# Technological innovations in aquaculture

with special reference to intelligent aquaculture

## Jesna Parakkandi<sup>1</sup>, Vijayakumar Leela Ramya<sup>1\*</sup>, Preetha Panikkar<sup>1</sup> and Basanta Kumar Das<sup>2</sup>

<sup>1</sup>ICAR-Central Inland Fisheries Research Institute, Hessarghatta, Bengaluru, Karnataka 560 089 <sup>2</sup>ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal 700 120

Technological interventions in aquaculture have led to many fold increase in the aquaculture production of finfish and shellfish in several countries across the world. These technologies cover the fields of fish genetics, nutrition, health management, aquaculture system designs as well as the harvesting and marketing of the produce. However, a new intervention includes the application of artificial intelligence in aquaculture. This includes the collection of data on fish and the environment, transmitting it to the control centre followed by the data processing and decision making stages using cloud platform and internet of things. This technological innovation has paved the way forward for the development of an automated aquaculture system, thereby transforming this industry to the next level of production and sustainability.

**Keywords**: Aquaculture, Artificial intelligence, Big data, Internet of things

ish is an important source of protein, and global aquaculture production has increased considerably over the last 50 years, supplying protein to the growing population. The global aquaculture production was 94.4 MT in 2022, of which marine aquaculture produced 35.3 MT, and inland aquaculture contributed approximately MT (FAO, 2024). In India, the aquaculture production is estimated to be 10.23 MT, accounting for 10.8% of the world's aquaculture production (FAO, 2024). Traditional production systems have provided a foundation for the aquaculture industry's growth, offering a range of benefits from sustainability and resource efficiency to cultural preservation and economic development. However, horizontal expansion of traditional farming exerts pressure on landuse and other natural resources. As technologies continue to evolve, aquaculture has gradually changed from traditional labour-oriented

farming to automated systems, resulting in high production efficiency, high-end product quality, and sustainability. The certification programs in aquaculture towards sustainability have served as a major thrust for these innovations.

### **Technological interventions**

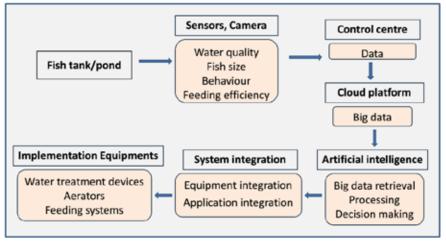
The technological interventions that contributed to the growth of aquaculture at the present level include genetic improvement of farmed species through selective breeding and genetic manipulations, advancements in control of viral and parasitic diseases, advances in aquaculture diets, adoption of new species, designing better aquaculture production systems including tank-based recirculating systems. The prediction and assessment of the impact of aquaculture have also contributed largely to the development of aquaculture sector towards sustainability. The decreasing labour availability and increasing demand for fish, call for an innovative model of intelligent aquaculture (IA).

### Artificial intelligence (AI) in aquaculture

intelligent production model employs sensor technology, Internet of Things (IoT), intelligent processing model, information equipment digitization, precision edge computing, control and big data and cloud platforms, as well as system integration. New technologies, from cloud computing to artificial intelligence, are not only communication, revolutionizing engagement, and transactions but significantly transforming industries and driving their growth and development. IoT forms the basis of intelligent aquaculture. Both big data and artificial intelligence are crucial for intelligent operation of IoT, which is essential for precise aquaculture control. For a growing industry like aquaculture, these innovations can significantly impact its evolution.

### How it works?

Intelligent aquaculture involves collecting information through various sensors, cameras, other equipments for digital image acquirement; transmitting the data (information on growth, behaviour, and water quality parameters) to the control center; the processing of data and decision-making are executed on the data in cloud platform using Al. The response is sent to implementation equipment, enabling intelligent and automated processes to achieve sustainable intelligent aquaculture. Intelligent aquaculture could be employed in monitoring the water quality parameters, fish behaviour, and the prevailing climatic conditions to control water treatment and feeding protocols. An automatic fish divider can be used for counting, fishing, classification, and grading of animals.


### Features of intelligent aquaculture system

- Sensor technology: A sensor is a device that detects physical input from its environment and transforms it into data that can be understood by humans or machines. Temperature sensor, dissolved oxygen sensor, humidity sensor, light sensor and CO<sub>2</sub> sensor can be utilized in aquaculture farms. There is an increasing demand for sensors which are reliable for their high accuracy, performance, multiple functions, portability, economic, and a long life. Integration of sensors with new technologies like nanotechnology, ultrasound, laser, microwave, biosensing, optical fiber, and integration with IoT promise a new era in aquaculture development globally. Computer vision is another area of sensor technology that reduces the human element with enhanced monitoring and increases yields and profit.
- electronic devices like personal gadgets, home appliances, office machines, and industrial equipment to the internet. Intelligent equipment can automate aquaculture processes, thereby reducing the labour.

30

- However, complete unmanned operation in aquaculture is challenging due to its high-risk nature. Interconnected sensors, computers, tanks, and other equipment communicate and share critical data with a central command station, offering operators a comprehensive view of the entire fish farm.
- Intelligent information processing model: These models help to assess and envisage the data of individual Recent fish. advancements have provided satisfactory solutions for the identification of fish, its behavioural pattern, counting, sorting, as well as the assessment of size and quality. However, challenges remain such as models may not explain the underlying biological mechanisms, extrapolating data afar the scope of the particular model can lead to large errors as the observed organisms (fishes) are sensitive and often in motion in uncontrollable environments.
- Big data and cloud computing:
  Big data is of high volume,
  and it requires technological
  and analytical tools to extract
  value. Cloud computing
  provides convenient, limitless,
  on-demand access to shared
  computing resources. AI
  systems rely on large datasets to
  generate meaningful insights for
  industries. Combining big data
  technology with cloud platforms

- addresses these challenges, particularly in data collection and storage for aquaculture. Various technologies, such as IoT sensors, industrial management systems, and traditional databases, gather data from production, processing, and sales. Storage and computing technologies manage aquaculture data, integrating heterogeneous sources before storing them in target databases for further analysis.
- integration: System This is technology crucial developing for intelligent aquaculture. It works by linking the aquaculture equipments and the subsystems to create unified IA system. The integration of equipment and application system the two types of system In integration. equipment system, integration combines various aquaculture equipment types and quantities, including aeration equipments, sensors, feeding systems, and mostly the water treatment devices. These are connected to an IoT platform effective scrutinization and management, requiring standardized parameter designs seamless integration. Application system integration integrates subsystems expert knowledge bases within the IA framework, such as data processing systems and fish disease knowledge bases.



Intelligent aquaculture model

This integration resolves issues like data retrieval and communication between systems. Cloud computing offers an effective solution application for integrating systems.

# Limitations of intelligent aquaculture model

However, there are some limiting factors in this field, such as high capital costs and high energy requirements, which need to be attended to advance the technology. AI technologies require trained manpower for their effective implementation in aquaculture. Lack of confidence in farmers regarding the reliability of the AI technologies is a major area to be addressed as they are the stakeholders to implement the technologies in field. The existing infrastructure is mostly unsuitable to adopt AI based technologies in aquaculture as the transformation from traditional to a new internet based system requires more efforts. Further, like any other sector, sustainable development requires that traditional aquaculture incorporate intelligent technology to realize automatic aquaculture production.

### Future prospects of AI in aquaculture

The future prospects of AI in aquaculture are promising and transformative. The integration of AI in aquaculture holds the prospective to reform the industry convalescing the efficacy, sustainability, and profitability while also addressing challenges such as disease management and resource optimization. AI systems can offer tailored recommendations for individual farms based on specific conditions and goals. It can also aid in achieving better the management of hatchery technologies such as breeding, seed production and larval rearing. As AI technology continues to advance, its applications in aquaculture are likely to expand, leading to even greater innovations and improvements in the sector.

In India, under Pradhan Mantri Matsya Sampada Yojana (PMMSY), Government has initiated schemes the adoption of modern technologies such as AI, to boost aquaculture productivity towards attaining blue revolution. A digital platform, SISTA360 Platform was launched during 2023, to integrate AI for providing realtime data analytics. This aids monitoring and managing

aquaculture practices more effectively to develop this sector. A Digital Agriculture Mission was implemented to execute digital agriculture projects with the aim of knowledge sharing to empower the farmers. Similar platform could be given more emphasis in realizing sustainable aquaculture.

### CONCLUSION

While AI presents significant opportunities for future development aquaculture, in achieving sustainable practices requires additional efforts. These include implementing renewable energy sources to conserve energy and enhancing water efficiency through advanced systems like recirculatory aquaculture systems, biofloc technology, and aquaponics. prioritize Entrepreneurs must integrating traditional aquaculture with intelligent technologies to production processes automate effectively. Moreover, effective policies and organizational frameworks play crucial roles in promoting the sustainable evolution of intelligent aquaculture models.

\*Corresponding author email: ramya.kumar.bfsc@gmail.com

# HANDBOOK OF FISHERIES AND AQUACULTURE



Fisheries is a sunrise sector with varied resources and potentials. The sector engages 14 million people at the primary level and is earning over t10,000 crore annually through exports. Fish consumption has shown a continuous increasing trend assuming greater importance in the context of 'Health Foods'. It is expected that the fish requirement by 2025 would be of the order of 16 million tonnes, of which at least 12 million tonnes would need to come from the inland sector and aquaculture is expected to provide over 1 O million tonnes. The domestic market for fish and fishery products is also growing rapidly and necessary models and quality control protocols in this regard need to be developed.

In 2006, the Indian Council of Agricultural Research, brought out the First Edition of 'Handbook of Fisheries and Aquaculture'. The present revised edition comprises 42 updated and six new chapters, viz. Fish physiology; Aquaculture engineering, Fisheries development in India; Fisheries cooperatives; Demand and supply of fish; and Climate change - impact and mitigation. The Handbook would be of great value to students, researchers, planners, farmers, young entrepreneurs and all stakeholders in fisheries and aquaculture.

### TECHNICAL SPECIFICATIONS

Size : Royal Octavo (16 cm × 24 cm) • No. of pages : i-x + 1116 • Price : ₹ 1500 • Postage : ₹ 100 ISBN No. : 978-81-7164-106-2

For obtaining copies:

### Business Unit

Directorate of Knowledge Management in Agriculture Indian Council of Agricultural Research Krishi Anusandhan Bhavan-I,
Pusa, New Delhi 110 012
Tel: 011-25843657, Fax 09-11-25841282;
E-mail: bmicar@icar.org.in

SCAN QR Code to

