Continuous management of rice residue

for reducing fertilizer use in rice-wheat system

J. S. Kang, Jagroop Kaur* and S. S. Manhas

Punjab Agricultural University, Ludhiana, Punjab 141 004

Sustainability of rice-wheat system is crucial for the future of agriculture in Indo-Gangetic plains (IGP) as it feeds about 1/5th of world population. A major concern in the state of Punjab is management of rice residue as crop is mechanically harvested with combine harvesters leaving behind sizeable amount of residues in the field. Burning of crop residues causes several ill effects on human, livestock, soil health and environment. Crop residue management plays an important role in determining distribution and availability of nutrients in cropped soils. Under long-term residue treated soils, equivalent crop yield can be realized by using less quantity of chemical fertilizers. Slow decomposition of paddy straw containing 5-8 kg nitrogen (N), 0.7-1.2 kg phosphorus (P), 12-17 kg potassium (K), 0.5-1.0 kg S, 40-70 kg Si alongwith 400 kg of organic carbon per tonne of straw helps in enhancing the soil fertility through nutrient recycling. So, in-situ crop residue management is an alternative to improve the physical, chemical and biological properties of soil for sustainable rice-wheat production along with environment conservation.

Keywords: Crop residue, Nitrogen, Phosphorus, Rice-wheat system productivity, Soil properties

Formulation of sustainable land management strategies is the need of the hour to match the food production with increasing population rate. Rice-wheat is a predominant cropping system which is practised over 10.5 Mha in India. The sustainability of this system is at higher risk due to many issues, viz. declining watertable, deficiency of nutrients and

degradation of soil and environment quality. Most of the paddy area is combine harvested which results in enormous quantity of paddy crop residue in field. Farmers mostly burn the rice straw on farm due to shortage of labour and timely sowing of succeeding wheat crop. Heat generated by residue burning kills the useful soil microorganisms in addition to release of green house gases (GHGs) such as CO_2 (70%), CO (7%), N_2O (2.09%) and CH_4 (0.66%). *In-situ* rice residue management is one of the best options to improve the environmental and soil quality. Long term crop residue inclusion in soil significantly improves the organic matter in soil along with improvement in soil properties which enhance the resources use efficiency and ultimately leads to

Happy seeder sowing

PAU Smart seeder sowing

Table 1. Long-term effect of rice residue management on soil health and productivity of rice-wheat system

Rice residue	Grain yield (q/ha) 4-12 years		Soil health					
management in wheat			After 12 years					
wileat	Rice Wheat	System productivity	Bulk density (Mg/m³)	Organic carbon (%)	Available nutrients in soil (kg/ha)			
					N	Р	K	
Conventional sowing (without rice straw)	63.3	49.1	112.4	1.42	0.45	294.4	22.0	290.0
Sowing with Happy seeder (residue retention)	68.3	54.0	122.3	1.32	0.75	370.8	29.8	330.3
Sowing after incorporation of rice straw	68.5	53.9	122.4	1.32	0.76	372.0	30.0	335.4
Initial status	-	-	-	1.43	0.33	285.1	19.8	250.0

increase in productivity.

residue Many management options, viz. surface retention (mulching), incorporation, baling (collection and compaction of rice straw left in the field as bales to remove for various uses with lesser transportation cost) and direct sowing of crops in residue can be opted by farmers as alternative to burning. Amongst the various possible options of rice residue management, in-situ management of residue is considered as the most effective way. Wheat can be sown by using various technologies while managing paddy straw. Sowing can be done successfully after incorporation of straw with rotavator or harrows or it can be sown directly with super seeder management system in straw (SMS) attached combine harvested paddy fields. Benefits of straw

retention can be obtained with the use of cost effective technologies of happy seeder or surface seeder for sowing wheat without burning or incorporation of straw. Besides, PAU Smart seeder can be used for sowing wheat with less hp tractor which has the features of both happy seeder

Table 3. Effect of crop residue management practices and phosphorus levels on grain yield of wheat (pooled data of 12th and 13th year of rice residue management)

Rice residue	Grain yield (q/ha)				
management in wheat	Phosphorus level (kg P ₂ O ₅ /ha)				
	0	30	60		
Conventional sowing (without rice straw)	47.6	53.3	58.3		
Sowing with Happy seeder (residue retention)	55.9	60.1	60.8		
Sowing after incorporation of rice straw	55.5	59.5	60.2		

Table 2. Effect of crop residue management practices and nitrogen levels on grain yield of wheat (pooled data of 9th and 10th year of rice residue management)

Rice residue	Grain yield (q/ha)				
management in wheat	Nitrogen levels (kg/ha)				
	100	125	150		
Conventional sowing (without rice straw)	48.3	49.5	50.7		
Sowing with Happy seeder (residue retention)	54.4	54.2	53.9		
Sowing after incorporation of rice straw	56.1	55.7	55.0		

and super seeder. It enables the incorporation of straw in soil which comes in seed row and the straw in the inter-row area retained as such.

As shown in Table 1, the results of the long-term experiment showed that continuous incorporation or retention of paddy straw in the

Table 4. Effect of crop residue management practices and nitrogen levels on grain yield of rice (pooled data of 12th, 13th and 14th year of rice residue management)

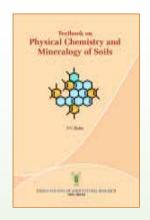
Transplanted rice	Grain yield (q/ha)			
	Nitrogen levels (kg/ha)			
	75	100	125	
Without crop residue in rice-wheat system (conventional practice)	54.0	60.3	64.7	
With rice residue retention in wheat	63.0	67.1	68.7	
With rice residue incorporation in wheat	62.9	67.5	68.4	

Growth of wheat crop under rice residue

field for 12 years increased the soil organic carbon content significantly, i.e. from 0.33% to 0.76%. Recycling of rice residue in soil helped to decrease the bulk density of soil from 1.43 Mg/m³ to 1.32 Mg/m³ which indicates the porosity of soil. Similarly, the increase of 26.1, 36.0 and 12.1% in availability of N, P and K was recorded over the residue removed plot, respectively. Consequently, the grain yields of both rice and wheat crops enhanced significantly with rice residue retention and incorporation. The average productivity of rice-wheat cropping system of 4-12 years with rice residue retention and incorporation also increased by 9.9 and 10.0 g/ha as compared to conventional rice residue removal practice, respectively.

In the same experiment, it was also observed that incorporation or retention of paddy straw with happy seeder continuously for 3 years helped to gain 10% increase in grain yield of wheat with the use of 25% less nitrogen as compared to the conventional sown wheat (without rice straw+125 kg N/ha) from the 4th year onwards (Table 2). It was further observed that continuous in-situ paddy residue management in wheat for 12-13 years resulted in 2-3% higher grain yield even with application of half dose of phosphorus (30 kg P₂O₅/ ha) than residue removed plots supplied with recommended dose of phosphorus, i.e. 60 kg P₂O₅/ha (Table 3). Furthermore experimentation showed that long-term management of rice straw in wheat improves grain yield of rice by 4% in ricewheat system along with saving of 25 kg N/ha (Table 4).

So, it is recommended to reduce the dose of urea by 50 kg per ha in wheat fields from the $4^{\rm th}$ year onwards where paddy straw is incorporated or retained continuously for the 3 years. Apply only 67.5 kg DAP per ha


to wheat where organic carbon content of soil comes under high category after continuous retention or incorporation of paddy straw. Moreover, urea dose in rice can be reduced by 50 kg per ha in residue managed fields whenever the organic carbon content of soil comes under high category.

In-situ recycling of crop residue is a viable strategy for sustainability of the most threatened rice-wheat production system in north western India. The continuous retention or incorporation of both paddy and wheat residue helps to build up soil organic matter which ultimately improves all soil functions. Thus, besides improvement in soil health and environment, not only crop yields can be enhanced but the use of chemical fertilizers can also be reduced by managing the paddy straw in the fields instead of burning.

*Corresponding author email: jagroopsekhon@pau.edu

Textbook on

Physical Chemistry and Mineralogy of Soils

Physical chemistry of soil and soil mineralogy are the two pillars which form the basic foundation of soil science. Once the students become familiar with these basic concepts, they can easily understand the other properties of the soil, say physical and biological properties, pedology and soil fertility. To become an expert of soil fertility, comprehensive knowledge of all the soil properties is essential which in turn is supported by the knowledge of physical chemistry of soils and soil mineralogy.

The present Textbook on 'Physical Chemistry and Mineralogy of Soils' has been written very cogently by the author who has been a teacher with an experience of nearly four decades of teaching in a premier Institute that is ICAR-Indian Agricultural Research Institute. The book includes all the topics prescribed by ICAR for the Postgraduate students of Soil Science. The introductory chapter describes basic definitions of soil science. Chapters like 'Bonding in solid structures', 'Elements of crystallography', 'Chemical thermodynamics' and 'Electrochemistry of soils and clays' are basic in nature and have been dealt very lucidly for easy understanding of students. Two chapters on characterisation of soil minerals are practical oriented. Other chapters focus on the structures of soil minerals, weathering and formation of minerals in soil environment, adsorption and ion exchange

on soil colloids, double layer theory of soil colloids—its evolution and application, chemisorption and precipitation reactions in soil, soil organic colloids and their properties and chemistry of submerged soil. This book will be very much useful for the Postgraduate students of Soil Science.

TECHNICAL SPECIFICATIONS

No. of pages: i-xii + 348 • Price: ₹ 650 • ISBN No.: 978-81-7164-228-1

For obtaining copies, please contact:

Business Unit

Directorate of Knowledge Management in Agriculture Krishi Anusandhan Bhavan-I, Pusa, New Delhi 110 012 Tel: 011-25843657, Fax 91-11-25841282; e-mail: bmicar@gmail.com SCAN QR Code to Purchase Online

20 Indian Farming
February 2025