Isolation and detection of *Pasteurella multocida* from clinical hemorrhagic septicaemia cases of buffaloes

Monika Bhardwaj, Subhash Verma, Shivani Barsain, Prasenjit Dhar and Rajesh Chahota*

Department of Veterinary Microbiology, Dr GC Negi College of Veterinary and Animal Sciences, CSKHPKV, Palampur-176 062, Himachal Pradesh, India

Address for Correspondence

Dr Rajesh Chahota, Professor, Department of Veterinary Microbiology, Dr GC Negi College of Veterinary and Animal Sciences, CSKHPKV, Palampur-176 062, Himachal Pradesh, India, E-mail: rchahota@yahoo.com

Received: 9.4.2025; Accepted: 27.5.2025

ABSTRACT

Hemorrhagic septicaemia (HS) is an economically important disease of livestock affecting various species of animals. The present investigation was conducted to detect and isolate the causative organism from the HS suspected cases of the buffaloes in two different outbreaks. Total 24 samples (14 nasal swabs, 6 lung swabs and 4 blood samples) from the suspected HS cases were processed for the bacterial isolation and DNA was extracted for PCR detection. Culture and biochemical assays from two samples showed characteristics of the *Pasteurella multocida* organism. The KMT1 gene was targeted as the marker gene for *P. multocida* for the PCR assay confirmation. Out of 24 samples, four were confirmed to be positive for *P. multocida*. In conclusions, *P. multocida* associated respiratory illness was common in buffaloes during stressful climatic conditions and to minimize the spread, the animal owners should ensure appropriate medication, vaccination programs and good hygienic practices in crowded areas.

Keywords: Buffaloes, isolation, Pasteurella multocida, PCR

INTRODUCTION

Hemorrhagic septicaemia (HS) is a per acute and devastating disease of buffaloes caused by *P. multocida*, a commensal bacterium of upper respiratory tracts of several livestock, poultry and domestic pet animal species resulting into high morbidity and mortality¹. Under the influence of stress factors such as poor nutrition, unfavorable weather, long distance travelling, dehydration, nasopharyngeal settlement and concurrent infections of other bacteria, viruses and parasites, the organism leads to more profuse destruction to the host animal². *P. multocida* is a small, gram-negative, non-spore-forming, coccobacillus bacterium with bipolar staining characters³.

In Himachal Pradesh, HS is being reported regularly despite vaccination and even considered as one of the major bacterial killer disease among buffaloes. However, a number of studies were carried out in the state for the identification of *P. multocida* from clinical affected cattle, buffaloes, sheep, goats, rabbits and poultry⁴⁻⁶. For the detection and characterization of P. multocida, cultural and serological procedures are adopted and in recent times PCR is merely being preffered⁷. This study was carried out to detect the presence of P. multocida from clinically infected buffaloes showing symptoms of HS.

MATERIAL AND METHODS

Outbreak history

Fifteen buffaloes of age group (1 to 5 years) were presented with history of high fever (105-106°F) followed by respiratory distress, septicaemia, mucopurulent nasal discharge, inappetance, oedematous swelling of the brisket region and recumbency leading to death of six animals. During post-mortem examination, subcutaneous edema in the brisket and mandibular regions and petechial-to-echymotic hemorrhages along with congestion of lungs, fibrinous pneumonia and pericarditis were recorded. The outbreaks have been reported during the period of heavy rainfall between Mid-July to September.

How to cite this article : Bhardwaj, M., Verma, S., Barsain, S., Dhar, P. and Chahota, R. 2025. Isolation and detection of *Pasteurella multocida* from clinical hemorrhagic septicaemia cases of buffaloes. Indian J. Vet. Pathol., 49(3): 215-218.

Sample collection

A total of 24 samples (14 nasal swabs, 6 lung swabs and 4 blood samples) were collected randomly from clinical cases following outbreaks of HS in buffaloes. The samples were transported to Department of Veterinary Microbiology using transport medium (Normal Saline Solution on ice) and then processed for bacterial isolation.

Isolation of bacterial organisms

The clinical samples were put in tryptic soy broth (Himedia, Mumbai) and incubated at 37°C for 18-24 hrs. Then swabs were plated onto 5% sheep blood agar (Himedia, Mumbai) and incubated at 37°C overnight⁸. The isolates were identified by cultural and morphological

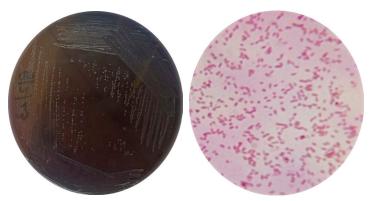


Fig. 1. Non-hemolytic colonies of Pasteurella multocida on 5% sheep blood agar; Fig. 2. Gram's stained Pasteurella multocida organisms.

features. Further a smear was prepared from single isolated colony and grams' staining was performed to demonstrate its morphological characteristics⁹.

Biochemical methods

Biochemical tests catalase, oxidase, indole, VP, urea, citrate and motility were used as described by⁹ with some modifications. The result found were recorded and compared for verification of the isolates.

Detection of P. multocida by PCR

All the clinical samples and bacterial isolates were subjected to DNA isolation using DNeasy blood and tissue kit (Qiagen, Germany) following the manufacturer's instructions. Conventional PCR was carried out to detect *P. multocida* in GeneAmp® PCR System 9700 thermocycler (Applied Biosystems, California, USA) targeting the KMT1 gene amplified using species specific primers¹⁰ (Forward: KMT1SP6, 5'-GCTGTAAACGAACTCGCCAC-3'; Reverse: KMT1T7, 5'-ATCCGCTATTTACCCAGTGG-3'). The components for the DNA amplification master mix (25 µl) for *P. multocida* comprised of nuclease-free water 8.7 µl, 5 x PCR buffer 5 µl, 10 mM dNTPs 2 µl, 10 µM forward primer

1 μ l, 10 μ M reverse primer 1 μ l, 3 mM MgCl $_2$ 2 μ l and Taq DNA polymerase 3 units 0.3 μ l. The PCR was performed with thermal conditions of initial denaturation at 95°C for 2 min followed by 30 cycles of denaturation at 95°C for 1 min, annealing at 45°C for 1 min, extension at 72°C for 30 sec, final extension at 72°C for 5 min¹⁰.

Gel electrophoresis

A 5 µl aliquot of the PCR product was resolved on a 1.5% agarose gel and observed under UV in a Gel Documentation system (Alphaimager, BioRad, USA). Using PM-PCR assay, *P. multocida* isolates were identified based on the amplification of an approximately 460 bp fragment.

RESULTS

Cultural characteristics of P. multocida

Culturing of total 24 samples (blood and swab), it was observed that only two (8.3%) isolates were showing the cultural characteristics of *P. multocida* (small, glistening, mucoid with no haemolytic effect) on blood agar (Fig. 1). The *P. multocida* isolates were coccobacilli with rounded ends, stained negative by Gram staining (Fig. 2).

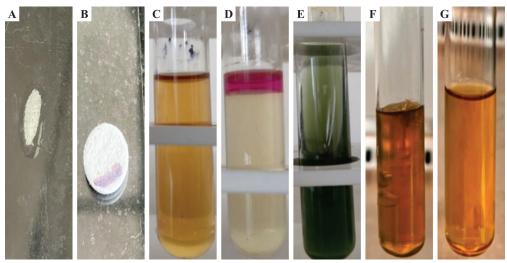
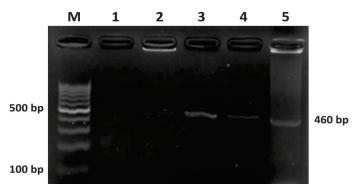



Fig. 3. Biochemical identification of *Pateurella multocida*. A: Catalase Positive, B: Oxidase Positive, C: Urea Negative, D: Indole Positive, E: Citrate Negative, F: Non-Motile (SIM), G: VP Negative.

Fig. 4. PCR products (460 bp) in 1.5% agarose gel. Lane M: DNA marker, Lane 1: Negative Control, Lanes 2, 3: Clinical samples amplified using primer KTT1T7 & KMT1SP6, Lane 4: *P. multocida* isolate amplified using primer KTT1T7 & KMT1SP6, Lane 5: Positive Control.

Biochemical characteristics of P. multocida

The isolates of *P. multocida* were found oxidase, indole and catalase positive. Further, isolates did not produce hydrogen sulfide, urease and motility, did not have hemolytic effect and were negative in VP reaction (Fig. 3).

Molecular identification

Overall, 16.7% (4/24) of the samples from the two outbreaks were positive by PM-PCR (Fig. 4). Based on the sample type the highest positivity of *P. multocida* was recorded in the nasal samples with 20.0% (3/15) and only 16.7% (1/6) for the lung swabs. The bacterial isolates from both outbreaks were also confirmed as *P. multocida* by species specific PM-PCR. As expected, buffaloes having a HS-like disease were found to be infected with *P. multocida*.

DISCUSSION

P. multocida is an opportunistic pathogen causing a number of diseases in various animal species. In buffaloes, HS is one of the most important disease causing heavy economic losses to the farmers. This study was under taken on the samples collected from two outbreaks aimed to isolate and detect P. multocida resulting to HS by conventional methods and PCR. In the present study, two P. multocida isolates were showing characteristic features of the organism. In the previous studies, similar results were recorded for the identification of P. multocida as gram-negative, coccobacillus, with no haemolysis on blood agar^{11,12}. Also, number of studies have stated similar results for biochemical characteristics such as positive reaction for oxidase, catalase, indole tests and negative for H₂S, urea and motility¹³⁻¹⁵. In the study, the overall isolation rate of *P. multocida* from the total number of clinical samples was recorded as 8.3%. Shuka et al. 16 reported 3.39% isolation rate of P. multocida from blood and swab samples of cattle which stands less in comparison to our findings. In contrast, a study carried out on calves in the region of Zambia, a higher percentage (17.5%) of P. multocida bacterial isolates were reported¹⁷. In HP, Kapoor et al. 18 screened 470 samples from different animal species

from different districts to assess the prevalence of HS. According to the study, they were also able to isolate fewer number of *P. multocida* isolates and found isolation of *P. multocida*, a tedious and cumbersome process. This kind of ambiguity in the isolation rate of organism might be due to the uneven number of animals screened for the diagnosis for the HS like disease.

For confirmation of *P. multocida* as the principal cause of HS the PCR test was done based on Townsend et al. by using universal and specific primers¹⁰. Although, in the previous studies the organism has been found as causative agent of HS in HP. Likely, in this study 16.7% of the samples were found positive for P. multocida by PM-PCR using the amplification of an approximately 460 bp fragments which agree with the findings of the previous studies. The two *P*. *multocida* isolates procured from positive nasal swabs were also confirmed by PM-PCR. In a previous study, eighteen isolates of *P. multocida* were isolated from 138 bovine samples (nasal swabs, heart blood, spleen, lung and liver tissues) and confirmed by species specific PM-PCR⁶. Similarly, 23 P. multocida isolates from 335 clinically healthy and diseased cattle were confirmed by PM-PCR and further screened for the presence of virulence associated genes⁵. In HP, pasteurellosis is enzootic and has been an extended standing delinquent occurring mostly on the seasonal basis. In a comprehensive study carried out by Chaudhary et al., HS is the major bacterial disease with highest mortality rate in animals in HP19. Also in another study, HP along with other states of northern India, showed irregular occurrence of HS outbreaks between the periods 1995-2000 and 2006-2008 with overall 5.6% proportion of outbreaks²⁰. Nevertheless, the vaccination is followed regularly in the state but despite of that emergence of new strains for ineffectiveness of the vaccines and increase in outbreak rates of HS cannot be ignored. The study has confirmed that the buffaloes in the outbreak were infected by P. multocida. Further research on P. multocida genetic diversity and the molecular epidemiology is required to development improved immunoprophylactics.

ACKNOWLEDGEMENTS

The authors are thankful to the Head, Department of Veterinary Microbiology, DGCN COVAS, Palampur for providing the necessary facilities for carrying out this work.

Financial support & sponsorship: None

Conflicts of Interest: None

Use of Artificial Intelligence (AI)-Assisted Technology for manuscript preparation: The authors confirm that

there was no use of AI-assisted technology for assisting in the writing of the manuscript and no images were manipulated using AI.

REFERENCES

218

- Blanchong JA, Samuel MD, Goldberg DR, Shadduck DJ and Lehr MA. 2006. Persistence of *Pasteurella multocida* in wetlands following avian cholera outbreaks. *J Wild Dis* 42: 33-9.
- Abd El Tawab AA, El-Hofy FI, Al-Jeddawy A and Abo-Hamdah E. 2016. Pasteurella multocida in camels: incidence, capsular and virulence genes characterization. BVMJ 31: 171-175.
- Pedersen K, Dietz HH, Jørgensen JC, Christensen TK, Bregnballe T and Andersen TH. 2003. Pasteurella multocida from outbreaks of avian cholera in wild and captive birds in Denmark. J Wild Dis 39: 808-16.
- 4. Sharma M, Dhar P, Kumar R, Kapoor V, Gupta D, Verma L and Katoch RC. 2010. Drug sensitivity profile of various capsular types of *Pasteurella multocida* in Himachal Pradesh. *Indian J Anim Sci* 80: 1066-69.
- Verma S, Sharma M, Katoch S, Verma L, Kumar S, Dogra V, Chahota R, Dhar P and Singh G. 2013. Profiling of virulence associated genes of *Pasteurella multocida* isolated from cattle. Vet Res Commun 37: 83-9.
- 6. Verma L, Sharma M, Katoch S, Dogra V, Kumar S, Dhar P, Chahota R and Verma S. 2015. Bacteriological, molecular and antibiotic sensitivity profiles of *Pasteurella multocida* from bovine and rabbits. *Indian Vet J* **92:** 38-41.
- Abbas AM, Abd El-Moaty DAM, Zaki ESA, El-Sergany EF, El-Sebay NA, Fadl HA and Samy AA. 2018. Use of molecular biology tools for rapid identification and characterization of Pasteurella spp. Vet World 11: 1006-1014.
- 8. Quinn PJ, Carter ME, Markey B and Carter GR. 1994. Enterobacteriaceae. *Clin Vet Microbiol* 109-35.
- Bain RVS, De Alwis MCL, Carter GR and Gupta BK. 1982. Hemorrhagic septicemia, Rome. FAO Anim Prod Health Paper 33: 256-260.
- Townsend KM, Frost AJ, Lee CW, Papadimitriou JM and Dawkins HJ. 1998. Development of PCR assays for species

- and type-specific identification of *Pasteurella multocida* isolates. *J Clin Microbiol* **36:** 1096-100.
- 11. Choudhury KA, Amin MM, Rahman A and Ali MR. 1985. Investigation of natural outbreak of fowl cholera. *Bangladesh Vet J* 19: 49-56.
- Rahman MH, Shahiduzzaman ANM, Haque ME, Nazir NH and Rahman T. 2016. Random amplified polymorphic DNA (RAPD). Anal J Biological Sci 8: 2.
- Cowan ST and Steel KJ. 1965. Manual for the identification of medical bacteria. Cambridge, University Press.
- Biswas A, Shivachandra SB, Saxena MK, Kumar AA, Singh VP and Srivastava SK. 2004. Molecular variability among strains of Pasteurella multocida isolated from an outbreak of haemorrhagic septicaemia in India. Vet Res Commun 28: 287-98.
- Yami B, Kibeb L and Asmelash T. 2017. Isolation, identification and antimicrobial susceptibility of *Pasteurella multocida* from cattle with hemorrhagic septicemia in Asosa and Bambasi districts, Benishangul Gumuz Regional State, Ethiopia. *Int J Fauna Biol Stud* 4: 67-75.
- Shuka J, Tesfay S, Ababae B and Abayineh T. 2022. Isolation, identification and molecular characterization of *Pasteurella* multocida from cases of cattle from selected areas. *J Vaccines* Vaccin 13: 478.
- Varga Z, Sellyei B and Magyar T. 2007. Phenotypic and genotypic characterization of *Pasteurella multocida* strains isolated from pigs in Hungary. *Acta Vet Hung* 55: 425-34.
 Kapoor V, Katoch RC, Sharma M, Kumar AA and Verma S.
- Kapoor V, Katoch RC, Sharma M, Kumar AA and Verma S. 2004. Detection of *Pasteurella multocida* by PCR. *Indian J Anim Sci* 74: 724-725.
- Chaudhary JK, Singh B, Kumar D and Kumar A. 2013. Status of specific diseases in Bovine of Himachal Pradesh. *Int J Agric Sci* 3: 001-004.
- Chanda MM, Purse BV, Hemadri D, Patil SS, Yogisharadhya R, Prajapati A and Shivachandra SB. 2024. Spatial and temporal analysis of haemorrhagic septicaemia outbreaks in India over three decades (1987-2016). Sci Rep 14: 6773.