Rumen acidosis is one of the most prevalent 
gastrointestinal diseases affecting cattle, significantly 
threatening their health and growth performance. Rumen 
acidosis can induce alterations in the composition and 
diversity of the gut microbiota in calves. Notably, the 
levels of certain beneficial bacteria, such as Prevotella, 
Succinivibrio and Succinivibrionaceae decreased 
significantly. These substantial changes in intestinal 
composition and abundance may serve as critical driving 
factors for the development of rumen acidosis51.

In pigs, Enterotoxigenic Escherichia coli (ETEC) 
induced diarrhoea is associated with a decrease in the 
Bacteroidetes/Firmicutes ratio. ETEC-induced diarrhoea 
in piglets decreases the microbial diversity in the jejunum 
and lowers the abundance of  Prevotella  compared to 
healthy counterparts. ETEC in piglets is also associated 
with an increased abundance of Lactococcus in the jejunum 
and Escherichia Shigella in the feces52.

In poultry husbandry systems, coccidiosis is an 
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economically significant protozoan disease caused 
by an intracellular parasite that significantly impacts 
production. Eimeria acervulina, Eimeria maxima and Eimeria 
brunetti can reduce the abundance of Eubacterium, 
Lactobacillus and Ruminococcus in the cecum. Conv-
ersely, Eimeria infection can increase the abundance of 
bacteria like Bacillus, Enterococcus and Escherichia in 
the cecum53. Changes in the microbiota due to coccidiosis 
can affect the immune system's ability to respond to the 
infection. E. tenella infection alters the composition and 
diversity of caecal microbiota, significantly reducing 
Proteobacteria and Firmicutes (Enterococcus)54. Alteration 
induced by Eimeria tenella infection in abundance of the 
bacterial community may contribute to the severity of 
pathology and variation observed in tissue damage55.

In canine, short-term changes in the intestinal 
environment, such as in cases of acute diarrhea, affect 
the microbial composition. Acute diarrhoea results in 
decrease in microbial diversity, with lower numbers of 
Bacteroidetes and Faecablibacterium and higher numbers of 
Clostridium sp56. Intestinal dysbiosis is linked to several 
chronic GIT illnesses, including IBD and Mucosa-
adherent Proteobacteria genera (E. coli)57.

Modulation of gut health
Modulation of gut health can play a key role in 

reducing the dependence on antimicrobials for protecting 
animals from diseases and maintaining production. 
Modulation of barrier function may be a promising 
path for the treatment of a wide range of intestinal and 
extraintestinal diseases. Currently, numerous novel 
therapeutic concepts are being explored to directly or 
indirectly enhance barrier function. Currently, there 
are a few methods for modifying the gut microbiome, 
including dietary modifications, use of prebiotics, 
probiotics, synbiotics and postbiotics.

Prebiotics are substances that are selectively 
utilized by host microorganisms, contributing a health 
benefit58. Inclusion of prebiotics in livestock and poultry 
feed has shown the capability to improve host health 
and productivity through the selective stimulation of 
beneficial gut microbiota58,60.

The potential benefits of probiotic are diverse and 
may include immune system activation and modulation, 
enhanced mucosal barrier function, competitive exclusion 
of pathogens and decreased risk of infection through 
production of antimicrobial substances including lactic 
and acetic acids61. Probiotics have been used in the 
treatment and prevention of IBDs, diarrhea, irritable 
bowel syndrome and gastroenteritis. Although several 
organisms have been studied, commonly used species 
include Bifidobacterium, Lactobacillus and Saccharomyces62,63.

Plant-derived compounds, such as polyphenols, 
alkaloids, flavonoids and essential oils exhibit various 

bioactive properties that improve gut microbiota 
composition, support immune function and improve 
nutrient absorption by influencing gut morphology 
and digestive enzyme activity. Their antioxidant, anti-
inflammatory and antimicrobial properties help to 
maintain and improve overall performance and lower 
the prevalence of diseases related to gut and intestinal 
integrity64.

One novel approach to regulate gut microbiota 
in animals to re-establish the recipient’s intestinal 
microbiome is faecal microbiota transplantation (FMT). 
Faecal microbiota transplantation refers to an approach 
whereby faeces are transferred from a healthy donor 
to the gut of an unhealthy recipient through multiple 
methods. FMT is helpful in treating a number of different 
gastrointestinal and non-gastrointestinal disorders that 
areclosely linked to dysbiosis65.

Metagenomics for the identification of gut microbiome 
composition

Metagenomic analysis has the potential to provide 
information about the detection of microbial composition 
of the gut and diversity, novel genes, microbial pathways, 
functional dysbiosis, antibiotic resistance genes and the 
determination of interactions in the gut45.

Methods for testing gut permeability and other markers 
of intestinal barrier disruption

One of the issues with determining dysfunction of the 
gut barrier is the lack of specific biomarkers. When testing 
for intestinal permeability, a variety of parameters can 
be evaluated. Moreover, the fact that permeability varies 
along the GIT must be considered with being the small 
intestine being more permeable than the large intestine66. 
Briefly, methods for testing gut permeability  in vivo 
involve the administration of a tracer molecule by oral 
gavage or intestinal instillation. Tracers commonly used 
are non-digestible sugars such as lactulose or mannitol, 
PEG, fluorescently labelled dextrans and51 Cr-EDTA, 
which can be later quantified in urine or blood. The size of 
a tracer can indicate the probable route of permeability. To 
obtain comprehensive information regarding epithelial 
leakness, it is recommended that  in vivo and ex vivo/in 
vitro tests of permeability are used in combination with 
the detection of permeability associated biomarkers67.

CONCLUSION
Several complex mechanisms are involved in GIT 

functionality and health. Gut microbial comparison and 
analysis have the potential to benefit the understanding 
of the pathogenesis of various animal gut-linked diseases 
and the development of corresponding strategies to 
decrease the collateral damage. It is crucial to deepen 
our understanding of these interactions so that strategies 
for the modulation of GIT functionality and health, in 
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the context of improved animal performance can be 
developed.
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