Bioactivity-guided isolation and structural characterization of endogenously accreted raphide crystals in Ipomoea aquatica Forssk.


90 / 0

Authors

  • N Chakraborty
  • A K Das
  • R K Manna
  • B K Das
  • B Mandal

https://doi.org/10.47780/jifsi.51.1.2019.107968

Abstract

Bio-minerals are one of the secondary plant metabolites that are imperative for their existence. Raphides or calcium oxalate (CaC2O4) crystals are the
most abundantly synthesized bio-minerals in plants which help channelize the excess calcium absorbed. Raphides have been isolated (1.6% dry weight) and purified by chromatographic process from aqueous fraction of Ipomoea aquatica leaves. Direct bio autography followed by agar well diffusion assay reveals the in-vitro antimicrobial property of the crystals against fish pathogen Citrobacter freundii with MIC< 50 ppm. The atomic force microscopy predicts a hydrous inorganic salt displaying average peaks
between 4-5 nm with homogeneity of dispersion. The crystal exhibited moderate level of free radical scavenging activity with IC50 at 0.144 mg/ml. The molecular structure characterization of the crystal by the magnetic resonance and infra-red spectra further confirmed the presence of raphides.
Key words Ipomoea aquatica; Calcium oxalate; Atomic Force Microscopy; Structure characterization; Citrobacter freundii; Antioxidant.

References

Abhirama, B.R. and ShanmugaSundaram, R. 2018. Antiurolithic

and antioxidant activity of ethanol extract of whole￾plant Biophytum sensitivum (Linn.) DC in Ethylene￾Glycol-induced urolithiasis in rats. Pharmacognosy Re￾search, 10(2):181.

Adebiyi, O.E., Olayemi, F.O., Ning-Hua, T. and Guang-Zhi, Z.

In vitro antioxidant activity, total phenolic and

flavonoid contents of ethanol extract of stem and leaf

of Grewia carpinifolia. Journal of Basic and Applied

Sciences, 6(1):10-14.

Baba, S.A. and Malik, S.A. 2015. Determination of total

phenolic and flavonoid content, antimicrobial and

antioxidant activity of a root extract of Arisaema

jacquemontii Blume. Journal of Taibah University for

Science, 9(4):449-454.

Bouropoulos, N., Weiner, S. and Addadi, L.2001. Calcium

oxalate crystals in tomato and tobacco plants:

morphology and in vitro interactions of crystal

associated macromolecules. Chemistry-a European

Journal, 7(9):1881-1888.

Braissant, O., Cailleau, G., Aragno, M. and Verrecchia, E.P. 2004.

Biologically induced mineralization in the tree Milicia

excelsa (Moraceae): its causes and consequences to the

environment. Geobiology, 2(1):59-66.

Çalikan, M., 2000. The metabolism of oxalic acid. Turkish

Journal of Zoology, 24(1):103-106.

Chandra, J. Helan & Shamli. 2015. Antibacterial, Antioxidant

and in Silico Study of Ipomoea aquatica Forsk. Journal of

Pure and Applied Microbiology. 9: 1371-1376.

Choma, I.M. and Grzelak, E.M. 2011. Bioautography detection

in thin-layer chromatography. Journal of

Chromatography A, 1218(19): 2684-2691.

Cie la, L.M., Waksmundzka-Hajnos, M., Wojtunik, K.A. and

Hajnos, M. 2015. Thin-layer chromatography coupled

with biological detection to screen natural mixtures for

potential drug leads. Phytochemistry Letters,

:445-454.

Dahiya, P. and Purkayastha, S. 2012. Phytochemical screening

and antimicrobial activity of some medicinal plants

against multi-drug resistant bacteria from clinical

isolates. Indian Journal of Pharmaceutical Sciences,

(5): 443.

Emelda, A. 2015. Polyphenol total content, IC50 and

antioxidant activities of ethanol extract from some cocoa

(Theobroma cacao) beans in South Sulawesi Indonesia.

Journal of Chemical and Pharmaceutical Research,

(4):1211-1214.

Faheed, F., Mazen, A. and ELMOHSEN, S.A.2013.

Physiological and ultrastructural studies on calcium

oxalate crystal formation in some plants. Turkish

Journal of Botany, 37(1):139-152.

Franceschi, V.R. and Horner, H.T. 1980. Calcium oxalate

crystals in plants. The Botanical Review, 46(4):361-427.

Guo, S., Ward, M.D. and Wesson, J.A. 2002. Direct

visualization of calcium oxalate monohydrate

crystallization and dissolution with atomic force

microscopy and the role of polymeric additives.

Langmuir, 18(11):4284-4291.

Hartmann, T. 2008. The lost origin of chemical ecology in the

late 19th century. Proceedings of the National Academy

of Sciences, 105(12):4541-4546.

Horner, H.T. and Wagner, B.L. 1995. Calcium oxalate

formation in higher plants. In Calcium oxalate in

biological systems: 53-72.

Horner, H.T. and Whitmoyer, R.E. 1972. Raphide crystal cell

development in leaves of Psychotria punctata (Rubiaceae).

Journal of Cell Science, 11(2):339-355.

Huang, D.J.,Chen, H.J.,Lin, C.D. and Lin,Y.H. 2005.

Antioxidant and antiproliferative activities of water

spinach (Ipomoea aquatica Forsk) constituents.

Botanical bulletin of Academia Sinica, 46: 99-106.

Junior, G.B., dos Santos, A.C., de Freitas Souza, C., Baldissera,

M.D., dos Santos Moreira, K.L., da Veiga, M.L., de Vargas,

A.P.C., da Cunha, M.A. and Baldisserotto, B. 2018.

Citrobacter freundii infection in silver catfish (Rhamdia

quelen): Hematological and histological alterations.

Microbial pathogenesis, 125:276-280.

Konno, K., Inoue, T. A. and Nakamura, M. 2014. Synergistic

defensive function of raphides and protease through the

needle effect. Public Library of Science (PLOS) one,

(3).

Konyar, S.T., Öztürk, N. and Dane, F. 2014. Occurrence, types

and distribution of calcium oxalate crystals in leaves and

stems of some species of poisonous plants. Botanical

Studies, 55(1):32.

Korth, K.L., Doege, S.J., Park, S.-H., Goggin, F.L., Wang, Q.,

Gomez, S. K., Liu G., Jia L., and Nakata, P.A. 2006.

Medicago truncatula mutants demonstrate the role of plant

calcium oxalate crystals as an effective defense against

chewing insects. Plant Physiology. 141: 188-195.

McNair, J.B.1932. The interrelation between substances in

plants: essential oils and resins, cyanogen and oxalate.

American Journal of Botany, 19(3):255-272.

Nakata, P.A.2003. Advances in our understanding of calcium

oxalate crystal formation and function in plants. Plant

Science, 164(6):901-909.

Parekh, J. and Chanda, V.S. 2007. In vitro Antimicrobial

Activity and Phytochemical Analysis of Some Indian

Medicinal Plants. Turkish Journal of Biology, 31:53-58.

Rehman, J., Khan, I.U. and Asghar, M.N. 2013. Antioxidant

activity and GC-MS analysis of Grewia optiva E3.

Journal of Biotechnology and Pharmaceutical Research,

(1):14-21.

Stahl, E. 1919.The physiology and biology of excretion. Flora,

: 1-192.

Subashini, S. and Kumar, K. S. 2017. Physicochemical

characteristics of calcium oxalate crystals in Spinacia

oleracea L. Indian journal of Biochemistry and

Biophysics, 54:156-163.

Suleiman, M.M., McGaw, L.I., Naidoo, V. and Eloff, J. 2010.

Detection of antimicrobial compounds by

bioautography of different extracts of leaves of selected

South African tree species. African Journal of Traditional,

Complementary and Alternative Medicines, 7(1).

Thi, A.N.T., Noseda, B., Samapundo, S., Nguyen, B.L., Broekaert,

K., Rasschaert, G., Heyndrickx, M. and Devlieghere, F.

Microbial ecology of Vietnamese Tra fish

(Pangasius hypophthalmus) fillets during processing.

International Journal of Food Microbiology,

(2):144-152.

Tilton, V.R. and Horner Jr, H.T.1980. Calcium oxalate raphide

crystals and crystalliferous idioblasts in the carpels of

Ornithogalum caudatum. Annals of Botany,

(5):533-539.

Tooulakou, G., Giannopoulos, A., Nikolopoulos, D., Bresta, P.,

Dotsika, E., Orkoula, M.G., Kontoyiannis, C.G., Fasseas,

C., Liakopoulos, G., Klapa, M.I. and Karabourniotis, G.

" Alarm photosynthesis": calcium oxalate crystals

as an internal CO2 source in plants. Plant Physiology,

Webb, M.A.1999. Cell-mediated crystallization of calcium

oxalate in plants. The Plant Cell, 11(4):751-761.

Zindler-Frank, E. 1976. Oxalate biosynthesis in relation to

photosynthetic pathway and plant productivity-a

survey. Zeitschrift für Pflanzenphysiologie,

(1):1-13.

Submitted

2020-12-03

Published

2020-12-04

Issue

Section

Articles

How to Cite

Chakraborty, N., Das, A. K., Manna, R. K., Das, B. K., & Mandal, B. (2020). Bioactivity-guided isolation and structural characterization of endogenously accreted raphide crystals in Ipomoea aquatica Forssk. Journal of the Inland Fisheries Society of India, 51(1), 42-48. https://doi.org/10.47780/jifsi.51.1.2019.107968