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SUMMARY
A recent article by Yadavet al. (2024) presents two series of the constant block sum partially balanced incomplete block designs for number of 
treatments 4 2 and , 4 4n v nν ν= + = + . The important feature was that the number of replicates 2r =  and pairwise replication parameters 
( ) ( )1 2 3, , 2,1,0λ λ λ = . In the present article, it has been shown that with the same parameters values of r  and iλ s, such restrictions can be relaxed and 
with the help of (nearly) magic rectangles, a much larger choice of designs can be made available.
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1.	 INTRODUCTION

In a recent article, Yadav et al. (2024) have given 
two series of constant block-sum designs for the 
number of treatments 4 2nν = +  and 4 4nν = + . The 
common feature in these designs is that the number of 
replicates is 2r =  and the number of blocks is / 2b ν=
. In fact, one can generate many more such designs and 
one does not have to confine to the above choice of ν  
being even. Consequently, b  also does not have to be 
half of ν . The trick lies in using the magic squares, 
magic rectangles or nearly magic rectangles in the 
construction.

2.	 THE CONSTRUCTION

It is well known (for example, see Khattree (2023)) 
that a p q×  magic rectangle always exists as long as 
( ),p q  are in parity, that is, both are either odd or both 
are even. In case, one of these is odd and other even, a 
nearly magic rectangle can always be found. Numerous 
approaches are widely available to generate magic 

squares and rectangles. An extensive list of nearly 
magic rectangles is also given in Khattree (2023) and a 
SAS  code to generate these and many more is available 
as a supplement of the same article.

Without much ado, I will cryptically state the 
method to generate these designs. The essential 
common feature, as in Yadav et al. (2024), is that 2r =  
and ( ) ( )1 2 3, , 2,1,0λ λ λ = . The algorithm is simple 
enough to state in just four steps.

1.	 Take a p q×  magic rectangle 1  (or a nearly 
magic rectangle where if p  is even then consecutive 
rows must be appropriately arranged so that these 
consecutive rows have different sums; One need 
not mention that a square is a rectangle as well).

2.	 Circulate the rows to get 2  so that thi  row of 1  
becomes the ( 1)thi +  row of 2 , 1,2, , 1i p= − . 

The 
thp  row of 1  is placed as the first row in 

2 .
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3.	 Define   = [ 1 2:  ] (or [ 2 1:  ]) by 
appending the two (nearly) magic rectangles side 
by side.

4.	 The resulting array   is a [ ,PBIB pqν =  ,b p=  

2 ,k q=  2,r =  ( ) ( )1 2 3, , 2,1,0λ λ λ =   design.
With  2 and three associate classesr = , the number 

of blocks b  must necessarily be greater than 3. Thus 
we must assume p > 3. It can easily be checked that 

1 21, 2 ,n q n q= − =  and ( )3 3n p q= − . It can also be 
verified easily that all the identities for a PBIB  design 
are satisfied and the association scheme and association 
matrices can also be easily computed. Specifically, 
treatments listed in thi  row of 1  (equivalently, or of

2 ) are first associates 1( 2)λ =  of each other, 
treatments in thi  row of 1  and those in thi  row of 

2  are second associates ( 2λ  =1) of each other and 
finally, those treatments which are neither present in thi  
row of 1  nor in the thi  row of 2  are the third 
associates ( 3λ = 0) of each other. Informally speaking, 
treatments in the same row of 1  are first associates of 
each other, those in immediately previous row or in the 
very next row are second associates of treatments in a 
particular row and the remaining treatments are the 
third associates of treatments in that particular row.

Further, the three association matrices are given by,

P(1) = 
( )

2 0 0
0 2 0
0 0 3

q
q

p q

− 
 
 
 − 

, 

P(2) = 
( )

0 1 0
1 0

0 4

q
q q

q p q

− 
 − 
 − 

 and

P(3) = 
0 0 1
0 2 0

1 0 0

q
q

q

− 
 
 
 − 

 if p =4,

P(3) = 
0 0 1
0

1 0

q
q q

q q

− 
 
 
 − 

 if p =5 and

P(3) = 
( )

0 0 1
0 0 2

1 2 6

q
q

q q p q

− 
 
 
 − − 

 whenever p ≥6.

From the fact, that in any magic square or in 
any (nearly) magic rectangle, each treatment appears 
once and only once, and thus only in one block, such 
a configuration of treatments does not constitute a 
connected design. This fact has been earlier pointed 
out in Khattree (2023). However, our designs here 
are obtained by the appendation of the successive 
rows (blocks) of these configurations. This makes the 
corresponding graph of the design matrix a connected 
one and hence the designs introduced in this article are 
all connected.

3.	 THREE ILLUSTRATIVE EXAMPLES
In the present section, the algorithms is illustrated 

when ( 4, 6p q= = , both even), ( 5, 5p q= = , both 
odd) and when ( 5, 4p q= = , (odd, even)) respectively. 
The first case corresponds to a magic rectangle, second 
is about a magic square with ,p q  both odd and the 
third case corresponds to a nearly magic rectangle.

A 4 6× Magic Rectangle

Let 
1

1 2 3 22 23 24
19 20 21 4 5 6
18 17 16 9 8 7
12 11 10 15 14 13

 
 
 =
 
 
 

  and thus 

2

12 11 10 15 14 13
1 2 3 22 23 24

.
19 20 21 4 5 6
18 17 16 9 8 7

 
 
 =
 
 
 



Consequently, the resulting design is obtained by 
appending the above two side by side as,

( )4 12× = 

1 2 3 22 23 24 : 12 11 10 15 14 13
19 20 21 4 5 6 : 1 2 3 22 23 24
18 17 16 9 8 7 : 19 20 21 4 5 6
12 11 10 15 14 13 : 18 17 16 9 8 7

 
 
 
 
 
 

.

The general association scheme has been described 
earlier in Section 2. To illustrate, let us consider various 
associates of Treatment 1 only. These are given below.

Associates →
of Treatment ↓

First (n1 = 5,

1 2λ = )

Second (n2 = 

12, 2 1λ = )

Third (n3 = 6, 

3 0λ = )

1 {2, 3, 22, 23, 
24}

{12, 11 , 10 , 15 
, 14, 13, 19, 20, 

21, 4, 5, 6}

{18, 17, 16, 9, 
8, 7}

Association schemes for other treatments are self-
explanatory from the patterns observed in above. It 



3Ravindra Khattree  / Journal of the Indian Society of Agricultural Statistics 79(1) 2025  1–4

is also seen that the corresponding three association 
matrices in this case are

P(1) = 
4 0 0
0 12 0
0 0 6

 
 
 
  

, P(2) = 
0 5 0
5 0 6
0 6 0

 
 
 
  

 and 

P(3) = 
0 0 5
0 12 0
5 0 0

 
 
 
  

.

A5 5× Magic Square

In this case, 
1

11 24 7 20 3
4 12 25 8 16

.17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

 
 
 
 =
 
 
  

  The 

square 2  is similarly defined by circulating the rows 
of 1 , resulting in,

( )5 10

23 6 19 2 15 : 11 24 7 20 3
11 24 7 20 3 : 4 12 25 8 16

.4 12 25 8 16 : 17 5 13 21 9
17 5 13 21 9 : 10 18 1 14 22
10 18 1 14 22 : 23 6 19 2 15

×

 
 
 
 =
 
 
  



The association scheme can be easily derived as 
shown in the previous example. The corresponding 
association matrices are

P(1) = 
3 0 0
0 10 0
0 0 10

 
 
 
  

, P(2) = 
0 4 0
4 0 5
0 5 5

 
 
 
  

 and 

P(3) = 
0 0 4
0 5 5
4 5 0

 
 
 
  

.

A 4 5× Nearly Magic Rectangle
Consider the nearly magic rectangle

1*

20 16 11 5 1 53
2 6 12 14 19 53

.
3 7 9 15 18 52
17 13 10 8 4 52

42 42 42 42 42 210

sum

sum

 
 
 
 
 
 =  
 
 
 
 
  



 

The right-most column and bottom-most row 
indicate the sums of the corresponding rows and 
columns. Clearly the row sums are 53, 53, 52, 52 
respectively and to make these sums alternate, we 
interchange the second and third rows. This yields,

1

20 16 11 5 1
3 7 9 15 18

.
2 6 12 14 19
17 13 10 8 4

 
 
 =
 
 
 


 

Now we create 2  as earlier and we append the 
two side by side to get the

( )4 10

17 13 10 8 4 : 20 16 11 5 1
20 16 11 5 1 : 3 7 9 15 18

.
3 7 9 15 18 : 2 6 12 14 19
2 6 12 14 19 : 17 13 10 8 4

×

 
 
 ==
 
 
 



It is easy to see that the block sums are all equal 
namely, 105. It is important to mention that here 
( )4p =  was even while ( )5q =  was odd and thus rows 

of the nearly magic rectangle had to be arranged in a 
way that the row sums alternate. No such amendment is 
required if p  was odd and q  was even as the row sums 
in 1  will all be same anyway. The association scheme 
is,again, self evident. The three association matrices 
turn out to be

P(1) = 
3 0 0
0 10 0
0 0 5

 
 
 
  

, P(2) = 
0 4 0
4 0 5
0 5 0

 
 
 
  

 and 

P(3) = 
0 0 4
0 10 0
4 0 0

 
 
 
  

.

It may also be pointed out that in all such block 
designs, the column sums are also (nearly) constant and 
such designs can be viewed as the two-way (nearly) 
constant block-sum designs when blocking occurs in 
two directions. Further, if the structure allows, then the 
rows of 2  can further be circulated in the same way 
to get 3  to further append to ,  thereby resulting in 
another PBIB  design. Another point regarding the 
magic squares is that a similar (equivalent but not 
same) design can be obtained by applying the above 
algorithm to columns. The two designs, those obtained 
via rows and via columns, can further be arranged one 
below another to obtain a 2 2p p×  design.
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As shown by Khattree (2020), stacking ′ , the 
transpore of a magic square below   also results in a 
constant block sum partially balanaced incomplete 
block design with 2r = . These are two associate class 
designs as opposed to three associate class designs 
considered here. However, the number of blocks in that 
case is twice as many as opposed to the current work 
where the number of blocks is still p .
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