

Journal of Indian Fisheries Association

Application of gonadosomatic index (GSI) and fecundity in interpreting the reproductive periodicity of an endemic snow trout, *Schiz+othorax plagiostomus* from the hill streams of

Aadil Hussain Magloo^{1*}, Farooz Ahmad Bhat¹, Tasaduq Hussain Shah¹, Bilal Ahmad Bhat¹, Ashwani Kumar¹, Asim Iqbal Bazaz¹, Sauliheen Qadri¹

Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Rangil, Ganderbal - 190006, Jammu & Kashmir (India)

Abstract

The objective of the present study is to describe the phases of gonadal development using Gonadosomatic index (GSI) and determine the fecundity of Schizothorax plagiostomus in Kashmir Himalaya. A total of 360 specimens of Schizothorax plagiostomus were studied for estimation of GSI and 95 female gonads for estimation of fecundity. The total length of the specimen ranged from 115 mm to 450 mm with the corresponding weight being 20 g and 502 g respectively. Maximum (gonadosomatic index) GSI values were recorded in the spawning month i.e. May with peak values of 11.4 in males and 13.0 in females. The mean absolute fecundity value of 95 specimens was 10676 ± 557 . The mean relative fecundity (number of ova/g of body weight) was found to be 42.66 ± 1.83 with highest of 95.69 and minimum of 7.53. High fecundity is a crucial aspect of their reproductive strategy. It helps compensate for high natural mortality rates by increasing the number eggs produced. The species studied, exhibit an r-selected reproduction strategy (prioritize high reproductive rates over parental care). High fecundity also promotes genetic diversity and facilitates colonization of new habitats.

Keywords:

Schizothorax plagiostomus, Gonadosomatic index, Fecundity, Kashmir Himalayas

*Corresponding author:

aadilhussain@skuastkashmir.ac.in

Received: 22 May 2023 Accepted: 19 July 2023

Introduction

The present study was undertaken with the objective of precisely estimating the monthly fluctuations in the Gonadosomatic Index (GSI) to determine the spawning periodicity. The absolute and relative fecundity was studied with the aim of unraveling the breeding potential of *Schizothorax plagiostomus*. These measurements are fundamental for fisheries management, allowing the setting of sustainable fishing quotas to prevent overfishing and protect fish stocks. The Indian Himalayas encompass an extensive region with diverse coldwater resources mainly in the form of upland streams, rivers, high and low altitudinal lakes etc. located in different hill states of India (Singh *et al.*, 2015). Jammu & Kashmir falls in the great north-western complex of the Himalayan ranges with marked relief variation, snow-capped summits, antecedent drainage and complex geological structure (Nandy *et al.*, 2006).

In Kashmir Himalayas pollutants, toxic chemicals and agricultural runoff are constantly being released into the water bodies. These pollutants disrupt fish reproduction, growth, and overall health, leading to population declines. The knowledge of reproductive characteristics like GSI and fecundity will ensure sustainable fishing practices, protect the species from overexploitation, and adapt to environmental changes, ultimately contributing to the preservation of biodiversity in the region.

Coldwater resources have a wide range of altitude and water temperature and comprise of 258 fish species belonging to 21 families is and 76 genera from Indian uplands (Singh et al., 2015). Order Cypriniformes has six families, 321 genera and some 3268 species is one of the most widespread and largest orders of fishes all over the world (Nelson, 2006). The cyprinids are found in Europe and Asia and comprises several species, most of which have been widely introduced as food fishes (Coad, 2006). The water bodies in Kashmir due to their peculiar natural conditions are prime centres of cold water fisheries and most fish species inhabiting the Himalayan region are small in size (Yousuf et al., 2003; Bhat et al., 2010). In all 44 species of fish have been reported in Kashmir valley (Yousuf, 1996; Balkhi, 2007) but presently not more than 23 species are available (Bhat et al., 2010).

The river Jhelum originates from Verinag spring in the district Anantnag and meanders north-westward from the northern slope of the Pir Panjal Range through the Vale of Kashmir. It flows in loops through the valley till it enters the Wular Lake; flows out from its other side to Baramulla in south-west direction and then it enters the boundary of Pakistan (Raina, 2002). At present fish species found in river Jhelum are: Schizothorax esocinus, S.plagiostomus, S.labiatus, S.curvifrons, S.niger, Triplophya kashmirensis, T.marmorat, Cyprinus carpio var.communis, C.carpio var. specularis, Crossochelius diplochilus (Bhat et al., 2020)

The indigenous schizothoracines or snow trouts are highly preferred by the local masses because of their nutritional value and taste that fetches high price market (Singh and Paul, 2010). Schizothoracids, contribute 15-25% in total fish catches in Kashmir. The introduction of the exotic species for commercial gains has resulted in the loss of diversity. The introduction of the exotic common carp, Cyprinus carpio L. in 1956 caused a sharp decline in the population and almost exterminated the Schizothoracine fishes in Kashmir valley (Zutshi and Gopal, 2000). In Kashmir, the fish catch is dominated by common carp in lakes and by Schizothoracids in riverine water bodies (Yousuf, 1996; Balkhi, 2007 and Bhat et al., 2010). Schizothorax, the indigenous cyprinid is dominant in torrential mountain streams of Himalayas and Central Asia inhabiting both lotic & lentic water bodies of Kashmir (Sehgal, 1999).

Heckel (1838) while documenting fish fauna from Kashmir valley, described a Freshwater, benthopelagic fish Schizothorax plagiostomus. It is a species of ray-finned fish in the genus Schizothorax. It is locally known as Khont, snow trout, snow carp, snow barble and Swati fish. Schizothorax plagiostomus is characterized by elongate fusiform body with projecting snout. Mouth is distinctly inferior, wide and lower jaw very deep. The fish is characterised by a lower papillose lip which is folded and expanded, and is particularly distributed in different rivers, streams and tributaries of all over the Himalayan regions extended to China,

Afghanistan, Nepal, Pakistan, Ladakh, Tibet, North East India and Bhutan (Kullander et al., 1999). It feeds on detritus material and breeds in streams (Heckel, 1838). It is one of the most valuable and suitable fish for the up scaling of the nutritional status. The population of *Schizothorax* have so far been satisfactory status as per conservation status lists but are declining in the water bodies of Jammu and Kashmir due to habitat destruction, over fishing, competition for food and breeding grounds with exotic carps and lack of captive breeding facilities or has not been bred artificially as yet (Akhtar et al., 2013).

Reproduction has three key components of sexual maturity, reproductive period, and fecundity, which are vital demographic characteristics essential to an understanding of a species' life history (Cortes, 2000). Without understanding of geographical variation in growth and reproduction cycles, it is difficult to effectively manage, and subsequently conserve, endemic fish populations (Al-Saleh et al., 2012). Studies on reproduction behavior (fecundity) of fish are important and a basic requirement for improvement and effective fishery resources management and conservation (Marshall et al., 2003; Grandcourt et al., 2009). In aquatic systems, the successful timing of reproduction is based on sensing environmental cues as temperature, photoperiod, food availability and chemical cues of con-specifics. An accurate timing of breeding is requisite for the successful reproductive outcome. The most suitable method of determining the reproductive cycle in female fishes is to observe seasonal developmental changes in the gonads (Sivakumaran, 2003). The maturation cycle describes morphological changes that gonads undergo to attain full growth and ripeness. Determination of fecundity and the development of sexual maturity is fundamental to fishery science.

Methodology

Fish collection

Every month 30 specimen of *S. plagiostomus* (Figure 1) were collected collected on random basis (Taherdoost, 2016) from the hill streams of the valley (Figure 2) over a period of 12 months from September 2021 to September 2022. The fish was identified using the standard taxonomical tools (Talwar, P.K. and Jhingran, A.G., 1991). After collection the specimens were immediately preserved in 5% formalin and brought to Fisheries Resource Management (FRM) Laboratory, Faculty of Fisheries, SKUAST-K, Rangil, Ganderbal for the estimation of Gonadosomatic index (GSI) and Fecundity.

Gonadosomatic index (GSI)

The fish specimens were dissected open and sex of individuals was identified macroscopically and the gonads were assigned a gross maturity stage based on their macroscopic appearance. Gonado Somatic Index (GSI) is an index that represents the relative weight of the fish gonad to the fish weight. It has been widely

used to evaluate reproduction timing (<u>Lowerre-Barbieriet al., 2011</u>). GSI is also widely used to indicate the maturity and periodicity of spawning and also helps in predicting the spawning season of the fish species (Towers, 2014). Total length and weight of gonads was recorded and GSI was determined using the following formula (Desai, 1970; Strum, 1978):

$$GSI = \frac{\text{weight of gonad (g)}}{\text{Total weight of fish (g)}} \times 100$$

Fecundity

Fecundity may be described as seasonal spawning potential and alternatively is defined as the number of ova ripening between current and next spawning period in a female fish (<u>Bagenal and Tesch</u>, 1978). It is also defined as number of eggs that are likely to be laid by a fish during a spawning season (Towers, 2014). During the present study fecundity was calculated using gravimetric method (Bagenal, 1978; Kwei, 1978).

Absolute Fecundity

The ovary subsamples were taken from the anterior, middle and posterior regions of the ovary (James *et al.,* 1978). The absolute fecundity was then worked out by calculating the number of ovain the whole ovary.

$$Absolute\ Fecundity = \frac{Number\ of\ ova\ in\ subsample}{weight\ of\ subsample} \times Total\ ovary\ weight$$

Relative Fecundity

Relative fecundity was calculated as number of ova per q of the body weight.

Relative Fecundity =
$$\frac{\text{Absolute fecundity}}{\text{weight of fish}}$$

Fig. 1: Specimen of S. plagiostomus

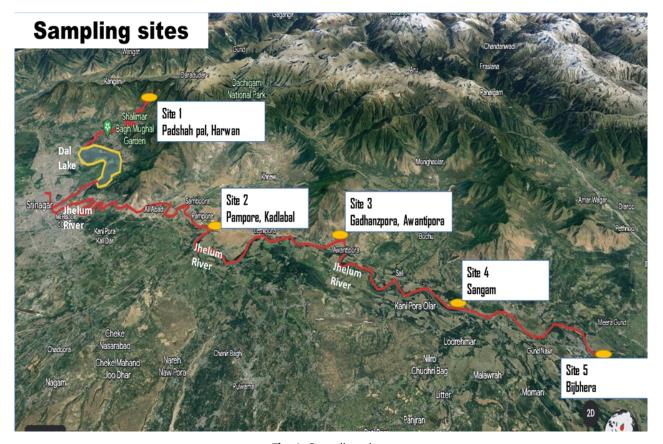


Fig. 2: Sampling sites

Results and discussion

Gonadosomatic index (GSI)

During present study the monthly variation of GSI of male and female specimens of *Schizothorax plagiostomus* is given in Table 1. The graphical representation is given in Figures 1. In females the mean GSI was found to be minimum in the month of July (2.08) with the gradual rise to 13.02 in the month of May. From May to June the value of GSI showed a sharp decline, indicating the onset of spawning season. In males the GSI was found to be minimum in the month of August (1.54) and maximum in the month of May (11.74).

Table 1: Monthly variation of gonadosomatic index of *Schizothorax plagiostomus*

Month	Male GSI Range (Mean)	Female GSI Range (Mean)
January	2.83-11.83 (5.28)	3.83-9.12 (6.28)
February	3.59.9.41 (5.54)	3.89-6.46 (5.64)
March	2.52-12.58 (7.34)	4.52-10.85 (6.7)
April	4.35-14.89 (7.61)	3.86-18.50 (8.87)
May	4.59-21.85 (11.74)	7.70-16.84 (13.02)
June	1.21-4.76 (2.78)	2.87-9.18 (5.41)
July	0.34-6.45 (2.16)	0.62-4.69 (2.08)
august	0.67-2.77 (1.54)	0.89-6.70 (2.48)
September	2.01-7.66 (3.69)	4.64-8.45 (6.16)
October	2.78-21.66 (4.04)	4.26-7.97 (5.12)
November	0.69-9.86 (4.87)	3.90-7.24 (5.91)
December	0.92-8.69 (4.97)	4.41-13.45 (7.03)

Time Series Plot of Average Female and male Gsi

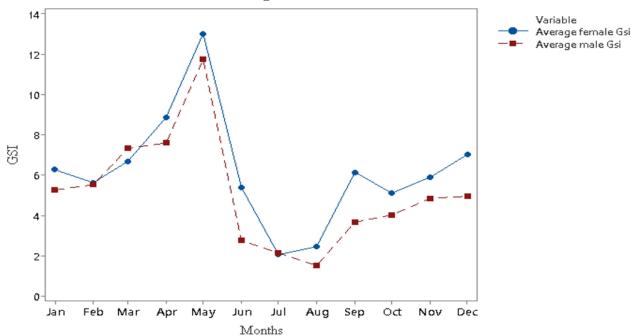


Fig. 3: Graphical representation of monthly variation in GSI of Schizothorax plagiostomus

Fecundity

Fecundity was studied by examining mature preserved ovaries in 5% formalin. A small portion was cut from the anterior, middle and posterior regions of the ovary and considered as one sample. After recording the weight, the sub samples were teased out and dispersed in a small amount of water. The mature ova were counted and the total number of ova was computed. The results showed the total number of mature eggs varied from 836 to 24630 in individuals of 74.6-502.2 g. The mean absolute fecundity value of 95 specimens was 10676 ± 557 . The mean relative fecundity

(number of ova/g of body weight) was found to be 42.66 ± 1.83 with highest of 95.69 and minimum of 7.53 (Table 2). The mean absolute fecundity was recorded maximum in the month of November (14524 \pm 2368) while as it was recorded lowest in July (6004 \pm 505). Similarly the mean relative fecundity was recorded maximum in the month of November (56.71 \pm 6.85) while as it was recorded minimum in the month of July (23 \pm 13.5).

Table 2: Monthly variation in the Absolute and Relative Fecundity of *Schizothorax* plagiostomus

Month	No of Samples	Absolute Fecundity	Relative Fecundity
		Mean ± SEM	Mean ± SEM
January	8	8693±1900	39.84±8.69
February	8	12111±1705	42.8±3.04
March	9	12150±1969	36.85±4.35
April	9	11631±2060	38.55±6.9
May	6	7790±2407	53.6±12.3
June	6	9971±1416	46±7.83
July	2	6004±5058	23±13.5
August	2	6617±5313	25.6±16
September	9	10557±953	48.29±2.18
October	11	9608±1334	36.6±2.91
November	8	14524±2368	56.71±6.85
December	8	12728±2462	51.37±6
Average		10676 ± 557	42.66 ± 1.83

Relationship between fecundity and total length (Fig. 2) has been established as:

$$y = 106.75x - 17093 (R^2 = 0.7058)$$

Relationship between fecundity and total weight (Fig. 3) has been established as:

$$y = 41.968x + 171.65 (R^2 = 0.6423)$$

Relationship between fecundity and ovary weight (Fig. 4) has been established as:

$$y = 470.88x + 3172.4 (R^2 = 0.4137)$$

The relationship between total length and fecundity is strong, indicating that as the fish's length increases, its ability to produce offspring also increases. The relationship between total weight and fecundity is moderately positive, suggesting that as the fish's weight increases, its fecundity generally increases. The relationship between ovary weight and fecundity is weaker compared to the other two factors, indicating that the weight of the fish's ovaries has a less pronounced influence on its fecundity. These relationships provide valuable insights for fisheries management, conservation, and ecological studies by helping predict fecundity based on easily measurable fish characteristics.

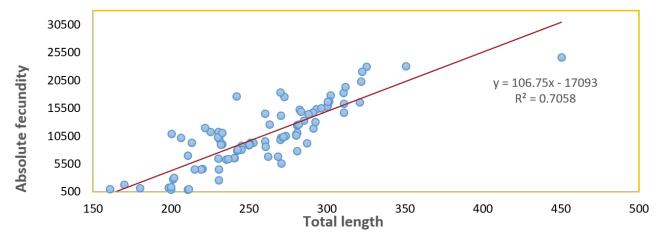


Fig. 4: Relationship between total length and absolute fecundity in Schizothorax plagiostomus

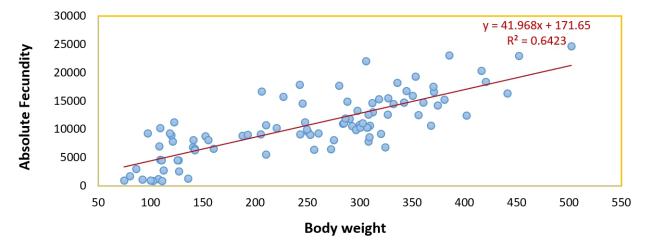


Fig. 5:Relationship between total weight and absolute fecundity in Schizothorax plagiostomus

DISCUSSION

Gonadosomatic Index (GSI)

In the females of *S. plagiostomus*, the mean GSI was lowest in July (2.08) and reached its peak in May (13.02). This trend indicates that the females are in their post-spawning phase in July when the GSI is lowest. As the months progress, the GSI increases, suggesting that the females are investing more energy in their gonads, preparing for the upcoming spawning season in May. In males, the minimum GSI in males was observed in August (1.54), while the maximum was in May (11.74). The sharp decline in GSI for both males and females from May to June indicates that spawning likely occurs during this period.

Waheed and gull (2023) conducted a study on GSI fluctuations of Cyprinus carpio communis in Kashmir. They observed that the GSI index was higher in May, which is consistent with the results obtained in the present study. Sunder (1984) reported similar observations in S. curvifrons spawning in the month of May. Qadri et al., 2018 based on GSI values and gonadal conditions found that April to June is the spawning season for S. curvifrons. The results are in line with the results of present the present study. Jan and jan (2017) observed that the mean GSI in female Salmo trutta fario varied from minimum 8.4 in March to maximum 17.5 in November, suggesting that in the month of November Salmo trutta fario reached its peak breeding period. GSI indicates gonadal development and maturity of fish which increases with the maturation of the fish and declines abruptly thereafter (Parameswarn et al., 1974). Yeldan and Avsar (2000) also reported that GSI is widely used especially for the bony fishes in order to examine the spawning period because its value is directly related to the development of the gonad. Flura et al., 2015 conducted a study on GSI of T. ilisha from the Meghna River, Chandpur, Bangladesh where they found the peak GSI value for females in June, October, and February. The highest mean GSI value was found in October; hence it determined October as the main spawning season of T. ilisha.

Teleosts exhibit different spawning periodicity and are seasonal breeders. In Indian subcontinent most of the freshwater fishes are monsoon breeders (Jhingran, 1982). According to Badola and Singh (1984), most of the Garhwal Himalayan hillstream fishes spawn during summer and monsoon months as Tor tor and Tor putitora (April to July), Labeo dyocheilus and L. dero (March to June), Barilius spp. (April-June), Glyptothorax pectinopterus and Pseudocheilus sulcatus (April to August) and Nemacheilus spp (July to August). In schizothoracids, diversity in spawning season and periodicity exists because of varied ecological environments. According to Jhingran (1982), S. richardsonii in Himachal Pradesh spawns from March to June, in Kumaon waters, it spawns from July to December (Bisht, 1974) and in Garhwal Himalaya from July to September (Misra, 1982).

However, Kashmir snowtrout, S. niger exhibits spawning from mid April to May end (Malhotra, 1966). Bhatnagar (1964) reported that S. plagiostomus of Bhakra reservoir breeds twice in a year i.e. from July to August and from December to January. Similarly, two breeding seasons (from September to October and February to March) in S. plagiostomus of Nepal waters have also been reported by Shrestha and Khanna (1976). Shafi (2013 a) while studying breeding biology of Schizothorax niger from Dal lake revealed that the GSI recorded its highest value during February (14.35) which is the peak breeding season of the fish, then it decreased gradually upto June attaining its lowest value in June (3.88), females exhibiting higher GSI value than males. The values of gonadosomatic index increase with the maturation of the fish and become maximum during the peak of maturity and decrease abruptly and sharply when the fish becomes spent and females generally exhibited comparatively higher GSI values than males (Khan, 1945; Ganpatti and Chako, 1954; Pathak and Jhingran, 1977; Piska and Devi, 1993). Similar observations were recorded during the current study on *S. curvifrons* which showed the maximum recorded GSI in the month of April (6.5 in males and 12.0 in females) and minimum GSI in the month of July (1.6 for males and 1.5 for females). Sunder (1986) reported similar observations and values in Schizothorax longipinnis as the GSI was lowest in July (1.0) and started increasing till September (5.2).

Fecundity

Many fishery biologists have worked on the fecundity of different fish (Naeem et al., 2005; Jacobson et al., 2009; Mekkawy and Hassan, 2011 and 2012; Shinkafi et al., 2011). The knowledge of fecundity is one of the most important part of the reproductive biology (Nikolsky, 1969). According to Khallaf and Authman (1991) fecundity is not a constant feature but it fluctuates with variations in environmental conditions and species specific factors. Horwood et al. (1986) reported that even within a stock, fecundity may vary annually.

Fecundity is known to vary within species with latitude and location (Crushing, 1968; Mann et al., 1984) and also with spawning time (Ware, 1975). According to the Murua and Saboride-Rey (2003) different fish species reflect marked differences in their reproductive patterns and exhibit different reproductive potentials in terms of fecundity.

In the current study, the average absolute fecundity of *Schizothorax plagiostomus* was estimated at **10676** ± **557** eggs and average relative fecundity at **42.66** ± **1.83** per g of body weight. The high average absolute fecundity of *Schizothorax plagiostomus*, suggests that the species invests significantly in reproduction. Such high fecundity might be an adaptive strategy to compensate for the challenges and risks faced by their offspring during early life stages. The results showed the fecundity in *Schizothorax plagiostomus* varied from

836 to 24630 in individuals of 74.6-502.2 g in contrary to the results obtained by (Agarwal, 1988) for the same species, *Schizothorax plagiostomus* in Garhwal Himalaya. It indicates, fecundity can vary significantly between different regions or populations of the same species. This variation in fecundity is often influenced by a combination of ecological, environmental, and genetic factors. Understanding the reasons behind these regional differences in fecundity is essential for comprehending the species' reproductive ecology and can have important implications for conservation and management efforts.

The estimated high value of fecundity in the current holds the ecological significance. This can be indicative of a strategy to maximize reproductive success and increase the chances of survival for its offspring, especially in environments with high predation or environmental variability. Schizothorax plagiostomus serve as a vital food source for brown trout (Salmo trutta fario) in the torrential streams of Kashmir Himalayas (Bhat et al., 2020), thus play a role in nutrient cycling, affecting the overall health of the ecosystem. A large number of eggs contribute to genetic diversity within the species, which is essential for adaptation to changing environmental conditions. It provides the raw material for evolution and potential responses to selective pressures. Oadri et al. (1983) recorded fecundity of Schizothorax richardsonii from Kashmir waters from 2598 to 27846 eggs for the fish ranging between 220 and 475 mm with average fecundity of 12744 eggs, while Das and Kaul (1965) reported fecundity between 2600 and 16,605 for 216-331 mm length group for the same fish. Sunder (1986) studied the fecundity of *S. longipinnis* in River Jhelum and fecundity per kg of body-weight was estimated at 41,355, relative fecundity was found to vary from 25 to 71. Shafi et al. (2013a) studied the fecundity of Schizothorax niger from Dal Lake Kashmir and reported that absolute fecundity varied from 1550-3444, while relative fecundity ranged from 24-124 per g body weight with a mean value of 53. Hussain et al. (2018) recorded the mean absolute and relative fecundity of Schizothorax niger from Dal Lake Kashmir 11590 ± 718.33 and 48.90 \pm 1.83 respectively. Farooq et al. (2019) reported the mean absolute and relative fecundity of Schizothorax labiatus from River Jhelum as 10323 and 42 respectively. Mohan (2005) studied the spawning biology of Schizothorax richardsoni (Gray) from River Gaula Kumoan, Himalaya and reported that the fecundity ranged from 2248 to 8726 in fishes of 160-245 mm TL and 40- 110 g in weight. Therefore both absolute and relative fecundity of Schizothorax plagiostomus during the present study does not showed much variation with respect to other Schizothoracines.

Conclusion

There is a seasonal pattern in the reproductive activity of *Schizothorax plagiostomus*, with both male and female fish showing distinct peaks in GSI during the

month of May. The variation in GSI between males and females could be indicative of differences in investment of reproductive efforts in these two sexes. The fecundity of *Schizothorax plagiostomus* is influenced by multiple factors, including body weight, total length, and ovary weight. The study indicates that as these factors increase, fecundity tends to increase as well. The research also highlights significant monthly variations in fecundity, with maximum average value occurring in the month of November. These findings contribute to our understanding of the reproductive biology of *Schizothorax plagiostomus* and may have implications for its management and conservation.

References

Akhtar, M.S., Sarma, D. and Bharat, A. 2013. Development of coldwater fisheries of Himalaya: An assessment of present status and future outlook. Fishing cimbs, Vol. 33 No. 142, Pp. 4753.

Al-Saleh, F., Hammoud, V., Hussein, A. and Alhazzaa, R., 2012. On the growth and reproductive biology of asp, Aspius vorax, population from the middle reaches of Euphrates River. *Turkish Journal of Fisheries and Aquatic Sciences*, 12(1)

Badola, S.P. and Singh, H.R. 1984. Spawning of some important coldwater fishes of the Garhwal Himalya. *Journal of Bombay Natural History Society* 81(1):54-58.

Bagenal, T. B. and Tesch, F.W. 1978. Age and growth. *In*: T. Begenal (Eds), Methods for assessment of fish production in fresh waters, IBP Handbook 3, *Blackwell Science Publications*, Oxford, pp. 101-136.

Balkhi, M. H. 2007. Fish diversity in Jammu and Kashmir and conservation measures. In *Kashmir Speaks* (Ed. Riaz A.Patloo), pp 104-115.

Bhat, F. A., Yousuf, A. R., Balkhi, M. H., Mahdi, M. D. and Shah, F. A. 2010. Length-weight relationship and morphometric characteristics of *Schizothorax* spp. in the River Lidder of Kashmir. *Indian Journal of Fisheries*, 57 (2): 73-76.

Bhat, F.A., Yousuf A.R. and Balkhi, M.H. 2020. Biodiversity of Fishes in Jammu and Kashmir Pp.859-887. In Biodiversity of Himalaya J & K State (Gh. Hassan dar & Anzar A. Khuroo, Eds) Springer Nature Singapore, Private Limited.

Bhatnagar, G.K. 1964. Obsevations on the spawning frequency of certain Bhakra reservoir fishes. *Indian Journal of Fisheries* 1: 485-502.

Bisht, J.S. 1974. Seasonal histological changes in the hill stream teleost, *Schizothorax richardsonii* (Gray). *Acta Anatomy* 93: 512-525.

Coad, B. W. 2006. Endemicity in the freshwater fishes of Iran. *Iranian Journal of Animal Biosystematics*, 1(1): 1-13.

Cortes, E. 2000. Life History Patterns and Correlations in Sharks. *Reviews in Fisheries Science*. 8:299-344.

Cushing, D.H. 1968. Fisheries Biology: A study of population dynamics. University of Wisconsin. pp 220.

Das, S.M. and Koul, B, L. 1965. The gross anatomy of gonads and fecundity of four fishes of Kashmir. *Kash. Sci.* 2(1-2): 64-76.

Desai, V. R. 1970. Studies on the Fishery and Biology of *Tor tor* (Hamilton) from river Narmada. *Journal of Inland*

Fisheries Society of India, 2:101-112.

Farooq, I., Bhat, F. A., Balkhi, M. H., Shah, T. H., Bhat, B. A., Qadri, S., Talia, S., Aalia, S., and Ganie, P. A. 2019. Reproductive and breeding biology of *Schizothorax labiatus* a snow trout found in River Jhelum, Kashmir. *Journal Environmental Biology*, 40:291–294.

Flura, M.Z., Rahman, B.S., Rahman, M.A., Ashraful, M., Alam, M. and Pramanik, M.H., 2015. Length-weight relationship and GSI of hilsa, Tenualosa ilisha (hamilton, 1822) fishes in Meghna river, Bangladesh. *Int. J. Nat. Soc. Sci*, 2(3), pp.82-88.

Gandotra, R., Shanker, R. and Singh, D. 2009. Studies on fecundity of snow trout *Schizothorax richardsonii* (Gray) from the lotic bodies of Rajouri district (J&K). *Current World Environment*, 4(1):127-132.

Ganpati, S.V. and Chacko, P.J. 1954. Some observations on the spawning of Indian carps in the 'Bundhs' of Bengal. *Indian Geos. Journal* 27(3&4): 1-17.

Heckel, J.J. (1838). Fische aus Caschmir gesammelt und herausgegeben von Carl Freiherrn von Hügel, beschrieben von J.J. Heckel. Wien. 1-86, 1-12.

Horwood, J.W., Bannister, R.C.A and Howlett, G. J. 1986. Comparative fecundity of North Sea Plaice (*Pleuronectes platessa L.*) *Proc. R. Soc. Lond. B.* 228: 401-431.

Hussain, S., Bhat, F. A., Maqsood, H. M., Balkhi, M. H., Majid, I., Najar, A. M. 2018. Present status of breeding biology of *Schizothorax niger* in Dal Lake Kashmir. *Journal of Entomology and Zoology Studies*, 6(6): 930-935.

Jacobsen, T., Fogarty, M.J., Megrey, B.A. and Moksness, E. 2009. Fish Reproductive Biology: Implications for Assessment and Management. Wiley-Blackwell, USA, ISBN: 978-1-4051-2126-2.

James, P. S., Chendrasekhar, B.R., Gupta, T.R. and Shanbhogue, S.L. 1978. Some aspects of the biology of ribbon fish, *Trichiurus lepturus* (Linnaeus). *Journal of Marine biological Association of India*, 290 (1 & 2): 120-137.

Jan, M. and Jan, N., 2017. Studies on the fecundity (F), gonadosomatic index (GSI) and hepatosomatic index (HSI) of Salmo trutta fario (Brown trout) at Kokernag trout fish farm, Anantnag, Jammu and Kashmir. *International Journal of Fisheries and Aquatic Studies*, 5(6), pp.170-173.

Jhingran, V.G. 1982. Fish and fisheries of India. Hinduatan Publishing Corporation, Delhi, India.

Khallaf, E.A. and Authman, M. 1991. Growth and mortality of Bagrus bayad (Forskal) in Bahr ShebeenCanal, *J. Egypt. Ger. Soc. Zool.* 4: 87-109.

Khan, H. 1945. Obsevation on the spawning behaviour of carp in Punjab. *Proceedings of National Institute of Science of India* 11: 315-320.

Kullander, S.O., Fang, F., Delling, B. and Ahlander, E. 1999. The fishes of Kashmir Valley. In: River Jhelum, Kashmir Valley, Impacts on the aquatic environment (Lenart Nyman Ed.), 99-163.

Kwei, E.A. 1978. Size composition, growth and sexual maturity of *Callinectes latimanus* (Rath) in two Ghanaian lagoons. *Zoological Journal of the Linnaean Society*, 64(2): 151–157.

Lowerre-Barbieri, S.K., Ganias, K., Saborido-Rey, F., Murua, H. and Hunter, J.R., 2011. Reproductive timing in marine fishes: variability, temporal scales, and methods. *Marine and Coastal Fisheries*, 3(1), pp.71-91.

Malhotra, Y.R. 1966. Breeding in some fishes of Kashmir valley. *Ichthyologica* 5: 53-58

Mann, R.H.H., Mills, C.A. and Crisp, D.T. 1984. Geographical variation in the life history tactics of some species of fresh water fish. In: *Fish reproduction strategies and tactics* (Ed. Potts, G.W., Wooton, R.J.) London, Scademic Press), pp. 17-186.

Marshall, D.J. and Keough, M.J., 2003. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. *Marine Ecology Progress Series*, 255, pp.145-153.

Mekkawy, I.A.A. and Hassan, A.A. 2011. Some reproductive parameters of *Synodontis schall* (Blochvand Sceneider, 1801) from the River Nile, Egypt. *J. Fish Aquat. Sci.* 6: 45-471.

Misra, M. 1982. Studies on fishery biology of *Schizothorax richardsonii* (Gray) - an economically important food fish of Garhwal Himalaya. Ph.D. thesis submitted to Garhwal University, Srinagar, Garhwal.

Mohan, M. 2005. Spawning biology of Snow trout, *Schizothorax richardsoni* (Gray) from River Gaula (Kumaon, Himalaya), *Indian Journal of Fishereis* 52(4): 451-457.

Murua, H., Kraus, G., Saborido-Rey, F., Witthames, P.R., Thorsen, A. and Junquera, S. 2003. Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. *J. Northw. Atl. Fish. Sci.* 33: 33-54.

Naeem, M. and Salam, A. 2005. Morphometric study of fresh water bighead carp *Aristichthys nobilis* from Pakistan in relation to body size. *Pakistan Journal of Biological Sciences* 8(5):759-762.

Nandy, S.N., Dhyani, P.P. and Samal P.K. 2006. In: Resource Information Database of the Indian Himalaya.G.B. Pant Institute of Himalayan Environment & Development, Almora.

Nelson, J. S. 2006. Fishes of the world. 4thedn. Hoboken (New Jersey, USA): John Wiley&Sons. 601p.

Nikolsky, G.W. 1969. Fish Population Dynamics. Oliver and Boyd., Edinburg, 323pp.

Parameswaran, S., Selvaraj, C. and Radhakrishnan, S., 1974. OBSERVATIONS ON THE BIOLOGY OF LABEO GONIUS (HAMILTON).

Pathak, S.C. and Jhingran, A.G. 1977. Maturity and fecundity of Labei calbasu (Hamilton) of Loni reservoir. *Madhya Pradesh Journal* 12(1):60-62.

Piska, R.S. and Devi, R. 1993. An account of fecundity in the freshwater catfish *Heterpneusics fissils* (Bloch) of lower Manairreserior, Karimnegar. *Bio-Journal* 5(1&2): 127-129.

Qadri, M.Y., Mir, S. and Yousuf, A.R. 1983. Breeding biology of *Schizothorax richardsoni* Gray & Hard. *J. Indian Inst. Sci.* 64: 73-81.

Qadri, S., Shah, T. H., Bhat, A. B., Balkhi, M. H., Bhat, F. A., Farooq, I., Syed, A. Qadri, S. and Bhat, A. B. 2018. Study on growth of *Schizothorax curvifrons* (Cyprinidae: cypriniformes) in river Jhelum Kashmir. *Journal of Pharmacognosy and Phytochemistry*, 7 (5):1908-1912.

Raina, A.N. 2002. Geography of Jammu and Kashmir State. Radha Krishan Anand and Company Pacca danga, Jammu. pp 1-2

Sehgal, K.L. 1999. Coldwater fish and fisheries in the Indian Himalayas: rivers and streams. p. 41-63. In T. Petr (ed.) Fish and fisheries at higher altitudes: Asia. FAO Fisheries Technical Paper 385. FAO, Rome. 304 p Shafi, S., Yousuf, A.R. and Parveen, M. 2013a. Breeding biology and fecundity estimation of *Schizothorax niger* (Heckel, 1838) from Dal Lake, Kashmir, 2(4):111-123.

Shafi, S., Yousuf, A.R. and Parveen, M. 2013b. Length weight relationship and breeding biology of *Puntius conchonius* (Hamilton) from Dal Lake Kashmir, *International Journal of Innovative Research and Development*, 2(4): 249-312.

Shinkafi, B.A., Ipinjolu, J.K. and Hassan, W.A. 2011. Gonad maturation stages of *Auchenoglanis occidentalis* (Valenciennes 1840) in River Rima, North Western Nigeria. *Journal of Fisheries and Aquatic Science* 6: 236-246.

Shrestha, T.K. and Khanna, S.S. 1976. Histology and seasonal changes in the testes of a hill stream fish *Schizothorax* plagiostomus. *Z. Mikresk. Anat. Forsoh.* 90(4): 749-761.

Singh, A.K. and Akhtar, M.S., 2015. Coldwater fish diversity of India and its sustainable development. *Biodiversity for Sustainable development Editor-in-chief Pratibha Singh Published by UP Biodiversity Board, Lucknow. International Day for Biological Diversity on*, pp.97-105.

Sivakumaran, P. K., Brown, P. and Stoessel, D. 2003. Maturation and reproductive biology of female wild carp (*Cyprinus carpio*, L) in Victoria, Australia. *Environmental Biology of Fishes*, 68 (3):321–332.

Strum, L. M. G. 1978. Aspects of the biology of Scombemorus maculates (Mitchill) in Trinidad. *Journal of Fish Biology*, 13:155-172.

Sundar, S. 1984. Maturation and spawning of *Schizothorax* curvifrons Heckel from River Jhelum, Kashmir, India. *J. Indian Inst. Sci.*, 65:41-51

Sunder, S. 1986. On the breeding biology of snow trout *Schizothorax longipinnis* from River Jhelum Kashmir India. *Indian Journal of Fisheries*, pp. 201-210.

Taherdoost, H., 2016. Sampling methods in research methodology; how to choose a sampling technique for research. How to choose a sampling technique for research (April 10, 2016).

Talwar, P.K. and Jhingran, A.G., 1991. *Inland fishes of India and adjacent countries* (Vol. 2). CRC press.

Towers, L. 2014. Maturation and Spawning in Fish. Sustainable Marine Aquaculture. *The Fish Site*. Hatch Accelerator Holding Limited, 7/8 Liberty Street, Cork, Ireland.

Waheed, N., Bhanot, R. and Gull, R., 2023. Gonadosomatic index (GSI) fluctuations of Cyprinus carpio communis and Carassius carassius at different sites of Dal Lake Kashmir UT India.

Ware, D.M. 1975. Relationship between egg size, growth and natural mortality of larval fish. *J. Fish. Res. Board Cand.* 32: 2503-2512.

Yeldan, H. and Avşar, D., 2000. A preliminary study on the reproduction of the rabbitfish (Siganus rivulatus (Forsskal, 1775)) in the northeastern Mediterranean. *Turkish Journal of Zoology*, 24(2), pp.173-182.

Yousuf, A.R. 1996. Fishery resources of Kashmir. In: *Ecology, Environment and Energy* (Ed. A.H. Khan and A.K. Pandit). University of Kashmir, pp. 75-120.

Yousuf, A.R., Bhat, F.A., Mehdi, D., Ali, S. and Ahangar, M.A. 2003. Food and feeding habits of *Ghyptosternon reticulatum* (McClleland and Griffth) in torrential streams of Kashmir Himalayas. *Journal of Research and Development*, 3: 123-133.

Zutshi, D.P, Gopal, B. 2000. State of bioderversity in lakes & wetlands of Kashmir Valley. *Environmental Biodiversity & Conservation*, pp: 15-16.