

Journal of Indian Fisheries Association

A Review of Food and Feeding Habits of Carangids Occurring Along the Indian Coast

M. B. Shetkar¹ and V. H. Nirmale¹

¹Department of Fisheries Biology, College of Fisheries, Ratnagiri, Maharashtra, India.

Abstract

This review article provides a comprehensive overview of the feeding habits of fishes belonging to the family Carangidae occurring in Indian waters. Carangids are commonly known as jacks, trevallies, scads, queen fishes, runners, amberjacks and pompanos. They are well distributed in tropical and subtropical regions of Atlantic, Pacific and Indian oceans. Carangids are carnivorous fishes primarily feeding on crustaceans, small teleostean fishes, molluscs and polychaetes. Some species are known to exhibit cannibalism. Ontogenic shift in food and feeding is noted in carangids. Young ones prefer zooplankton and crustaceans, whereas adults mainly feed on small teleostean fishes. The intensity of feeding is higher in smaller individuals. Considerable seasonal variation in the type of prey consumed by the carangids is observed. Fishes with empty stomachs are noted mostly during peak spawning season.

Keywords:

Carangids, food and feeding habits, feeding intensity

*Corresponding author:

maheshshetkar2000@gmail.com

Received: 10 April 2023 Accepted: 12 July 2023

Introduction

The family carangidae encompasses a diverse group of marine fishes commonly known as jacks, trevallies, scads, queen fishes, runners, amberjacks and pompanos. The queen fishes and jacks grow to a comparatively large size (Reuben et al., 1992; Devaraj et al., 1997; Kasim, 2003). Carangids are well distributed in tropical and subtropical regions of Atlantic, Pacific and Indian oceans (Poojary et al., 2010; Sasidharan et al., 2018; Rakhunde et al., 2022). A total of 147 species belonging to 30 genera are described by Nelson (2016). Approximately 62 species are reported from Indian coast including 14 major species of commercial importance (Sasidharan et al., 2018). Carangids are found in good concentration up to a depth of 100 m along entire coastline of our country. They support lucrative fisheries round the year particularly along the coasts of Andhra Pradesh, Tamil Nadu, Kerala, Gujrat, Maharashtra and Karnataka (Nair and Radhakrishnan, 2000; Devaraj et al., 1997). Carangids are exploited by a multitude of gears including boat seines, shore seines, bottom trawls, hook and lines, gillnets, ring seines and purse seines (Reuben et al., 1992; Nair and Radhakrishnan, 2000; Kasim, 2003; Sasidharan et al., 2018; Pillai et al., 2007). In recent years there has been a significant increase in the production of the carangids contributing to about 6.7 % of the total marine fish landings in India (Anon, 2022). Carangids are having good demand in the domestic market and recently larger species are also exported in frozen form (Pillai et al., 2007). Carangid fishery of India is supported by

several commercially important species such as *Alectis* indicus, A. ciliaris, Alepes djedaba, A. para, Decapterus russellii , D. kurroides, D. dayi, Megalaspis cordyla, Scomberoides lysan, S. commersonianus, S. tala, S. tol, Trachinotus blochii, T. baillonii T. botla, Selar boops, S. crumenophthalmus, Atropus atropos, Caranx sexfasciatus, C. carangus, C. ignobilis, C. kalla, C. para, Carangoides armatus, C. malabaricus, C. oblongus, Atule mate, Seriolina nigrofasciata, Parastromateus niger and Selaroides leptolepis (Sivakami, 1996; Nair and Radhakrishnan, 2000; Kasim, 2003). Studies of Food and feeding habits of carangids from Indian coast have been reported by different authors including Sajana et al. (2019), Bandkar et al. (2022), Smith-Vaniz (1984), Sivakami (1990), Raje (1993) for A. djedaba; Poojary et al. (2010), Manojkumar (2007)

Jaiswar et al. (1999), Devaraj et al. (1962), Basheeruddin and Nayar (1962) for D. russelli; Fischer and Bianchi (1984), Raje (1994), Rajesh et al. (2017) for A. atropos; Kingston et al. (1999), Sasidharan et al. (2018) for A. mate; Sreenivasan (1979) for D. dayi; Basheeruddin, and Nayar (1962) for S. mate; Sreenivasan (1974), Jaiswar and George (1991), Devaraj et al. (1962), Shivakami (1995) for M. cordyla; Abdussamad et al. (2008) for C. ignobilis etc. The present review on the food and feeding habits of carangids from Indian waters may facilitate probable interventions to enhance species-specific fisheries using the preferred food items as a measuring tool.

Food composition

Environmental factors, which have an impact on the temporal and spatial fluctuation of food items in the diet composition, are the primary determinants of how food organisms are distributed in ecosystems (Bhakta *et al.* 2023). It was found that the diet of carangids varies with locality, food availability, life stage and species (Sivakami, 1996). A cursory look at Table 1 reveals the food and feeding habits of different species of carangids along the coast of India. Many species of

carangids were found to feed predominantly on *Acetes* spp. (Bandkar et al., 2022; Raje, 1993; Devaraj et al., 1962; Basheeruddin and Nayar, 1962; Raje, 1997; Rajesh et al., 2017; Jaiswar and George, 1991). Other than Acetes spp., along the both east and west coast of India, carangids feed on crustaceans such as Penaeus spp., Metapenaeus spp., Penaeus indicus and Portunus pelagicus, alima larvae, crabs, prawns, Squilla spp., Lucifer spp., Temora spp., Pontella spp., Labidocera spp., zoea, megalopa, Macrosetella spp. and mysids (Sreenivasan, 1974; Sajana et al., 2019; Raje, 1993; Sreenivasan, 1979; Venkataraman, 1960; Hamsa and Kasim, 1989; Basheeruddin, and Nayar; 1962) and teleosts including Cynoglossus spp., Stolephorus spp., Leiognathus spp., Lactarius spp., Nemipterus spp., Saurida tumbil, Boleophthalamus spp., Polynemus indicus, Bregmaceros mcclellandi, Polynemus heptadactylus, Trichiurus lepturus, Sardinella spp., Apogon spp., Tetrodon spp., Sciaena spp., Therapon spp., Decapterus spp., Trachinocephalus myops, Upeneus spp., Rastrelliger kanagurta, Platycephalus spp., Alectis spp. etc. (Poojary et al., 2010; Manojkumar, 2007; Jaiswar et al., 1993; Sreenivasan, 1979; Abdussamad et al., 2008; Hamsa and Kasim, 1989; Rajesh et al., 2019; Sreenivasan, 1974; Jaiswar and George, 1991; Shivakami,1995), cephalopods (Sepia spp., Loligo spp.), gastropods, amphipods, ostracods, polychaetes, stomatopods (Poojary et al., 2010; Manojkumar, 2007; Sreenivasan, 1979; Rajesh et al., 2017; Rakhunde et al., 2023; Rajesh et al., 2019; Kingston et al.,1999; Jaiswar and George, 1991). Occasional occurrence of plant material was also noticed in the diet of a few species (Kingston et al., 1999; Nazar et al., 2017). From the review, it is clear that the carangids are highly carnivorous fishes, feeding mainly on pelagic crustaceans, small fishes, molluscs, etc. Cannibalism though not frequently encountered in carangids is reported in A. atropos (Shameem, 1992); D. russelli (Jaiswar et al., 1993); D. dayi (Sreenivasan, 1979); A. mate (Kingston et al., 1999)

 Table 1. Food and feeding habits of different species of carangids along the coast of India

Species	Locality	Main food items	Authors		
A. djedaba	Cochin	Fishes (<i>Stolephorus</i> spp.), shrimps, shrimp larvae, ostracods and semi-digested matter.	Sajana et al., (2019)		
·	Ratnagiri	Acetes spp., small fishes, copepods, shrimp larvae, fish scales, fish eggs, small crustacean and polychaetes	Bandkar et al., (2022)		
	Western Indian Ocean	Invertebrates, shrimps, copepods and larvae of decapod crustaceans	Smith-Vaniz (1984)		
	Cochin	Fish juveniles (Cynoglossus spp., Stolephorus spp., Leiognathus spp.), ostracods (Conchoecio spp.), decapods (Acetes spp.), Lucifer spp., amphipods, cladocerans (Evadna spp.), stomatopods, nematodes	Sivakami (1990)		
	Gujarat	Acetes spp., copepods, fish, Myctophum spp. and Squilla spp.	Raje (1993)		
D. russelli	Mumbai	Crustaceans (Acetes spp, prawn, crab), fishes L. lactarius, silverbellies, myctophids, Nemipterus spp., Saurida tumbil, Boleophthalamus spp., Polynemus indicus, Bregmaceros mcclellandi, Polynemus heptadactylus, Cynoglossus spp., Trichiurus lepturus, Stolephorus spp., eels. Penaeid prawns, cephalopods and crabs, Cephalopods	Poojary et al., (2010)		
	Malabar coast	crustaceans (prawns, <i>Acetes</i> spp., <i>Lucifer</i> spp., amphipods, squilla, copepods, mysids and larvae	Manojkumar (2007)		
		of crabs.), fishes (Leiognathus bindus, Secutor insidiator, Johnieops sina, J. belangerii, J. macropterus, Encrasicholina devisi, Stolephorus waitei, S. indicus, L. Lactarius, Sphyraena obtusata), polychaetes (Nereis spp.), salps, molluscs and miscellaneous items			
	Northwest coast of India	small fishes (Nemipterus japonicus, Leiognathus spp., Apogon spp., sciaenids, Muraenesox spp., Therapon jarbua, Trichiurus spp., and Decapterus russelli), Crustaceans (Acetes indicus, ostracods and prawns)	Jaiswar et al. (1993)		
	East and west coast	Acetes spp., clupeids, diatoms, other crustaceans .	Devaraj et al., (1962)		
	Madras coast	Acetes spp., and copepods, fishes	Basheeruddin and Nayar (1962)		

D. dayi	Tuticorin	fishes (Stolephorus spp., Sardinella spp., Leiognathus spp., Sphyraena spp., Apogon spp., Cynoglossus spp., Platycephalus spp., Diodon spp. Tetrodon spp., Decapterus spp., Saurida spp., Sciaena spp., Leptocephalii), crustaceans (Penaeus spp., Acetes spp., alima larvae, Lucifer spp.), copepods, molluscs and polychaetes	Sreenivasan (1979)		
	Western Indian Ocean	Shrimps, copepods, decapod crustaceans and small fish	Fischer and Bianchi (1984)		
A. atropos	Veraval	Acetes spp., cephalopods (Loligo spp., Sepia spp.), teleosts (larvae of ribbon fish, Myctophid spp.), squilla and copepods	Raje (1994)		
	Mangalore	Acetes spp., semi-digested matter, fish juveniles, teleosts, cephalopods, and copepods	Rajesh et al. (2017)		
	Ratnagiri	Acetes spp., small teleostean fishes, cephalopods, fish scales, squilla and semi-digested matter	Rakhunde et al. (2023)		
C. ignobilis	Tamil Nadu	Juveniles of sardines, anchovies, and other finfishes, shrimps, crabs, amphipods, <i>Decapterus</i> spp. , other carangids, threadfin-breams, lizard fishes, silverbellies, goatfishes and crabs	Abdussamad et al. (2008)		
C. djedaba	Malabar coast	Prawns and copepods	Venkataraman. (1960)		
C. carangus	Tuticorin	Fish (Stolephorus spp., Thrissocles spp., Sardinella spp., Leiognathus spp.), Metapenaeus spp., Penaeus indicus and Portunus pelagicus	Hamsa and Kasim (1989)		
Seriolina nigrofasciat a	South-west coast Teleosts (Decapterus russelli, Nemipterus spp., Trachinocephalus myops, Saurida spp., L.		Rajesh et al. (2019)		
Selar mate	Madras coast	Young prawns, Acetes indicus and copepods	Basheeruddin, and Nayar (1962)		
A. mate	Gulf of Mannar	Clupeids, leiognathids, sciaenids, fish remains, Crustacean remains, carangids, mollusc remains, carangids, algal remains	Kingston et al., (1999)		
A. mate	South Andaman coast	copepods, shrimps, small fish and gastropods	Sasidharan et al. (2018)		

M. cordyla	Vizhii	njam	Stolephorus spp.; Leiognathus spp., Gazza spp., Carangoides spp., fish juveniles, fish larvae, Squilla spp., Acetes spp., amphipods, Lucifer spp., megalopa, prawn juveniles, copepods, euphausids, pteropods, Sepia spp., and Nereis spp.	Sreenivasan (1974)		
	North	n west coast	Acetes indicus and small fishes such as Stolephorus spp., juveniles of Trichiurus spp., Apogon spp., Coilia spp., Sardinella spp., Nemipterus spp., Thryssa spp., sciaenids spp., molluscs especially Loligo spp., and Sepia spp.,	Jaiswar and George (1991)		
	East a	and west	Devaraj et al., (1962)			
			Stolephorus spp.; Leiognathus spp., Nemipterus spp., flatfishes, perches, Acetes spp., Squilla spp., Alima larvae, cephalopods, Morula spp., Nucula spp., Cavolina spp.	Shivakami (1995)		
		Calicut	Copepods, cladocerans and decapod and molluscan post-larval forms. fish larvae, polychaete larvae, <i>Sagitta</i> spp., invertebrate eggs and fish eggs	Kagwade (1967)		
C. kalla		Calicut	Prawns and copepods	Venkataraman (1960)		
	_	Malabar coast	Copepods, Prawns, lucifer, squilla, mysids, ostracods, crab megalopa, cirripede larvae and larval bivalves.	Venkataraman. (1960)		
T block:		Madras coast	Young ones of Hippa (<i>Emerita</i> spp.) along with other crustaceans	Basheeruddin, and Nayar (1962)		
T. blochi		East and west coast	Crab, shrimp, squid, gastropod and bivalve, copepods, polychaetes, worms, invertebrates	Nazar et al (2017)		

Food preference in relation to size

Ontogenic changes in feeding, refer to the change in organism's resource use pattern, as it increases in size from birth to its maximum (Jena et al., 2018). The diets of most fishes change with growth, but the timing of these changes varies from species to species and is often associated with changes in lifestyles or habitats (Blaber, 2000). The intraspecific variations observed in the food preference among carangids are attributed to the selective feeding in different age groups (Sivakami, 1996). The change in the food preference between juvenile and adult carangids may also be dependent upon the selectivity of the gill apparatus (Magnuson and Heltz, 1971). Carangids feed on planktonic crustaceans in the early stages of their life and on fish juveniles in the later stages (Sivakami, 1996). Table 2 reveals marked differences in feeding habits of several carangids with respect to size groups. Studies show that the smaller individuals of *C. carangus* prefer crustaceans and become more ichthyophagous with age (Hamsa and Kasim, 1989; Kasim, 2003). Rakhunde et al. (2023) found that the young ones of A. atropos feed mostly on Acetes spp., fish scales and cephalopods while adults preferred small teleostean fishes and squilla. Abdussamad et al. (2008) studied food and feeding habits of different size groups of C. ignobilis and noted no significant difference in food item between different size groups, though the occurrence of teleosts was more common in larger individuals. The juveniles of *D. russelli*, fed on *Acetes* spp., copepods and other crustaceans (Devaraj et al., 1997). The diet of juveniles of C. kalla mainly consisted of copepods, cladocerans and molluscan larvae while adults fed on fish larvae, polychaete larvae, Sagitta spp., invertebrate eggs and fish eggs (Kagwade ,1967). Several studies reported that in the younger

stages, carangids primarily feed on crustaceans, predominantly shrimps and once mature they show piscivorous tendency as reported by Bandkar et al. (2022) in A. djedaba, Manojkumar (2007), Basheeruddin and Nayar (1962) and Jaiswar et al. (1993) in D. russelli, Sreenivasan (1979) in D. dayi, Kingston et al., (1999) and Sasidharan et al. (2018) in A. mate. Poojary et al. (2010) observed that the juveniles of D. russelli feed on A. indicus and sometimes

on plankton, whereas the adults feed on *A. indicus* and teleosts. The food items of young ones of *A. djedaba* mainly consists of smaller fishes, decapods, ostracods, amphipods, alima, while those of adults consisted crustaceans, fishes and insects (Sivakami, 1990). In *M. cordyla*, young ones were observed to feed mostly on crustaceans and fish juveniles (Basheeruddin and Nayar,1961).

Table 2. Feeding habits of several carangids with respect to size groups

Species	Food pref	Author(s)			
	Young ones	Adult			
A. djedaba	zooplankton, Acetes spp., shrimp larvae, copepods and fish eggs	juveniles of small fishes.	Bandkar et al. (2022)		
A. djedaba	smaller fishes, decapods, ostracods, amphipods, alima	Crustaceans, fishes, insect,	Sivakami (1990)		
D. russelli	plankton and digested matter	A. indicus, fishes, cephalopods, prawns and other crustaceans.	Poojary et al, (2010)		
D. russelli	Crustacean	Crustacean, fish, polychaetes, molluscs, salps	Manojkumar (2007)		
D. russelli	ostracods and Acetes indicus	fishes	Jaiswar et al. (1993)		
D. russelli	Acetes, copepods and other crustaceans.	clupeids, diatoms, copepods and other crustaceans.	Devaraj et al., (1962)		
D. russelli	crustaceans like <i>Acetes</i> spp. and copepods.	Fishes	Basheeruddin and Nayar (1962)		
D. dayi	Planktonic crustaceans	fishes	Sreenivasan (1979)		
A. atropos	Acetes spp., semi-digested matter, fish scales and cephalopods	small teleostean fishes and squilla.	Rakhunde et al. (2023)		
A. mate	Crustacean remains, fish remains, mollusc remains	Clupeids, leiognathids, sciaenids, fish remains, Crustacean remains carangids, algal	Kingston et al., (1999)		
A. mate	Crustaceans	Fishes	Sasidharan et al. (2018)		
M. cordyla	Polychaetes, crustaceans, fishes	Fishes, crustaceans, molluscs	Sreenivasan (1974)		

M. cordyla	Post larval fish, juvenile prawns and other crustaceans	Clupeids and crustaceans	Basheeruddin and Nayar,1961.		
M. cordyla	Acetes indicus and juvenile of fishes	Acetes indicus	Jaiswar and George (1991)		
Caranx kalla	Crustaceans, molluscs, polychaetes, diatoms, dinoflagellates	Fishes, crustaceans, molluscs, polychaetes, <i>sagitta</i> spp.	Kagwade (1967)		
C. ignobilis	juvenile of sardines, anchovies and other fin fishes, prawns, crab stars and amphipods.	Decapterus spp., other carangids, silver bellies, thread fin breams, goat fishes, lizard fishes, crabs and prawns	Abdussamad et al. (2008)		
C. carangus	Crustaceans	fishes, crabs belonging to Portunus pelagicus	Hamsa and Kasim (1989)		
C. carangus	shrimps	fishes, prawns and crabs	Kasim (2003)		
T. blochii	Copepods, benthic organisms including polychaetes	Molluscs, fish, crab, shrimp, squid, gastropod and bivalve	Nazar et al. (2017)		

Seasonal variation in feeding intensity

The feeding intensity is determined by the degree of fullness of the stomachs in different months (Jayaprakash, 1974). Season, availability of the preferred food items, breeding periodicity and time of fishing are the major factors which are found to influence the feeding intensity in various carangids (Sivakami, 1996). Kuthalingam (1955) studied the feeding habit of *C. djedaba* from Madras coast. Low feeding intensity was noted in immature individuals. Feeding intensity was found to be reduced during October to December coinciding with the spawning season in *C. carangus* off Calicut and fully developed gonads ingested minimum food during such a time

(Hamsa and Kasim, 1989). According to Jaiswar and George (1991) feeding intensity of *M. cordyla* was noted to be moderate in maturing and spent individuals while ripe fishes were found with empty stomachs. Bandkar *et al.* (2022) reported that individuals of *A. djedaba* with empty stomachs were found during the spawning period and a gradual increase in feeding intensity was observed in subsequent months. High feeding intensity was noted in maturing individuals of *D. russelli* while immature individuals were recorded with empty stomachs (Jaiswar *et. al.*, 1993). Sajana *et. al.* (2019) found low gastrosomatic index (GaSI) and feeding intensity during spawning season in *A. djedaba* from the Cochin

Table 3 Seasonal variation in feeding intensity of some Indian carangids

Species	Author	Pre monsoon					Monsoon			Post monsoon			
	Author	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb
A. djedaba	Bandkar et al. (2022)												
A. djedaba	Raje, (1993)												
A. djedaba	Sajana, (2019)												
A. djedaba	Sivakami, (1990)												
A. atropos	Rakhunde et al. (2023)												
A. atropos	Raje, (1994)												
D. russelli	Jaiswar et al. (1993)												
D. russelli	Manojkumar, (2007)												
D. dayi	Sreenivasan, (1979)												
M. cordyla	Sreenivasan, (1974)												
M. cordyla	Jaiswar & George (1991)												
C. kalla	Kagwade, (1967)						-1						

coast. Low feeding during peak spawning season of the fishes may be attributed to the fully developed gonads which limit the fish from feeding more due to less space in abdominal cavity and are mostly observed in females compared to males (Sajana et al., 2019; Raje, 1994; Sreenivasan, 1974; Kingston et al., 1999). Highest feeding intensity in A. djedaba was observed during the post spawning period (Sivakami, 1988). Comparatively less feeding activity was observed in mature D. dayi (Sreenivasan, 1979). Feeding intensity in A. atropos was generally observed to be higher in maturing and spent individuals and lower in spawners (Rakhunde et al., 2023). The mature specimens were observed to have a low GaSI values in A. mate (Sasidharan et al., 2018). Sreenivasan (1974) observed that the intensity of feeding decreased with the advancement of maturity and it was higher during night than by day.

Conclusion

The review of food and feeding habits indicated that carangids are generally pelagic carnivores feeding mainly on crustaceans, small fishes, molluscan larvae, etc. Occasional occurrence of plant matter was also noticed in the diet of a few species. Carangids are generally continuous feeders but diurnal and seasonal variations in the feeding habits do occur in certain species. Generally, carangids start by feeding on zooplankton and crustaceans (especially *Acetes* spp.) during their early stages. However, as they grow in size, their diet changes from a crustacean dominated diet to predominantly ichthyophagous in fully mature stages. The feeding intensity of carangids was found to be higher in the smaller and juvenile stages compared to the mature and adult stages.

References

Abdussamad, E. M., Kasim, H. M. and Balasubramanian, T. S. 2008. Distribution, biology and behaviour of the giant trevally, Caranx ignobilis-A candidate species for mariculture. Bangladesh J. Fish. Res., 12(1): 89-94.

Anon, 2022. Handbook on Fisheries statistics. Ministry of Agriculture (Department of Agriculture and Co-operation, Fisheries Division), New Delhi, Government of India, 153 pp.

Bandkar, D. S., Nirmale, V. H., Metar S. Y. and Pawar R. A. 2020. Estimation of population parameters of shrimp scad, Alepes djedaba (Forsskal, 1775) along the Ratnagiri coast of Maharashtra, India. J. Indian Fish. Assoc., 46(1): 67-73.

Basheeruddin, S. and Nayar K. N. 1962. A preliminary study on the juvenile fishes of the coastal waters off Madras city. Indian J. Fish., 8 (1):169-188.

Bhakta, D., Das, S. K., and Das, B. K. 2023. Review Food and feeding habits of Indian sciaenids - A review. Indian J. Fish., 70 (3): 146-154.

Blaber, S. J. (2000). Tropical estuarine fishes: Ecology, exploitation, and conservation. Oxford: Blackwell Science.

Devaraj, M, K., N. Kurup, N. G. K. Pillai, K. Balan, E. Vivekanandan and R. Sathiadas 1997. Status, prospectus and

management of small pelagic fisheries in India. In: Proceedings of the APFIC working party on marine Fisheries, First Session, Small Pelagic resources and their fisheries in Asia Pacific Region. M. Devaraj and P. Martsusubroto (Eds.), Bangkok, Thailand.

Fischer, W. and Bianchi, G. 1984. FAO species identification sheets for fishery purposes. Western Indian Ocean; Fishing Area 51. Food and Agricultural Organisation of the United Nations, Rome, Italy.

Hamsa, K. M. S. and Kasim, H. M. 1989. Some aspects of morphometric relationship and food and feeding in Caranx carangus (Bloch) from Tuticorin waters (Gulf of Mannar). Indian J. Fish., 36 (3): 205-210.

Jaiswar A. k. and George, J. P. 1991. Food and feeding habits of Megalaspis cordyla (Linnaeus, 1758) along the northwest coast of India. Journal of the Indian Fisheries Association. 21: 5-10.

Jaiswar, A. K., George, J. P., Gulati, D. K. and Swamy, R. P. (1993). A study on length-weight relationship, food and feeding habits of Indian Scad, Decapterus russelli (Ruppell, 1830) along the north-west coast of India. J. Indian Fish. Assoc., 23: 1-6.

Jayaprakash, A. A. 1974. Food and feeding habits of juveniles of koth Otolithoides brunneus (Day) in Bombay waters. Indian J. Fish., 21(1): 127-140.

Jena, D., Panda, A. and Jena, A.K. 2018. Ontogenic Changes in Feeding in Fishes. Aqua international, 58 p.

Kagwade, V. N. 1967. Food and feeding habits of the horse-mackerel, Caranx kalla (Cuv. & Val.). Indian J. Fish., 14 (1 & 2): 85-96.

Kasim, M. H. 2003. Carangids. In: Mohan Joseph, M. and Jayaprakash, A. A. (Eds.), Status of exploited marine fishery resources of India, ICAR Central Marine Fisheries Research Institute, Kochi, India, pp.166-175.

Kingston, S.D., Venkataramani, V. and Venkatramanujam, K. 1999. Food habits and feeding intensity of finlet scad Atule mate (Teleostei) off Gulf of Mannar south east of India. Indian Journal of Marine Sciences 28: 307-311.

Kuthalingam, M. D. K 1955. The food of Horse mackerel Caranx djedaba, Curr. Sci., 24. (12) 416.

Manojkumar, P. P. 2007. Food and feeding habits of Decapterus russelli (Ruppell, 1830) along the Malabar coast. Indian J. Fish., 54(4): 427-431.

Magnuson, J. J. and Heltz, J. G. 1971. Gill rakers apparatus and food selectivity among mackerels, tunas and dolphin. Fish. Bull., 68: 361-370.

Nair and Radhakrishnan, P. N. 2000. Carangid resources of India. In: Marine Fisheries Research and Management, p. 317-348. V. N. Pillai and N. G. Menon (Eds.), Central Marine Fisheries Research Institute, Cochin.

Nazar, AK Abdul and Jayakumar, R and Ranjan, Ritesh, 2017. Trachinotus blochii (Lacepede, 1801) ICAR-Central Marine Fisheries Research Institute.

Nelson, J. S. 2016. Fishes of the world, 5th edn. John Wiley and Sons Inc., Hoboken, New Jersey, USA, 332 p.

Pillai, N. G. K., A. A. Jayaprakash, and U. Ganga. "Status and scope of research on pelagic fisheries of India." (2007): 52-114.

Poojary, N., Tiwari, L. R. and Sundaram, S. (2015). Reproductive biology of the Indian scad, Decapterus russelli (Ruppell, 1830) from Maharashtra waters, north-west coast of India, J. Mar. Biol. Ass. India, 57(1):71-77.

Raje, S. G. 1993. Some aspects of biology of Alepes djedaba (Forsskal 1775) from Veraval, Gujarat. Indian J. Fish., 40(3):189-192.

Raje, S. G. 1997. On some aspects of biology of the mackerel scad, Decapterus russelli (Ruppell). Indian J. Fish., 44(1): 97-99

Rajesh, K. M., Rohit, P., Mini, K. G., Sathyavathi, T., & Abdul Hakeem, M. M. 2019. Seriolina nigrofasciata (Ruppel, 1829), its fishery and biological aspects off south-west coast of India. Indian Journal of Fisheries, 66(1):9-16.

Rakhunde, A. V., Nirmale, V. H., Pawar, R. A., Metar, S. Y., & Bhosale, B. P. (2023). Biology of the cleft belly trevally Atropus atropos (Bloch and Schneider, 1801) from Ratnagiri coast of India. Indian J. Fish, 70(2):33-40.

Reuben, S., Kasim, H. M., Sivakami, S., Radhakrishnan N. P. N., Kurup, K. N., Sivadas, M., Noble, A., Somasekharan, N. K.V. and Raje, S. G. (1992). Fishery, biology and stock assessment of carangid resources from the Indian seas. Indian J. Fish., 39: 195-234.

Sajana, N., S. Bijoy Nandan, and C. K. Radhakrishnan. 2019. "Feeding behaviour and reproductive biology of the shrimp scad Alepes djedaba (Forsskal, 1775) off Cochin coast, Kerala, south India." Indian J. Fish 66:(3):32-40.

Sasidharan, V., Prakash, H., Kumar, R. R. Kumar, K. 2018. Biology of Atule mate (Cuvier, 1833) with a note on species composition of Carangid landings from South Andaman coast, India. Journal of the Andaman Science Association. 23(1):58-64.

Shameen, A. 1992. Comparative studies on the feeding habits of marine and estuarine carangids Ibid :34 (1 & 2): 262-268.

Sivakami, S. 1990. Observations on some aspects of biology of Alepes djedaba (Forsskal, 1775) from Cochin. J. Mar. Biol. Ass. India, 32(1&2): 107-118.

Sivakami, S. 1996. Fishery and biology of the carangid fish Megalaspis cordyla of Cochin. J. Mar. Biol. Ass. India, 37: 237-248.

Smith-Vaniz, W. F. (1984). FAO species identification sheets for fishery purposes. In: Fischer, V. and Bianchi, G. (Eds.), Western Indian Ocean (Fishing Area 51), Carangidae v. 1. Food and Agricultural Organisation of the United Nations, Rome, Italy

Sreenivasan, P. V. (1979). Feeding biology of the scad Decapterus dayi wakiya. J. mar. biol Ass. India, 1979, 21 (1 & 2):97-102.

Sreenivasan, P. V. 1974. Observations on the food and feeding habits of the Torpedo Trevally Megalaspis cordyla (Linnaeus) from Vizhinjam Bay. Indian J. Fish., 21 (1): 76-84.

Venkataraman, G. 1960. Studies on the food and feeding relationships of the inshore fishes off Calicut on the Malabar coast. Indian J. Fish. 7(2): 275-306.