

Journal of Indian Fisheries Association

Fish Fauna of River Damodar in Dhanbad district of Jharkhand, India

Bijay Kumar Gupta, Hrishikesh Kashyap Bezbaruah, S.K. Nayak and H.S. Mogalekar*

College of Fisheries (Dr. Rajendra Prasad Central Agricultural University), Dholi, Muzaffarpur – 843 121, Bihar, India

Abstract

The study, which took place from April 2022 to September 2022, was undertaken to comprehensively investigate the ichthyofaunal diversity within the stretch of Damodar River located in the Dhanbad district of Jharkhand. The meticulous examination of the river's fish fauna has unveiled a total of 35 distinct species, distributed across 30 genera, belonging to nineteen families and ten orders. Notably, the family Cyprinidae emerged as the dominant taxonomic group, boasting eight species, with Donionidae closely following, comprising five species within the study area. Of particular concern is the conservation status of these species, with one being categorized as endangered, another as near threatened, and three more falling into the vulnerable classification. These findings underscore the pressing need for concerted efforts to conserve and manage this invaluable aquatic ecosystem.

Keywords:

Ichthyofauna, Damodar River, Dhanbad, Conservation and management

*Corresponding author:

mogalekar@rpcau.ac.in

Received: 22 June 2023 Accepted: 22 September 2023

Introduction

Indeed, rivers are of immense significance in maintaining ecosystems and supporting life on Earth. They are vital freshwater sources and can be likened to the Earth's living arteries. In countries like India, rivers hold a myriad of values, deeply intertwined with the socio-cultural fabric and emotional connection to their free-flowing environment. India's most notable river systems include the Ganges, Godavari, Damodar, and many more. These rivers play multifaceted roles, from providing water for agriculture and industry to holding cultural and spiritual importance in the lives of the people along their banks. Bezbaruah et al. (2023) reported 23 species in the upper stretch of River Brahmaputra in Jorhat district of Assam. Gupta et al. (2022) reported 26 species in the middle stretch of River Ganga in Prayagraj district of Uttar Pradesh. The Damodar river, flowing through Jharkhand and West Bengal, is significant in India. It's often called the 'Sorrow of Bengal' due to its devastating floods in West Bengal's plains (Sheet et al., 2023). It originates in the Khamparpet hills of Palamu district in the Chota Nagpur Plateau in Jharkhand and eventually merges into the Hooghly River, a distributary of the Ganges in West Bengal (Purnanjali & Kasiviswanathan, 2022) having total length 592 km (Das et al., 2021). This river is essential for society, fueling various economic activities and nurturing ecological diversity in its surroundings (Chakraborty et al., 2021 The Damodar river is fed by various tributaries like Barakar, Konar, and others. It courses through six Jharkhand and five West Bengal districts, receiving an annual rainfall of 765-1605 mm. (CIFRI, 2013).

River Damodar accommodates a high diversity of fish, including ornamental fish (CIFRI, 2013). In the Lower Damodar region, fisheries have been a long-standing source of income and a significant part of the local food supply. In the early fifties, 89 fish species from 20 families were identified, with 25 having commercial value. Due to factors like delinking and reduced river depth, the number of commercially viable species has now dropped to 16 from 6 families (Ghosh –2011; Das 2013). Biodiversity is crucial for ecosystem stability and environmental quality (Vijaykumar, 2008). River Damodar supports high ichthyofaunal diversity. Saha &

Patra (2013) reported 46 fish species in Damodar stretch of district Burdwan, West Bengal. The 123 km stretch of river Damodar from Jamalpur to Ramgarh accommodates 68 fish species (CIFRI, 2013). Despite previous research efforts, there remains a notable gap in the study of ichthyofauna in the Dhanbad district of Jharkhand. As a result, the current study seeks to address this deficiency by conducting a comprehensive assessment of fish species diversity in the Dhanbad district. This research endeavor aims to contribute valuable insights into the local Damodar stretch fish diversity and fishing gear used.

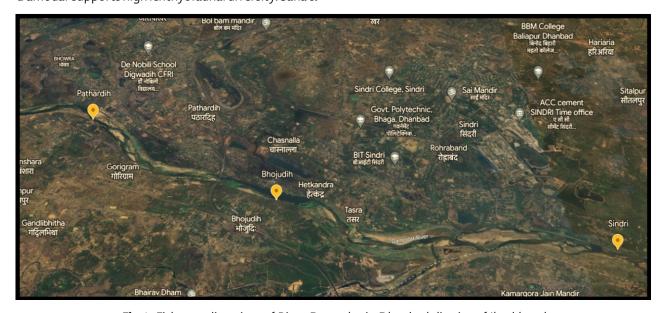


Fig 1. Fish sampling sites of River Damodar in Dhanbad district of Jharkhand

Fig 2. Fisheries activities at river Damodar, A- drag net operation, B- Push net and C- Sorting fish species.

Methodology

Three major fishing sites were selected in district Dhanbad: Pathardih, Bhojudih and Sindri. These areas are adjacent to the Jharkhand-Bengal border (Table 1 & Figure 1). Fish were caught from three sampling sites using different fishing gears like drag net, gill net, cast net, push net and traps. Most of the catch comes from drag net followed by gill net, cast net traps and push net. They used a 7-9 m plank-built boat to deploy the 300m drag net with a 1.2mm mesh size (Fig. 2). The fish samples were caught fortnightly for six months from April 2022 to September 2022. The collected fish samples underwent a series of steps for preservation and identification. Firstly, representative specimens were anesthetized and carefully cleaned. Following this, they were preserved in a 10% formalin solution to facilitate further analysis in the laboratory. This preservation process ensures that the fish samples remain suitable for detailed examination and scientific study. To ascertain the species of the collected fish samples, identification procedures recommended by reference books authored by Talwar and Jhingran (1991) and Jayaram (2010) were consulted and followed. These established references are valuable resources for accurately identifying and classifying fish species, contributing to the precision and reliability of the study's findings.

Table 1. Fish sampling sites of River Damodar in the Dhanbad district of Jharkhand

Sampling site	Latitude	Longitude
Pathardih	23°41'24'' N	86°24'18'' E
Bhojudih	23°38'58'' N	86°26'58'' E
Sindri	23°38'21'' N	86°30'34'' E

Results and discussion

The primary goal of this research was to document the fish diversity within the Damodar River stretch, with a particular emphasis on the Dhanbad district in Jharkhand. The table labeled "Table 1" contains a comprehensive list of observed species, complete with their local names, size ranges and IUCN status. A total of 35 fish species, representing ten orders, nineteen families, and thirty genera, were documented within the study area, as depicted in Figure 3. Cyprinidae was found to be the most abundant family with eight species.

Notable. a previous study conducted by Job *et al.* (1952) reported the occurrence of 89 species, while Sarkar and Banerjee (2010) documented 79 fish species. Similarly, CIFRI (2013) reported 68 species along a 123-kilometer stretch of the Damodar River from Jamalpur to Ramgarh. Additionally, Saha and Patra (2013) reported the presence of 46 species in the Burdwan district of West Bengal. However, in the present study, only 35 species were recorded, signifying a substantial and concerning decline in fish diversity in the region.

The study conducted by CIFRI (2013) reveals significant findings regarding fish populations in the Damodar River. Specifically, it shows that 9 species (25%), 19 species (41%), and 17 species (44%) are experiencing a decrease in population at the Durgapur barrage, Burdwan, and Mundeshwari Bifurcation sites, respectively. The construction of four large dams (Konar, Tilaiya, Maithon, and Panchet), Durgapur barrage, and Tenughat reservoir, aimed at flood control and water resource management through an integrated approach (Ghosh and Guchhait, 2013), has altered the river's flow pattern, consequently impacting fish habitats.



Fig 3. Number of families, genera and species of fish recorded under ten orders from River Damodar in the Dhanbad district of Jharkhand

Table 2. Checklist of fish from River Damodar in Dhanbad district of Jharkhand with local name, size range and IUCN status

Order: Family & Species	Local Name	Size Range (cm)	IUCN status
Cypriniformes: Cyprinidae			
Osteobrama cotio	Gurumda/Koti	10-20	least concern
Cirrhinus reba	Reba	15-25	least concern
Puntius sophore	Kunchon punghti	10-15	least concern
Lebeo calbasu	Kalbasu/Talbagus	15-25	least concern
Labeo rohita	Rohu	30-90	least concern
Labeo catla	Katla	40-120	least concern
Cirrhinus mrigala	Mirrig	20-30	least concern
Cyprinus carpio	Koman	30-120	vulnerable
Cypriniformes: Xenocyprinidae			
Ctenopharyngodon idella	Grass carp	30-75	least concern
Cypriniformes: Danionidae	,		
Esomus dadricus	Pedu	5-6.5	least concern
Amblypharyngodon mola	Maurala	5-7.5	least concern
Rasbora rasbora	Derhki	4-6.5	least concern
Salmostoma bacaila	Pedi	15-20	least concern
Securicula gora	Bhasa machh	15	least concern
Cypriniformes: Cobitidae		-	
Lepidocephalus guntea	Geta machh	5-6.5	least concern
Perciformes: Ambassidae			
Chanda nama	Chand puthi	3.8-5	least concern
Parambassis ranga	Sisa machh	5-7.5	least concern
Anabantiformes: Channidae		1.72	
Channa punctatus	Garai	30-40	least concern
Channa striata	Shol	45-60	least concern
Anabantiformes: Nandidae			
Nandus nandus	Nadosh	10-15	least concern
Siluriformes: Sisoridae	-	•	
Gagata cenia	Kukuriya machh	3-5.5	least concern
Bagarius bagarius	Baghari	30-100	vulnerable
Siluriformes: Siluridae			
Ompok pabda	Pabda	15-30	near threatened
Wallago attu	Buari	90-150	vulnerable
Siluriformes: Bagridae			
Mystus cavasius	Tengra	15-30	least concern
Mystus vittatus	Tengra	7.5-12.5	least concern
Siluriformes: Clariidae	,		
Clarias magur	Magur	30-45	endangered
Siluriformes: Heteropneustidae			J
Heteropneustes fossilis	Singhi	30-45	least concern
Siluriformes: Ailiidae			
Clupisoma garua	Garua	15-25	least concern
Tetraodontiformes: Tetraodontidae			
Tetraodon cutcutia	Phula/Tepa	10-15	least concern
Clupeiformes: Dorosomatidae	/ · · F · ·		
Gudusia chapra	Kheri machh	5-7.5	least concern
Synbrachiformes: Mastacembelidae			
Macrognathus pancalus	Turi/Pangkal	20-30	least concern
Gobiiformes: Gobiidae	, . aga.		
Glossogobius giuris	Bheda/Bele	10-15	least concern
Beloniformes: Belonidae	Diloun Dele	10 10	ioust conteent
Xenentodon cancila	Kanley	15-25	least concern
Cichliformes: Cichlidae	Kumey	13-23	ieusi concern
Oreochromis niloticus	Telpia	15-30	least concern
O recentionnes militarious	reipiu	13-30	ieusi concenn
	mhar 7/177		

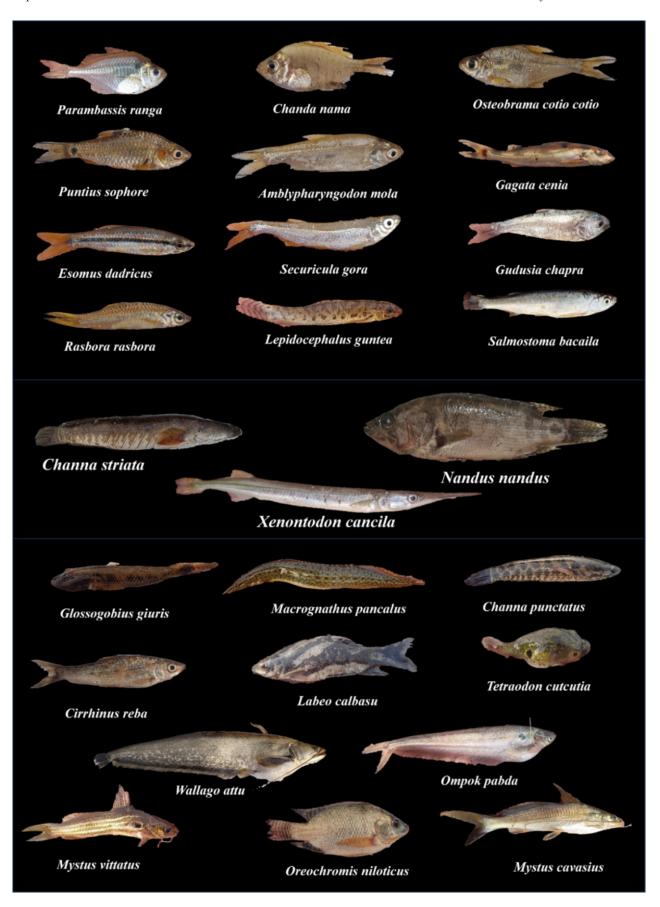


Fig 4. Fishes of Damodar River from Dhanbad district of Jharkhand

The decline in fish populations within an aquatic system serves as an indicator of environmental degradation within that system. Seal *et al.* (2022) further underscores the environmental challenges faced by the Damodar River basin. Their research reports elevated levels of heavy metal contamination (including Fe, Cu, Zn, Mn, As, Co, Cd, Hg, Cr, Ni, and Cu) in the river basin, stemming from industrial and mining activities. These contaminants have had a discernible impact on the hydro-chemical properties of the river, contributing to the observed changes in fish populations.

Conclusion

Among the 35 species documented, it's concerning to note that one species falls under the endangered category, one is categorized as near threatened, and three species are classified as vulnerable. What's particularly significant is that 33 of these species hold food value, emphasizing their importance for sustenance and livelihoods. In light of the declining trend in fish diversity observed in the Damodar River, there is an urgent and compelling need for effective management of these fisheries resources. This management should focus on mitigating the adverse impacts of dam construction and anthropogenic pollution, both of which pose significant threats to the aquatic ecosystem and the valuable fish species it supports.

References

Bijay Kumar Gupta, Mogalekar, S.K. Nayak, Rinki Kumari and Sandeep B. Gore (2022) "Fish catch composition in the middle stretch of River Ganga, Uttar Pradesh", *Journal of Indian Fisheries Association*, 49(2).

- Chakraborty, B., Bera, B., Adhikary, P.P., Bhattacharjee, S., Roy, S., Saha, S., Ghosh, A., Sengupta, D. and Shit, P.K., 2021. Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India. *Scientific reports*, 11(1), p.20140.
- CIFRI (2013) Environment and Fisheries of River Damodar. Central Inland Fisheries Research Institute, Barrackpore, Bull. No. 183.
- Das, S., Majumder, B., Chakraborty, A., Mandal, B., Roy, P.K. and Mazumdar, A., 2013. Aquifer Characteristics of the Intake Wells on Damodar River near Raniganj, West Bengal, India. *Reason-A Technical Journal*, 12, p.19

- Ghosh, S. and Guchhait, S.K., 2014. Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India. *Environment, Development and Sustainability*, 16, pp.769-796.
- Ghosh, S., 2011. Hydrological changes and their impact on fluvial environment of the lower Damodar basin over a period of fifty years of damming The Mighty Damodar River in Eastern India. *Procedia-Social and Behavioral Sciences*, 19, pp.511-519.
- Hrishikesh Kashyap Bezbaruah, Mogalekar H.S, Sachin W. Belsare, Satyajit Belsare, Sandeep B. Gore and Sonal R. Kalbande (2023) "Icthyofaunal diversity of upper stretches of the River Brahmaputra in Jorhat district of Assam", Journal of Indian Fisheries Association, 50(1).
- Jayaram, K.C. (2010). The freshwater fishes of the Indian Region. Narendra Publishing House, New Delhi, India, 616.
- Job, T. J., A. David and M.P.Motwani. (1952). Observations on the Fish and Fisheries of the Damodar basin with reference to the multipurpose projects of the valley. The Journal of the Asiatic society, Science, vol. XVIII, No 2.:147-207.
- Das, B.K., Bhakta, D., Lohith Kumar, Nair, S.M., Koushlesh, S.K., Sajina A.M., Roshith, C.M., Samanta S. 2021. Ichthyofaunal diversity of the major Indian rivers: A review. *J. Inland Fish. Soc. India*, 2021 53 (1&2): 22-35.
- Purnanjali, C. and Kasiviswanathan, K.S., 2022. Assessment of impacts of altered environmental flow on fishing in lower Damodar River basin, India. *Acta Geophysica*, 70(2), pp.833-846.
- Saha, M.K. and Patra, B.C., 2013. Present status of ichthyofaunal diversity of Damodar River at Burdwan district, West Bengal, India. *International journal of scientific research publications*, 3(6), pp.1-11.
- Seal, K., Chaudhuri, H., Pal, S., Srivastava, R.R. and Soldatova, E., 2022. A study on water pollution scenario of the Damodar River basin, India: assessment of potential health risk using long term database (1980–2019) and statistical analysis. *Environmental Science and Pollution Research*, 29(35), pp.53320-53352.
- Sheet, S., Banerjee, M., Karmakar, M., Mandal, D. and Ghosh, D., 2023. Evaluation of flood risk at the river reach scale using Shannon's Entropy Model: a case study of the Damodar River. Safety in Extreme Environments, pp.1-17