

# Mapping Ecosystem Services in India's Largest Estuary: A Systematic Review of the Hooghly Matlah Estuarine System Using CICES

A. THAPA<sup>1</sup>, N.W. QURESHI<sup>1\*</sup>, P.S. ANANTHAN<sup>1</sup>, D. BHAKTA<sup>2</sup>, P. DEBROY<sup>2</sup> and R.N. BHUTIA<sup>3</sup>

<sup>1</sup>ICAR-Central Institute of Fisheries Education, Mumbai - 400 061, Maharashtra, India <sup>2</sup>ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal <sup>3</sup>ICAR-Central Soil Salinity Research Institute, RRS, Canning Town - 743 329, West Bengal

Received: 05.11.2024 Accepted: 09.12.2024

The Hooghly Matlah Estuarine System (HMES), renowned as India's largest and most productive estuary, provides various ecosystem services essential for human well-being. While some research has concentrated on the Sundarbans region, there have been limited efforts to thoroughly identify all the services offered by the HMES using an internationally recognized classification. This study aims to document and summarize the ecosystem services provided by the HMES in India. To achieve this, a systematic literature review focused on the Common International Classification of Ecosystem Services (CICES, version 5.2) to catalog the relevant services associated with the estuary. We utilized the Google Scholar database and the Google search engine to gather scientifically supported data drawn from both peer-reviewed articles and grey literature. Our findings revealed 59 ecosystem services out of the 99 listed in CICES, constituting approximately 59.60 % of the total. This includes 38 biophysical services provided by the living systems (61.29% of the 62 biophysical class) and 21 geophysical services derived from non-living components of ecosystems (56.76% of the 37 geophysical class). The HMES demonstrates a remarkable level of multifunctionality, with its services almost evenly distributed across provisioning (21), regulating (18), and cultural (20) categories. This broad range of services highlights the essential role of the HMES in sustaining several types of ecological processes essential to both human life and the health of ecosystems. The study suggests prioritizing thoughtful policies and sustainable management approaches to safeguard the estuary's rich biodiversity, keep its ecosystems healthy, and ensure the well-being of the communities that depend on it.

(Key words: Ecosystem Services, CICES, Systematic Review, Hooghly Matlah Estuarine System)

Estuaries are the tidal mouth of a great river, where the tide meets the current. It is a semi-enclosed coastal body of water which has a free connection with the open sea and within which seawater is measurably diluted with freshwater derived from land drainage (Acharya et al., 2019). They are highly complex but very productive ecosystems with significant economic, social, and environmental importance. They provide ample biological and ecological services to society (Sarkar et al., 2017). Ecosystem services (ES) by estuaries help maintain livelihoods, and people value the quality of estuaries for their well-being (Martin et al., 2020). These ES range from provisioning services (e.g., fish for food) through regulating services (e.g., coastal protection) to cultural services (e.g., sites of symbolic and religious significance) (Defeo et al., 2009; Barbier et al., 2011; Fegley and Michel, 2021; Harris and Defeo,

2022). Estuaries offer ES that promotes human survival and economic progress (Booi *et al.*, 2022). Most people, especially in rural households, rely on provisioning ecosystem services for their livelihoods, with the availability and accessibility of estuarine services being fundamental to their economic existence (Mandal *et al.*, 2021). Additionally, estuaries are ideal sites for human settlement and industrial units (Lal *et al.*, 2021).

Many of the world's great estuaries are in tropical regions, where many taxa form interconnected communities (Blaber, 2002). The Hooghly-Matlah estuarine system (HMES) on the tropical Indian coast of the Bay of Bengal is one of the country's largest and most productive estuaries (Jhingran and Ghosh, 1978). The HMES and the Sundarbans mangroves form one of the world's most diverse and vulnerable ecosystems

(Ghosh et al., 2019). It was declared a World Heritage Site by UNESCO in 1985, and in 1989, it became a Biosphere Reserve in India, providing various ecosystem services (Roshith et al., 2018; Mukherjee et al., 2019). The system constitutes a crisscross network formed by the main channel and its distributaries, which form an extensive deltaic system leading to the sea (Mandal et al., 2012b; Dutta et al., 2016). Known for its high faunistic richness, it forms the mainstay of the capture fisheries of West Bengal, India. It supports a significant multi-species commercial fishery, serving as a vital source of livelihood for hundreds of thousands of fishermen and sustaining a thriving trade (Mitra et al., 1997).

To date, no attempts have been made to comprehensively identify all of the ES provided by HMES based on an internationally accepted classification. Existing research is mainly lacking and is generally limited to only the most apparent services

provided by the Sundarbans of HMES. Some of the scattered studies have limited their focus on some aspects of ES in the Indian Sundarbans part of HMES, like flow-dependent ecosystems and their services (Bhadra *et al.*, 2022); ES of Sundarbans Transnational Site between Bangladesh and India (Islam, 2014); ES valuation (Ekka *et al.*, 2020); conservation priority zones using spatially explicit valued ES (Sannigrahi *et al.*, 2020). Thus, this study attempts to document and summarize the ecosystem services provided by the entire HMES of India.

## MATERIALS AND METHODS

#### Study area

Located between 21°-24° N latitude and 88°-89° E longitude, HMES (Fig 1) is the largest among the estuaries of the Indian coast. It extends 300 km from North to South and 150 km from East to West (Acharya *et al.*, 2019). The entire estuarine system is estimated to

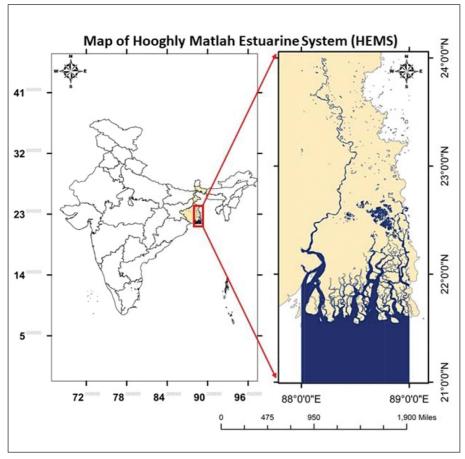



Fig. 1. Map of study area (HMES), created using ArcGIS (Pro 2.x)

be about 8,029 sq. km, and the total area of Sundarbans estuarine water is about 2,340 sq. km in India (Sinha, 2004). HMES is a complex network of interconnecting channels, canals and creeks that are associated with seven principal estuaries, *viz.*, Hooghly, Saptamukhi, Thakuran, Matla, Harinbhanga, Raimangal and Bidya. Of these, the Hooghly and Raimangal estuaries form the western and eastern boundaries of the Indian Sundarbans, respectively (Roshith *et al.*, 2018).

## Classification of ecosystem services

Since the 2005 Millennium Ecosystem Assessment (MEA), various ecosystem services (ES) classification schemes have been developed, including those by Costanza *et al.* (1997), Daily (1997), and TEEB (2010). Costanza (2008) argued that no single classification should dominate due to ecosystem complexity and diverse decision-making contexts. As ES assessments expanded, a common framework for comparison became essential (Haines-Young and Potschin, 2009), though it must balance specificity with broad applicability (Nahlik *et al.*, 2012).

One such framework, the 'Common International Classification for Ecosystem Services' (CICES), was developed by the European Environment Agency and coordinated by the University of Nottingham (Haines-Young and Potschin, 2013). CICES offers a flexible, hierarchical structure that allows new services to be integrated without disrupting the system, organizing ecosystem services into three main themes provisioning, regulating and maintenance, and cultural services. This framework focuses on final ecosystem outputs, excluding supporting services, to avoid doublecounting in monetary valuations (Fisher and Turner, 2008). It classifies ecosystem services, not the benefits derived from them, focusing on the direct contributions of ecosystems to human well-being (Haines-Young and Potschin, 2013).

This study employed the CICES Version 5.2 framework to categorize and document the ecosystem services ofthe Hooghly Matlah Estuarine System (HMES). CICES's tiered structure, which categorizes services at multiple levels, enabled flexibility in addressing the specific study context while incorporating both biophysical and geophysical outputs (previously

classified as biotic and abiotic in earlier CICES versions) (Kubalíková, 2020; Von Thenen *et al.*, 2020; Garcia-Onetti *et al.*, 2021). The CICES framework also facilitated systematic review methodologies and the development of custom analytical frameworks, as demonstrated by Zieritz *et al.* (2022) and Merida *et al.* (2022), making it particularly useful for this study.

Following studies by Ruiz-Agudelo *et al.* (2022) and Sheehy *et al.* (2022), CICES was used to code and classify the ecosystem services identified in the HMES. Other reviewed ecosystem services covered a range of ecological contexts, consistent with similar applications of CICES in marine ecosystems by Kuhn *et al.* (2021) and coastal and aquatic systems by Vander Wilde and Newell (2021) and Miah *et al.* (2021). Other relevant examples include studies on sand dunes (Harris and Defeo, 2022), forest ecosystems (Tiemann *et al.*, 2022), and urban water bodies (Jakubiak and Chmielowski, 2020). This comprehensive application of CICES ensures thorough documentation and consistent comparison of ecosystem services across various ecosystems.

## Data source

This study conducted a systematic literature review to understand the ecosystem services (ES) of the Hooghly Matlah Estuarine System (HMES) and its associated benefits. The review followed the methods provided by Collins *et al.* (2015) and Ashley *et al.* (2023), emphasising both peer-reviewed and grey literature.

Literature was gathered from an online database, primarily focusing on Google Scholar (https://scholar.google.com/) because of its vast collection of peerreviewed research articles. In addition, grey literature - such as books, book chapters, news articles, and websites—was sourced through the Google search engine. This study tried to collect a comprehensive set of scientifically supported data for the documentation.

Although Google Scholar can be labor-intensive and sometimes lacks the precision needed for systematic literature reviews (Boeker *et al.*, 2013), its ability to access a diverse range of sources, including grey literature and articles that may not be indexed in traditional databases, makes it a valuable tool (Giustini & Boulos, 2013).

## Search strategy

The search strategy centered on terms in English and utilized a combination of primary and secondary search terms. The primary search term was "Hooghly Matlah Estuary," while secondary search terms related to specific ecosystem services, as defined by the Common International Classification of Ecosystem Services (CICES) framework (Haines-Young and Potschin, 2010; Haines-Young and Potschin, 2018; Ashley *et al.*, 2023), were employed.

For example, to find literature on the ecosystem service "bioremediation" (CICES V5.2 code 2.1.1.1), the search terms "Hooghly Matlah Estuary" and "bioremediation" were used in Google Scholar.

#### **Data extraction**

The first ten relevant records obtained from Google Scholar were selected for each combination of search terms, focusing on their availability and relevance to the topic. No other selection criteria were applied. This approach captured as many valid ecosystem services as possible that the HMES provided. Additionally, any extra available information was sourced from the Google search engine.

#### **Description of literature referred**

We initially found 970 records on Google Scholar and 17 from the Google search engine. After eliminating duplicates, we were left with 550 unique entries. We then screened these records by examining their titles and abstracts to see how they related to the Hooghly Matlah Estuarine System (HMES), which narrowed our selection to 203 articles. Of these, 101 specifically discussed the ecosystem services provided by HMES, which were included in our study for classification using the CICES.

#### RESULTS AND DISCUSSION

The CICES V5.2 classification includes 62 biophysical (biotic) and 37 geophysical (abiotic) ES classes (Haines-Young, 2023). However, the ES provided by HMES does not represent all classes, as the review identified 38 biophysical and 21geophysical ES classes. This is more compared to the 36 ES provided by Bangladesh's Meghna River estuarine system (Miah

et al., 2021). The identified Provisioning, Regulation and Maintenance, and Cultural ES provided by HMES represents 59.60 per cent of the total number of services mentioned in CICES V5.2. The HMES displays numerous final services (Fig 2), with its ecosystem services spread almost evenly across provisioning (21), regulating (18), and cultural (20) services. This nearbalanced service emphasises the estuary's critical role in supporting numerous ecological functions that are essential not just for the survival of local inhabitants but also for the general health of the environment. The HMES balances resource use, environmental regulation, and the cultural and social significance it provides to surrounding communities. However, the

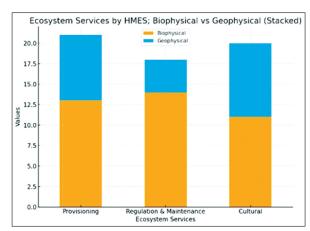



Fig. 2. Ecosystem services by HMES; Biophysical vs geo physical

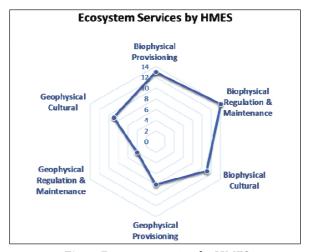



Fig. 3. Ecosystem services by HMES

available literature did not represent the remaining 40.4% of ES. This could be due to under reporting, especially for lesser-studied services, or these services may not exist in the HMES due to its unique ecological conditions. Further research is needed to explore these gaps and provide a more complete understanding of the ecosystem services in the region.

Following Haines-Young (2023), ES provided by the HMES has been categorized into six sections, as shown in Figure 3. Among these, biophysical regulation and maintenance services make the highest contribution, accounting for 13 out of the 59 services identified. In contrast, geophysical regulation and maintenance services contribute the least, with only 4 out of the 59 services. A detailed breakdown and explanation of each category are provided in the following paragraphs.

## **Biophysical provisioning services**

The Hooghly-Matlah Estuarine System (HMES) offers significant biophysical provisioning services (Table 1), supplying critical resources for agriculture, aquaculture, and other human needs. These services include cultivating and extracting biomass from both cultured and wild sources alongside the genetic material provided by the region's rich biodiversity.

Historically, the fertile lands on both sides of the Hooghly River have supported agriculture, industry, and domestic consumption, benefiting from the river's perennial water supply (Ivermee, 2017). Agricultural activities have expanded over time, with agricultural land coverage growing from 56.7% (11,324 km<sup>2</sup>) in 1988 to 67% (13,360.1 km<sup>2</sup>) in 2022 (Goswami et al., 2023). One of the significant crops cultivated in this region is jute, especially species like Corchorus capsularis (white jute) and Corchorus olitorius (tossa jute), which are vital to the local economy, earning the moniker "golden fibre" for their economic value and use in textiles, biodegradable materials, and packaging (Chapke, 2009; Ghosh and Shirodkar, 2023). In addition to agriculture, the HMES supports aquaculture, including the farming of tiger shrimp (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei), which has seen rapid growth since 2009 (Subrato, 2019). Other aquaculture activities include the cultivation of species like seabass, mullets, milkfish, and pearlspot, with local finfishes such

as *Mystus gulio*, *Terapon jarbua*, and *Lates calcarifer* contributing to the system's diverse aquatic production (Lama *et al.*, 2021). Mud crab fattening and cultured honey production from *Apis indica* are additional examples of biomass provisioning (Saha and Dash, 2021; Singh *et al.*, 2010).

The HMES provides wild biomass, including edible plants and medicinal species. For instance, the nipa palm produces sap for alcohol and vinegar, while seeds and fruits from plants like the mangrove date palm and screwpine are consumed (Mahmood, 2015). Mangrove species like Ceriops produce tannin-rich bark (30 - 42% tannin), and the system supplies fuelwood, natural honey from Apis dorsata, and fish meal derived from estuarine fish catches (Singh et al., 2010; Ghosh et al., 2022). Fish as food is a vital contribution of the HMES, with key species such as Tenualosa ilisha (Hilsa), Harpadon nehereus (Bombay duck), and Otolithoides pama (Bhola) making up the bulk of the catch. Where expensive Hilsa, in particular, stands out by contributing 51% of the total catch, emphasizing the fishery's importance to the region's livelihood and economy (Ayappan, 2011).

The genetic resources provided by the HMES are vital for various conservation and aquaculture programs. Seeds and saplings of mangroves from the Indian Sundarbans are used in plantation efforts (Banerjee *et al.*, 2023). Wild-caught Hilsa juveniles from the estuary are ranched into upstream waters (Chattopadhyay *et al.*, 2024). This estuary is a significant source of prawn seed for aquaculture because of the Black Tiger Prawn (*P. monodon*) harvested from it (Gopal and Chauhan, 2018). The successful breeding and rearing of declining Hilsa (Saha and Sarkar, 2022) and the conservation efforts for endangered species like the Northern River Terrapin and Estuarine Crocodile under the Sundarbans Tiger Reserve (Kumar *et al.*, 2022) further emphasize the genetic importance of the estuary.

#### Biophysical regulation and maintenance services

As seen in Table 2, the HMES's regulatory and maintenance services are essential to maintaining the estuary's biological health and long-term environmental balance. The conversion of physical and biochemical components within the environment is one of the essential

Table 1. Provisioning services (Biotic/biophysical) provided by HMES

| Code    | Class                                                                                                                                               | Services by HMES                                                                                                       | Source                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1.1.1.1 | Cultivated terrestrial plants grown for nutritional purposes                                                                                        | 67% area under Agriculture                                                                                             | Goswamiet al. (2023)                                                                                     |
| 1.1.1.2 | Fibres and other materials from<br>cultivated plants, fungi, algae<br>and bacteria for direct use or<br>processing (excluding genetic<br>materials) | Jute used in textiles, packaging, and biodegradable materials                                                          | Ghosh and Shirodkar (2023);<br>Chapke (2009)                                                             |
| 1.1.1.3 | Cultivated plants grown as a source of energy                                                                                                       | Oil seeds: oil from seeds is used for lubrication                                                                      | Aktar (2016); Mahmood (2015)                                                                             |
| 1.1.3.1 | Animals reared for nutritional purposes                                                                                                             | Cultured (apiary) honey; livestock and poultry                                                                         | Singh <i>et al.</i> (2010); Raja <i>et al.</i> (2012)                                                    |
| 1.1.4.1 | Animals reared by in-situ aquaculture for nutritional purposes                                                                                      | Mud Crab fattening; Farming of<br>shrimp; Brackish water culture<br>of fin fishes and shellfish                        | Saha and Dash (2021); Subrato (2019); Ghoshal <i>et al.</i> (2019); Lama <i>et al.</i> (2021)            |
| 1.1.5.1 | Wild plants (terrestrial and aquatic, including fungi, algae) used for nutrition                                                                    | Different edible parts of plants like flowers, seeds, stems, and leaves                                                | Mahmood (2015)                                                                                           |
| 1.1.5.2 | Fibres and other materials from wild plants for direct use or processing (excluding genetic materials)                                              | Tannin and roofing                                                                                                     | Singh et al. (2010)                                                                                      |
| 1.1.5.3 | Wild plants (terrestrial and aquatic, including fungi, algae) used as a source of energy                                                            | Fuelwood: Biomass gasification-based power plant                                                                       | Singh <i>et al.</i> (2010); Mukhopadhyay (2004)                                                          |
| 1.1.6.1 | Wild animals (terrestrial and aquatic) used for nutritional purposes                                                                                | Natural honey; capture fishery                                                                                         | Singh <i>et al.</i> (2010); Ayappan (2011)                                                               |
| 1.1.6.2 | Fibres and other materials from<br>wild animals for direct use or<br>processing (excluding genetic<br>materials)                                    | Fish Meals for fish and animal feeds                                                                                   | Ghosh et al. (2022)                                                                                      |
| 1.2.1.1 | Seeds, spores and other plant materials collected for maintaining or establishing a population                                                      | Indian Sundarbans Plantation program                                                                                   | Banerjee et al. (2023)                                                                                   |
| 1.2.2.1 | Animal material collected for<br>the purposes of maintaining or<br>establishing a population                                                        | Hilsa ranching, Collection of<br>seeds of Black Tiger Prawn and<br>Penaeus monodon; wild seed<br>capture and fattening | Chattopadhyay <i>et al.</i> (2024);<br>Gopal and Chauhan (2018); Saha<br>and Dash (2021)                 |
| 1.2.2.2 | Wild animals (whole organisms) used to breed new strains or varieties                                                                               | Successful artificial breeding of hilsa, northern river terrapin and estuarine crocodile                               | Kumar <i>et al.</i> (2022); Sahoo <i>et al.</i> (2018); Gopal and Chauhan (2006); Saha and Sarkar (2022) |

services. Significant phytoremediation properties are possessed by mangrove species like *Avicennia officinalis*, *Sonneratia apetala*, and *Excoecaria agallocha*, which aid in the removal of harmful metals from the water and enhance its general quality (Chakraborty, 2024).

Further, the region's halophytes significantly contribute to eco-restoration by acting as natural phytoremediation agents, especially for conservative pollutants (Mukherjee *et al.*, 2021). Natural scavengers like hermit crabs and monitor lizards (Varanus spp.) provide further assistance to the estuary by removing decaying organic matter, reducing odours, and improving soil quality (Chatterjee and Bhattacharyya, 2015; Mukhopadhyay *et al.*, 2022).

The HMES is essential for controlling water flows and protecting against severe weather conditions. As natural bio-shields, mangrove forests protect coastal areas from erosion, storm surges, and tidal waves. These ecosystems can lessen the effects of cyclones, preserving property and lives by stabilising embankments and slowing water currents (Paul *et al.*, 2017; Chowdhury *et al.*, 2021). The estuary's natural barriers have been further reinforced by *Avicennia marina's* notable resilience to flooding and high salinity (Naz and Chowdhury, 2022). This flora is a vital resource for coastal protection since it also lessens the effects of storm surges and wind damage (Marois and Mitsch, 2015).

In addition, the HMES plays a critical role in regulating physical, chemical, and biological conditions. In the Khalsi forest of the Sundarbans, wild bees, including Nomia sp. and Apis dorsata, pollinate key mangrove species like Acanthus ilicifolius, supporting biodiversity in the ecosystem (Das, 2020; Pal et al., 2022). The mangrove forests serve as breeding grounds and nurseries for various marine and pelagic species, including commercially valuable fish and shellfish (Ray and Straskraba, 2001; Bera et al., 2022). The estuarine waters receive a substantial influx of nutrients from the adjacent mangrove forests, which contribute to the growth of phytoplankton and zooplankton, supporting a complex and productive food web (Mandal et al., 2009). In addition to being a significant source of food for migratory birds, the estuary is an essential feeding and fattening area for fish species (Lama et al., 2021).

This demonstrates how crucial this estuarine system is for sustaining biodiversity and ecological equilibrium (Mallick, 2023).

Also, the estuarine system is essential for regulating climate and sequestering carbon. Its intact mangrove forests contribute to combating climate change by acting as significant carbon sinks, absorbing CO<sub>2</sub> and other greenhouse gases such as nitrous oxide (N<sub>2</sub>O) and methane (CH<sub>4</sub>) (Das *et al.*, 2023). Thus, underscoring its essential role in regulating the world climate (Bhadra *et al.*, 2022; Bhattacharyya *et al.*, 2023).

## **Biophysical cultural services**

A multitude of cultural services provided by the biophysical components of HMES demonstrate the close relationship between humans and the natural world (Table 3). It provides outdoor activities like a unique experience of watching wildlife through canopy walks at Dobanki and ground fauna consisting of snails, varieties of crabs and molluscs through mud walks at Burir Dabri, which provide unique chances to interact with the estuarine environment (Das, 2015). Ecotourism places like Neti Dhopani in the Sundarbans Tiger Reserve allow visitors to see tigers and birds (Ghosh and Mandal, 2020; Das, 2023). These activities highlight the estuary's ability to facilitate healthy human-nature interactions.

The HMES acts as a bridge between conservation efforts and scientific research. Organisations such as ICAR-CIFRI (Central Inland Fisheries Research Institute). **ICAR-CIBA** (Central Institute Brackishwater Aquaculture), and ICAR-CSSRI (Central Soil Salinity Research Institute) conduct a variety of studies on subjects such as fisheries, aquaculture, biodiversity conservation, and soil salinity (Das, 2023). In addition, the area is renowned for its mangrove conservation initiatives, backed by neighbourhoodbased initiatives run by the West Bengal State Forest Department and other Non-Governmental Organisations (Bardhan, 2021).

The cultural significance of the estuary is reflected in local folklore, such as the Bonbibi narrative, which symbolises the enduring relationship between the local people and the forest (Karmakar, 2018). Additionally, the Hilsa fish of the estuary holds great cultural value for the

Table 2. Regulation and maintenance services (Biotic/biophysical) provided by HMES

| Code    | Class                                                                                                                                                        | Services by                                                                                                                              | Source                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2.1.1.1 | Bio-remediation by micro-<br>organisms, algae, plants, and<br>animals                                                                                        | 1 5                                                                                                                                      | Chakraborty (2024);<br>Mukherjee <i>et al.</i> (2021)                                                                                  |
| 2.1.2.1 | Smell reduction                                                                                                                                              | Scavenger animals like monitor lizards, Wryneck woodpeckers, Hermit crabs                                                                | Chatterjee and<br>Bhattacharyya (2015);<br>Madhav and Victo (2011);<br>Mukhopadhyay <i>et al.</i> (2022)                               |
| 2.2.1.1 | Control of water erosion rates                                                                                                                               | Erosion control by vegetative cover; soil conservation                                                                                   | Hossain <i>et al.</i> (2016);<br>Chanda and Akhand (2023)                                                                              |
| 2.2.1.2 | Control of wind erosion rates                                                                                                                                | Mangroves, a bio-shield against tidal waves and coastal erosion; break the waves during a storm surge caused by a cyclone                | Paul et al. (2017); Sen (2020)                                                                                                         |
| 2.2.2.2 | Regulation of peak flows                                                                                                                                     | Mangrove reduces flooding through earthen embankment stabilization and manages wind speed and direction.                                 | Chowdhury et al. (2021)                                                                                                                |
| 2.2.3.2 | Flood and storm surge mitigation                                                                                                                             | Wave attenuating mangroves;<br>mitigate cyclone storm surges and<br>small tsunamis                                                       | Naz and Chowdhury (2022);<br>Marois and Mitsch (2015)                                                                                  |
| 2.2.3.3 | Wind protection                                                                                                                                              | Natural barrier against high winds and storm surges; reduce wind-related damage                                                          | Akber <i>et al.</i> (2018); Mitra (2020)                                                                                               |
| 2.3.2.1 | Pollination (or 'gamete' dispersal in a marine context)                                                                                                      | Wild bees cause pollination                                                                                                              | Das (2020); Pal, et al. (2022)                                                                                                         |
| 2.3.2.3 | Maintaining or regulating<br>nursery populations and habitats<br>or breeding grounds (Includes<br>gene pool protection)                                      | Hatching, breeding, spawning and nursing grounds for many edible fishes, shellfishes, and turtles                                        | Neogiet al. (2016); Bera <i>et al.</i> (2022); Ray and Straskraba (2001); Mukherjee <i>et al.</i> (2019); Roshith <i>et al.</i> (2013) |
| 2.3.2.4 | Maintaining or regulating refuge habitats                                                                                                                    | Route and refuge areas for a variety of migratory fish species                                                                           | Roy et al. (2016)                                                                                                                      |
| 2.3.2.5 | Maintaining or regulating feeding grounds                                                                                                                    | Feeding and fattening grounds for resident and migratory fish and birds                                                                  | Lama <i>et al.</i> (2021); Mallick (2023)                                                                                              |
| 2.3.4.2 | Decomposition and fixing processes and their effect on soil quality                                                                                          | Nutrients through degradation of leaf litter and breakdown of detritus                                                                   | Mandala <i>et al.</i> (2009)                                                                                                           |
| 2.3.4.3 | Maintenance of soil structure by biological agents and ecological processes                                                                                  | Annelids contribute to nutrient cycling, soil aeration, and decomposition of organic matter; fiddler crabs contribute by 'bioturbation'. | Saha and Sarkar (2022);<br>Chatterjee <i>et al.</i> (2014)                                                                             |
| 2.3.6.1 | Regulation of chemical composition of atmosphere and oceans, including maintaining rainfall patterns through evapotranspiration at the sub-continental scale | Carbon sequestration; acts as a better sink for greenhouse gases; and influences climate                                                 | Das et al. (2023);<br>Bhattacharyya et al. (2023);<br>Bhadra et al. (2022)                                                             |

Bengali people, especially during religious ceremonies, festivals, and weddings (Chakraborty *et al.*, 2024). Also, the estuary has impacted artistic achievements such as Pata Chitra paintings featuring tigers and Bonbibi, films

such as Roar, and literary works such as Jungle Nama, all of which emphasise the ecological and cultural relevance of the Sundarbans (Titumir, 2022).

The HMES has a special place in people's hearts on

Table 3. Cultural services (Biotic/biophysical) provided by HMES

| Code    | Class                                                                                                                                       | Services by HMES                                                                                                                             | Source                                                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 3.1.1.1 | Elements of living systems that enable activities promoting health, recuperation or enjoyment through active or immersive interactions      | Recreational fishing; Canopy walk and mud walk                                                                                               | Jha et al. (2008); Das (2015)                                      |
| 3.1.1.2 | Elements of living systems that enable activities promoting health, recuperation or enjoyment through passive or observational interactions | Sighting tigers; bird watching; rarest animals and bird watching                                                                             | Das (2015); Das (2007); Das (2023)                                 |
| 3.2.1.1 | Elements of living systems that enable scientific investigation or the creation of traditional ecological knowledge                         | _                                                                                                                                            | Das et al. (2023)                                                  |
| 3.2.1.2 | Elements of living systems that enable education and training                                                                               | Different conservation approaches through sanctuaries and a biosphere reserve                                                                | Bardhan (2021)                                                     |
| 3.2.1.3 | Elements of living systems that are resonant in terms of culture or heritage                                                                | Sundarbans, world Heritage site;<br>historical dependence on the forest;<br>'we-feeling' as forest-dwellers;<br>Cultural dependence in Hilsa | Karmakar (2018);<br>Chakraborty <i>et al.</i><br>(2024)            |
| 3.2.1.4 | Elements of living systems that enable aesthetic experiences                                                                                | Poems and paintings; Patachitra; nature's symbol of beauty; tranquillity and a biodiversity hotspot; an inspiration for artist               | Titumir (2022);<br>Agencies (2023);<br>Mitra (2023); Das<br>(2014) |
| 3.3.1.1 | Elements of living systems used for entertainment or representation outside the setting concerned                                           | Roar movie; Drifting in the Waters of Sundarbans; Jungle Nama: A Story of the Sundarban                                                      | Sadanah (2014);<br>Patra (2023); Ghosh<br>(2021)                   |
| 3.4.1.1 | Elements of living systems that have symbolic meaning, capture the distinctiveness of settings or their sense of place                      | The national animal of India, the Royal<br>Bengal Tiger and the State fish of West<br>Bengal, Hilsa                                          | Khoshoo (1997)                                                     |
| 3.4.1.2 | Elements of living systems that have spiritual or religious meaning                                                                         | Sacred groves and sacred trees                                                                                                               | Chakraborti <i>et al.</i> (2016)                                   |
| 3.4.2.1 | Elements or features of living systems whose contemporary existence or conservation is important to people                                  | Five MPAs located in the Sundarbans<br>Biosphere Reserve                                                                                     | Vyas et al. (2013)                                                 |
| 3.4.2.2 | Elements or features of living systems whose inter-generational existence or conservation is important to people.                           | Endangered Species in IUCN                                                                                                                   | Khan (2013)                                                        |

a spiritual and symbolic level. It is home to the Royal Bengal Tiger, India's national animal, and the well-known Hilsa fish, West Bengal's state fish (Khoshoo, 1997). The trees and sacred groves along the banks of the Hooghly River add to the area's spiritual significance (Chakraborti *et al.*, 2016). As part of the Sundarbans Biosphere Reserve, which includes protected areas like the Sundarbans National Park and Sajnakhali Wildlife Sanctuary, the estuary is home to several endangered species, including the critically endangered river terrapin (*Batagurbaska*) and the Ganges and Irawaddy dolphins, which the International Union lists for Conservation of Nature (IUCN) (Khan, 2013; Vyas *et al.*, 2013).

## Geophysical provisioning services

HMES provides essential geophysical provisioning services (Table 4), vital in supplying natural resources such as water, sediment, sunlight, wind, and solar energy, supporting human activities and industrial operations in the region.

The Hooghly River is a primary source of potable water for Kolkata, with the Indira Gandhi Water Treatment Plant (formerly Palta Water Works) supplying the city's drinking water (Hati et al., 2020). The river also sustains several industrial activities, including the Budge Budge power station, which uses about 40,000 cubic meters of water daily (Powerline, 2017). The HMES provides a consistent water supply to the plains of West Bengal, facilitating shipping, agriculture, aquaculture, and household water consumption (Mitra et al., 2018). The system's influence on groundwater is further demonstrated by the Hooghly River's contribution to groundwater recharge in the Bengal Basin, which is crucial for the area's sustainable water supply (Jammel et al., 2023). With over 65 brick kilns on the left bank and 50 on the right, the river's bed silt supports a flourishing brick-making industry along its banks, boosting the local economy by excavating riverine sediment (Kanga et al., 2020). This geophysical output emphasises how the river supplies raw resources for building projects.

The region also benefits from sunlight, an abundant natural resource that promotes outdoor work and prevents vitamin D deficiency among outdoor labourers (Goswami *et al.*, 2022). Solar energy is also an essential resource in the estuarine system. Sagar Island, located

at the mouth of the estuary, serves as a model for solar-powered electrification efforts in remote and impoverished areas. On the island, households use solar panels to generate electricity and obtain clean drinking water through tube wells installed by the government and non-governmental organisations (Das and Hazra, 2020). This initiative shows the region's ability to produce renewable energy and manage its resources sustainably (Haldar and Bhattacharya, 2020). Wind energy has advanced significantly in the HMES region. The West Bengal Renewable Energy Development Agency operates a wind farm in Fresergani, South 24 Parganas, with wind electric generators contributing to renewable energy production since 2001(Department of Power, 2024). Five wind-power units operate in the region, emphasizing the estuary's role in facilitating clean energy development (Sharma et al., 2012).

#### Geophysical regulation and maintenance services

As shown in Table 5, HMES provides essential geophysical regulation and maintenance services crucial for sustaining ecosystems and human well-beingby transforming biochemical or physical inputs. It aids in the dilution of wastewater, naturally reducing pollution levels. (Bhadra *et al.*, 2022).

As natural defences, the coastal dunes of the estuary shield inland regions from coastal erosion and storm surges (Bhattacharya and Jana, 1993). Additionally, HMES replenishes coastal ecosystems by transporting 65.19 x 106 tonnes of sediment to the Bay of Bengal each year (Mukhopadhyay *et al.*, 2006). Coastal temperatures are moderated by the land and sea breeze, which lowers heat and humidity in certain seasons. Ecosystems and societies benefit from this natural wind cycle, improving local climate stability. (Subramanian *et al.*, 2023; Ganguly *et al.*, 2014).

#### **Geophysicalcultural services**

Opportunities for physical, intellectual, spiritual, and symbolic encounters with its diversified biophysical environment are among the many geophysical cultural services the HMES offers (Table 6). Recreational activities like kayaking, speed boating, and water sports are just a few of its many chances for experiential and physical engagement with the natural world. Boat excursions and picnics are popular pastimes in tourist

 Table 4. Provisioning Services (Abiotic/geophysical) provided by HMES

| Code    | Class                                                                                       | Services by                                                      | Source                                                     |
|---------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|
| 4.1.1.1 | Surface water for drinking                                                                  | The main source of potable surface water for the city of Kolkata | Hati et al. (2020)                                         |
| 4.1.1.2 | Surface water used as a material (non-drinking purposes)                                    | Water for power plant; multipurpose activities                   | Powerline (2017); Mitra <i>et al.</i> (2018)               |
| 4.1.2.1 | Ground (and subsurface) water for drinking                                                  | River Hooghly recharges groundwater; used for drinking           | Soren <i>et al.</i> (2023);<br>Jammel <i>et al.</i> (2023) |
| 4.1.2.2 | Ground water (and subsurface) used as a material (non-drinking purposes)                    | 1 0,                                                             | Soren et al. (2023)                                        |
| 4.2.1.2 | Mineral substances used for material purposes, including geophysical support (foundations). | Riverine sediment-based brick kilns                              | Kanga et al. (2020)                                        |
| 4.2.2.1 | Non-mineral substances or ecosystem properties used for nutritional purposes                | ,                                                                | Goswami et al. (2022)                                      |
| 4.2.2.3 | Wind energy                                                                                 | Wind farm project at Freserganj                                  | Department of Power (2024); Sharma <i>et al.</i> (2012)    |
| 4.2.2.4 | Solar energy                                                                                | Solar power systems in Sagar Island                              | Haldar and Bhattacharya<br>(2020); Das and Hazra<br>(2020) |

 Table 5. Regulation and Maintenance Services (Abiotic/geophysical) provided by HMES

| Code    | Class                               | Services by                              | Source                    |
|---------|-------------------------------------|------------------------------------------|---------------------------|
| 5.1.1.1 | Dilution or transport of wastes by  | Dilution of wastewater                   | Bhadra et al. (2022)      |
|         | freshwater and marine ecosystems    |                                          |                           |
| 5.2.1.1 | Abiotic regulation of mass flows    | Coastal dunes act as a wall of defence   | Bhattacharya and Jana     |
|         |                                     | for inland areas against destructive sea | (1993)                    |
|         |                                     | waves and currents                       |                           |
| 5.2.2.1 | Maintenance and regulation by       | Annual load of sediment out of the       | Mukhopadhyay et al.       |
|         | inorganic natural chemical and      | estuary to the NE coast of Bay of        | (2006)                    |
|         | physical processes of fresh or salt | Bengal                                   |                           |
|         | waters                              |                                          |                           |
| 5.2.2.2 | Maintenance and regulation by       | Land breeze-sea breeze; maintenance      | Ganguly et al. (2014);    |
|         | inorganic natural chemical and      | of moderate temperatures along the       | Subramanian et al. (2023) |
|         | physical processes of atmosphere    | coastal area                             |                           |

Table 6. Cultural services (Abiotic/geophysical) provided by HMES

| Code    | Class                                                                                                                                                   | Services by                                                                                                                                                                             | Source                                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 6.1.1.1 | Characteristics of geophysical systems that that enable activities promoting health, recuperation or enjoyment through active or immersive interactions | Recreational boating; walking<br>along the riverside; picnic, boat<br>ride and swimming; kayaking,<br>speed-boating and other river-<br>water sports; events like Hooghly<br>River Swim | Jha et al. (2008); Das (2021); Saha (2022); Ghosh and Mandal, (2020); Koli (2021)                                     |
| 6.1.1.2 | Characteristics of geophysical systems that enable activities promoting health, recuperation or enjoyment through passive or observational interactions | Panoramic views; sunset beach                                                                                                                                                           | Travel triangle (2024);<br>Das (2015)                                                                                 |
| 6.2.1.1 | Elements of geophysical systems that enable scientific investigation or the creation of traditional ecological knowledge                                | Research on ecological risk;<br>dynamic modelling of dissolved<br>oxygen; estuarine acidification;<br>water pollution and Its mitigation                                                | Ghosh <i>et al.</i> (2019);<br>Mandal <i>et al.</i> (2012a);<br>Mitra and Zaman (2021);<br>Mitra <i>et al.</i> (2020) |
| 6.2.1.2 | Elements of geophysical systems that enable education and training                                                                                      | Information about conservation of natural resources or climate-change issues.                                                                                                           | Roy et al. (2023)                                                                                                     |
| 6.2.1.3 | Elements of geophysical systems that are resonant in terms of culture or heritage                                                                       | Cultural heritage; scenic beauty and salvation                                                                                                                                          | Rai and Das (2022)                                                                                                    |
| 6.2.1.4 | Elements of geophysical systems that enable aesthetic experiences                                                                                       | Poems on Hooghly and Matlah<br>Rivers                                                                                                                                                   | Ramesh (2009);<br>Chattopadhyay (2014)                                                                                |
| 6.4.1.1 | Elements of geophysical systems that have symbolic meaning                                                                                              | largest estuary of India; world's largest delta; largest mangrove vegetation in India                                                                                                   | Qasim (2003)                                                                                                          |
| 6.4.1.2 | Elements of geophysical systems that have sacred or religious meaning                                                                                   | Hooghly is the Ganges at its most sacred river.                                                                                                                                         | Ivermee (2017); Ivermee (2020)                                                                                        |
| 6.4.2.1 | Elements or features of geophysical systems whose contemporary existence or conservation is important to people                                         | Namami Gange Projects in West<br>Bengal                                                                                                                                                 | Namami Gange<br>Programme (2020)                                                                                      |

spots like Princep Ghat and Machranga Dwip in the estuary (Jha et al., 2008; Anon, 2021; Saha, 2022). At the same time, events like the Hooghly River Swim draw people to feel the waters (Koli, 2021). These interactions also offer a direct connection to the river's cultural and historical significance (Das, 2015). Additionally, the estuary provides spectacular panoramic views of the Bay of Bengal, especially from locations in the Sundarban near Beguakhali. It is a popular location for nature lovers because of its breath taking views (travel triangle, 2024). Beautiful beaches like Bakkhali, Kalsa Dwip, and Freserganj are great places to see sunsets and

stroll along the shore (Das, 2015).

Numerous scientific studies have been conducted in this region to explore its geological and environmental complexity. Research on heavy metal pollution in estuarine sediments (Ghosh et al., 2019), dissolved oxygen modelling in the creeks of Sagar Island (Mandal et al., 2012a), and the broader issue of estuarine acidification (Mitra and Zaman, 2021) offers vital information for conservation and environmental management. In addition, research on water pollution and its mitigation strategies highlights the importance of this estuary to

the region's sustainability (Mitra *et al.*, 2020). NGOs and conservation organizations also contribute to raising awareness about climate change and the conservation of natural resources (Roy *et al.*, 2023).

This estuary has been a source of inspiration for many poets and artists. The Matla and Hooghly rivers have influenced many literary works, like the poem by Chattopadhyay (2014) and another by Ramesh (2009), illustrating the estuary's aesthetic and emotional impact on writers and artists. It also has great spiritual and symbolic significance as India's largest estuary with the largest mangrove vegetation. It is also a portion of the largest delta in the world (Qasim, 2003). The Hooghly River is known for its spiritual significance and it is the sacred Ganges (Ivermee, 2017). Also known as the Bhagirathi, it symbolises its heavenly origin and highlights its historical and spiritual significance to the local population (Ivermee, 2020).

Both the country and local communities have serious concerns about preserving the HMES. This spiritually and environmentally significant water system is intended to be preserved by initiatives such as the Namami Gange Project in West Bengal, which has been approved for Rs 3,815.95 crore (National Mission for Clean Ganga, 2020). These initiatives highlight the river's significance as a natural resource and a cultural and spiritual symbol essential to millions of people's lives and well-being.

#### Issues and recommendations

Urbanization and human activities have significantly altered the HMES, fragmenting habitats and reducing biodiversity, undermining essential ecosystem functions (Culhane et al., 2018). Industrial and agricultural pollution has further exacerbated the issue, causing eutrophication and hypoxic conditions threatening aquatic life and critical services like water purification and carbon sequestration (Sousa et al., 2016). To address these challenges, sustainable management policies are essential. The ecosystem services identified in this study hold significant value and can guide policymakers in incorporating these benefits into planning processes. By doing so, they can also promote community involvement, encouraging local stewardship and a stronger sense of responsibility toward preserving these vital resources. These strategies are crucial for preserving the HMES's

ecological integrity and supporting its vital role in human well-being.

#### **CONCLUSION**

In summary, the Hooghly-Matlah Estuarine System offers a wide range of ecosystem services essential for the region's ecological balance and social cohesion. Biophysical services such as agricultural production, biomass resources, and fisheries are vital for sustaining local economies. Following this are ecological processes, including carbon sequestration, waste water dilution, and coastal defences, which are essential for reducing environmental risks and maintaining ecosystem stability. It preserves cultural heritage and provides recreational opportunities while creating strong physical, intellectual, and cultural linkages between the people and the environment. Additionally, it provided geophysical services like resources and materials, renewable energy, potable water, climate regulation, and interactive and spiritual connections. These biotic and abiotic services collectively demonstrate the economic and ecological significance of the Hooghly-Matlah Estuarine System. Thus, sustainable management of this estuarine system is essential for preserving biodiversity and human life in this vital estuary. So, the benefits of these services can be sustained for future generations, too.

#### **CONFLICTS OF INTEREST**

The authors declare that there is no conflict of interest.

#### **ACKNOWLEDGEMENT**

This research forms a part of the first author's PhD program, conducted with the fellowship and facilities provided by ICAR-Central Institute of Fisheries Education, Mumbai, to whom the author extends his gratitude for the fellowship and institutional resources made available throughout the degree program from 2021 to 2024.

#### REFERENCES

Acharya, K.V., Dadhaniya, P., Shendage, A., Badne, A. and Chava, A. (2019). Estuarine fisheries resource of India. *International Journal of Sciences and Applied Research* **6**(1): 1-12.

Agencies. (2023). Women artists of the Sundarbans, The Shillong Times, The Shillong Times Pvt.

- Ltd., Rilbong, Meghalaya, India. Available from https://theshillongtimes.com/2023/03/26/women-artists-of-the-sundarbans/(Accessed 06/07/2024)
- Akber, M.A., Patwary, M.M., Islam, M.A. and Rahman, M.R. (2018). Storm protection service of the Sundarbans mangrove forest, Bangladesh. *Natural Hazards* **94**: 405-418.
- Aktar, N. (2016). Agricultural productivity and productivity regions in West Bengal. *Nehu Journal* **8**(2): 49-69.
- Anon, (2021). *Travel bucket list: India West Bengal* (Part 6), Memories & Such. Available from https://memoriesandsuch.com/2021/06/07/travel-bucket-list-india-west-bengal-part-6/(Accessed 24/07/2024)
- Ashley, M., Murillas, A., Muench, A., Marta-Pedroso, C., Rodwell, L., Rees, S., Rendle, E., Bašić, T., Copp, G.H., Díaz, E. and Nachón, D.J. (2023). An evidence base of ecosystems services provided by diadromous fish in the European Atlantic Area. *Ecosystem Services* **64**: 101559.https://doi.org/10.1016/j.ecoser.2023.101559
- Ayappan, S. (2011). Handbook of Fisheries and Aquaculture, Directorate of Knowledge Management in Agriculture, ICAR, New Delhi. 1116 p.
- Banerjee, S., Ladd, C.J., Chanda, A., Shil, S., Ghosh, T., Large, A. and Balke, T. (2023). Securing the sustainable future of tropical deltas through mangrove restoration: Lessons from the Indian Sundarban. *One Earth* **6**(3): 190-194.
- Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. and Silliman, B.R. (2011). The value of estuarine and coastal ecosystem services. *Ecological Monographs* **81**: 169-193.
- Bardhan, M. (2021). An empirical study on mangrove restoration in Indian Sundarbans—a community-based environmental approach. *Modern Cartography Series* **10**: 387-405.
- Bera, B., Bhattacharjee, S., Sengupta, N., Shit, P.K., Adhikary, P.P., Sengupta, D. and Saha, S. (2022). Significant reduction of carbon stocks and changes of ecosystem service valuation of

- Indian Sundarban. *Scientific Reports***12**(1): 7809. https://doi.org/10.1038/s41598-022-11716-5
- Bhadra, T., Mitraa, S. and Hazrab, S. (2022). Identification of the Flow Dependent Ecosystems and their Services in the Indian Sundarbans. *Journal of Sustainable Science and Transformative Research-Reviews & Letters* 1(1): 30-34.
- Bhattacharya, A. and Jana, T.K. (1993). Studies on the role of salt-tolerant plants in the formation and stabilization of coastal dunes of the deltaic Sunderbans, North-East coast of India. In: *Towards the Rational Use of High Salinity Tolerant Plants*. H. Lieth and A.A. Masoom (eds.), Tasks for vegetation science, vol 27. Springer, Dordrecht. pp 363-370.
- Bhattacharyya, P., Padhy, S.R., Khanam, R., Nayak, A.K., Dash, P.K., Reddy, C.S., Chakraborty, A., Mandal, D., Swain, S. and Baig, M.J. (2023). Marine estuaries act as better sink for greenhouse gases during winter in undisturbed mangrove than degraded ones in Sundarban, India. *Marine Environmental Research*191: 106147.https://doi.org/10.1016/j.marenvres.2023.106147
- Blaber, S.J.M. (2002). 'Fish in hot water": the challenges facing fish and fisheries research in tropical estuaries. *Journal of Fish Biology* **61**: 1-20.
- Boeker, M., Vach, W. and Motschall, E. (2013). Google scholar as replacement for systematic literature searches: good relative recall and precision are not enough. *BMC Medical Research Methodology* **13**: 1-12.
- Booi, S., Mishi, S. and Andersen, O. (2022). Ecosystem Services: A Systematic Review of Provisioning and Cultural Ecosystem Services in Estuaries. *Sustainability* **14**(12): 7252.https://doi.org/10.3390/su14127252
- Chakraborti, U., Biswas, O., Das, A.K., Roy, S., Das, P. and Mitra, B. (2016). Studies on Sacred Groves and Sacred Trees along the Eastern bank of river Hoogly of North 24 Parganas, West Bengal. *Indian Forester* **142**(2): 156-166.

- Chakraborty, D. (2024). Mangroves as an Effective Tool of *Phytoremediation* and Its Implications on Agricultural Land in Estuarine Zones. In: *Phytoremediation* and *Biofortification*, N.K. Singh, S. Afzal and T. Aftab (eds.), Apple Academic Press, Taylor and Francis, London. pp 131-146.
- Chakraborty, H., Debroy, P., Kunui, A., Nandy, S.K., Jana, C., Sahoo, A.K. and Das, B.K. (2024). Hilsa fisheries in India: A socio-economic analysis of fishers in deltaic Ganga region of river Hooghly. *Frontiers in Sustainable Food Systems* 8: 1310077. https://doi.org/10.3389/fsufs.2024.1310077
- Chanda, A. and Akhand, A. (2023). Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove's Blue Carbon Stock. *Life* **13**(8): 1787.https://doi.org/10.3390/life13081787
- Chapke, R.R. (2009). Constraints and motivation behind jute cultivation. *Indian Journal of Extension Education* **45**(3-4): 85-91.
- Chatterjee, A. and Bhattacharyya, S. (2015). Distribution and abundance of monitor lizards (Varanus spp.) in human habitations of south west Bengal: People's tradition of coexisting with wildlife. *African Journal of Science and Research* 3(7): 1-7.
- Chatterjee, S., Mazumdar, D. and Chakraborty, S.K. (2014). Ecological role of fiddler crabs (Uca spp.) through bioturbatory activities in the coastal belt of East Midnapore, West Bengal, India. *Journal of the Marine Biological Association of India* **56**(2):1-25.
- Chattopadhyay, (2014). Matla River, Poem Hunter. Available at https://www.poemhunter.com/poem/matla-river/ (Accessed 04/07/2024)
- Chattopadhyay, D., Mandal, R., Chakraborty, A., Das, A. and Adhikari, S. (2024). Prerequisite steps for domestication of hilsa (Tenualosailisha) in freshwater pond. *Science and Culture* **90**(1-2): 14-18.
- Chowdhury, A., Naz, A., Iyer, A.S. and Bhattacharyya, S. (2021). Ecosystem based disaster risk

- reduction at Indian Sundarbans: A lesson learned from AMPHAN supercyclone. *IOP Conference Series:Earth and Environmental Science* **796**(1): 012042. https://doi.org/10.1088/1755-1315/796/1/012042
- Collins, A., Coughlin, D., Miller, J. and Kirk, S. (2015). *The production of quick scoping reviews and rapid evidence assessments: A how to guide.*Joint Water Evidence Group, Department for Environment Food and Rural Affairs and the Environment Agency, London. 63 p. Available from https://nora.nerc.ac.uk/id/eprint/512448 (Accessed 30/06/2024)
- Costanza, R. (2008). Ecosystem services: multiple classification systems are needed. *Biological Conservation* **141**(2): 350-352.
- Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R.V., Paruelo, J. and Raskin, R.G. (1997). The value of the world's ecosystem services and natural capital. *Nature* **387**(6630): 253-260.
- Culhane, F., Frid, C., Gelabert, E., White, L. and Robinson, L. (2018). Linking marine ecosystems with the services they supply: what are the relevant service providing units?. *Ecological Applications* **28**(7): 1740-1751.
- Daily, G.C. (1997). Introduction: what are ecosystem services. *Nature's services: Societal Dependence on Natural Ecosystems* **1**(1): 1-10.
- Das, S. and Hazra, S. (2020). Trapped or resettled: Coastal communities in the Sundarbans Delta, India. *Forced Migration Review*, Refugee Studies Centre, University of Oxford, United Kingdom. 64 p. Available from https://www.fmreview.org/das-hazra/# edn3 (Accessed 10/08/2024)
- Das, D. (2014). Kshitish Bishal and his paintings on Sundarban. *SAU Sociology*. Available from https://sausociology.wordpress.com/2014/12/07/kshitish-bishal-and-his-paintings-on-sundarban/(Accessed 10/08/2024)
- Das, G.K. (2020). Forest covers of West Bengal: A district-wise review. *Reason-A Technical Journal* **19**: 26-63.

- Das, G.K. (2023). Coastal tourism and pollution. In: Coastal environments of India: A coastal West Bengal perspective, Springer International Publishing, Cham. pp 213-232.
- Das, I., Chanda, A., Akhand, A. and Hazra, S. (2023). Carbon biogeochemistry of the estuaries adjoining the Indian Sundarbans mangrove ecosystem: A review. *Life* **13**(4): 863. https://doi.org/10.3390/life13040863
- Das, J. (2015). *Tourist Guide Book of Sundarbans*. First edition. Self-published, Kolkata, West Bengal, India. 120 p. Available from https://wbtourism.gov.in/River%20and%20Cruise%20tourism/details?template\_id=1&id=640f08d16eba05b8070d288c(Accessed 05/07/2024)
- Das, S.K. (2007). Opportunities of eco-tourism in the Sundarbans: A study of prospects and associated problems. In: *Environmental Concerns and Perspectives*, S.D. Banik, S.K. Basu and A.K. De (eds.), APH Publishing Corporation, New Delhi. pp 151-167.
- Defeo, O., McLachlan, A., Schoeman, D.S., Schlacher, T.A., Dugan, J., Jones, A., Lastra, M. and Scapini, F. (2009). Threats to sandy beach ecosystems: A review. *Estuarine, Coastal and Shelf Science* **81**: 1–12.
- Department of Power. (2024). Freserganj Wind Farm Project, at Freserganj, South 24 Parganas. Department of Power, Government of West Bengal, Kolkata. Available from https://wbpower.gov.in/by-wbreda/ (Accessed 29/06/2024)
- Dutta, S., Chakraborty, K. and Hazra, S. (2016). The status of the marine fisheries of West Bengal coast of the northern Bay of Bengal and its management options: A review. *Proceedings of the Zoological Society* **69**(1): 1-8.
- Ekka, A., Pandit, A., Katiha, P.K. and Biswas, D.K. (2020). Economic value of ecosystem services of Gosaba estuarine ecosystem of Sundarbans. *Journal of Inland Fisheries Society of India* **52**(2):157-163.
- Fegley, S.R. and Michel, J. (2021). Estimates of losses and recovery of ecosystem services for oiled beaches lack clarity and ecological

- realism. *Ecosphere* **12**: 03763. https://doi.org/10.1002/ecs2.3763
- Fisher B. and Turner K. (2008). Ecosystem services: Classification for valuation. *Biological Conservation*, **141**: 1167-1169
- Ganguly, D., Ray, R., Majumder, N., Chowdhury, C. and Jana, T.K. (2014). Monsoonal influence on evapotranspiration of the tropical mangrove forest in Northeast India. *American Journal of Climate Change* **3**(2): 13. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47417
- García-Onetti, J., Scherer, M.E., Asmus, M.L., Sanabria, J.G. and Barragán, J.M. (2021). Integrating ecosystem services for the socioecological management of ports. *Ocean & Coastal Management* **206**: 105583. https://doi.org/10.1016/j.ocecoaman.2021.105583
- Ghosh, A. (2021). *Jungle Nama: A Story of the Sundarban*, First edition, Harper Collins Publishers India, New Delhi. 88 p.
- Ghosh, D. and Shirodkar, A.D. (2023). Adaptive reuse of abandoned jute mills along the Hooghly river in Bengal: A sustainable approach, Proceedings International Conference of *Contemporary affairs in architecture and urbanism-ICCAUA*, **6**(1): 733-741. https://doi.org/10.38027/iccaua2023en0166
- Ghosh, P. and Mandal, S., (2020). Assessment of water quality status of some water bodies in Kolkata. *International Journal of Chemical and Environmental Sciences* 1(2): 54-57.
- Ghosh, R., Mukherjee, J., Pathak, S., Choudry, A. and Bhattacharya, S. (2022). *Dried Fish in West Bengal, India: Scoping report*, DFM Working Paper 9, The University of Manitoba, Winnipeg, Canada. Available from https://driedfishmatters.org/pub/dried-fish-in-west-bengal-india-scoping-report.html (Accessed 09/05/2024)
- Ghosh, S., Bakshi, M., Kumar, A., Ramanathan, A.L., Biswas, J.K., Bhattacharyya, S., Chaudhuri, P., Shaheen, S.M. and Rinklebe, J. (2019). Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. *Environmental Geochemistry and Health* **41**:53-70.

- Ghoshal, T.K., De, D., Biswas, G., Kumar, P. and Vijayan, K.K. (2019). Brackishwater aquaculture: Opportunities and challenges for meeting livelihood demand in Indian sundarbans. In: *The Sundarbans: A disaster-prone eco-region: Increasing livelihood security,* Sen, H. (eds.), Springer, Cham. pp 321-349.
- Giustini, D. and Boulos, M. (2013). Google scholar is not enough to be used alone for systematic reviews. *Online Journal of Public Health Informatics* **5**(2). https://doi.org/10.5210/ojphi. v5i2.4623
- Gopal, B. and Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. *Aquatic Sciences* **68**: 338-354.
- Gopal, B. and Chauhan, M. (2018). The transboundary sundarbans mangroves (India and Bangladesh). In: *The Wetland Book: II: Distribution, Description, and Conservation, C. M. Finlayson, G.R. Milton, R.C. Prentice and N. Davidson (eds.), Springer, Cham. pp 1733-1742.*
- Goswami, G., Mandal, S., Basack, S., Mukherjee, R. and Karakouzian, M. (2023). Assessing the impacts of land use and land cover changes on the water quality of river Hooghly, West Bengal, India: A case study. *Hydrology* **10**(3): 71. https://doi.org/10.3390/hydrology10030071
- Goswami, S., Agrawal, N., Sengupta, N., Baidya, A. and Sahana, P.K. (2022). Absence of vitamin D deficiency among outdoor workers with type 2 diabetes mellitus in southern West Bengal, India. *Cureus* **14**(2). https://doi.org/10.7759/cureus.22 107
- Haines-Young R.H. and PotschinM. (2013). CICES V4.3 Revised report prepared following consultation on CICES Version 4, August-December 2012, European Environment Agency, Copenhagen. EEA Framework Contract No EEA/IEA/09/003. Available from www.cices.eu (Accessed 02/04/2024)
- Haines Young, R. & Potschin, M. (2018). Common International Classification of Ecosystem Services (CICES) V5.1 Guidance on the Application of the Revised Structure, Fabis

- Consulting Ltd, Nottingham. Available from www.cices.eu (Accessed 02/04/2024)
- Haines-Young, R. (2023). Common International Classification of Ecosystem Services (CICES) V5.2 and Guidance on the Application of the Revised Structure, Fabis Consulting Ltd, Nottingham. Available from www.cices.eu (Accessed 02/04/2024)
- Haines-Young, R. and Potschin, M., (2010). Proposal for a common international classification of ecosystem goods and services (CICES) for integrated environmental and economic accounting, European Environment Agency, Copenhagen. 30 p. Available from https://www.nottingham.ac.uk/CEM/pdf/UNCEEA-5-7-Bk1.pdf (Accessed 03/04/2024)
- Haines-Young, R.H. and Potschin, M.B. (2009). Methodologies for defining and assessing ecosystem services. CEM Report No, 14, Final Report, Joint Nature Conservation Committee (JNCC), Peterborough.
- Haldar, A. and Bhattacharya, A. (2020). Sustainable energy development and participatory management scenario in the Sundarban: a case study in the Sagar Island, West Bengal, India. In: *Geoecology of Landscape Dynamics*, S.Sahdev, R.B. Singh and M. Kumar(eds.), Advances in Geographical and Environmental Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2097-6 20
- Harris, L.R. and Defeo, O. (2022). Sandy shore ecosystem services, ecological infrastructure, and bundles: New insights and perspectives. *Ecosystem Services* **57**: 101477. https://doi.org/10.1016/j.ecoser.2022.101477
- Hati, P., Roy, G., Bhattacharyya, I., Kundu, D. and Sengupta, D. (2020). Present scenario of water supply in Kolkata. *International Research Journal of Engineering and Technology* 7: 4060-4066.
- Hossain, M.I., Nabi, M.R., Ansari, M.N.A., Latif, A., Mahmud, M.R. and Islam, M.S. (2016). Ecosystem services of the world largest mangrove forest Sundarban in Bangladesh. *International Journal of Innovation and Scientific Research* 27(1): 9-15.

- Islam, S.N. (2014). Biosphere reserve, heritage identity and ecosystem services of Sundarbans transnational site between Bangladesh and India. Proceedings *The Right to [World] Heritage*, BTU Cottbus-Senftenberg, Brandenburg, Germany. 225 p.
- Ivermee, R. (2017). The Hooghly river: A sacred and secular waterway. Education About ASIA22(2): 30-34.
- Ivermee, R. (2020). Hooghly: *The Global History of a River*, First edition, Oxford University Press, C. Hurst & Co. (Publishers) Ltd., London.
- Jakubiak, M. and Chmielowski, K. (2020). Identification of urban water bodies ecosystem services. *Acta Scientiarum Polonorum Formatio Circumiectus* **19**(3): 73-82.
- Jameel, Y., Stahl, M., Michael, H., Bostick, B.C., Steckler, M.S., Schlosser, P., van Geen, A. and Harvey, C. (2023). Shift in groundwater recharge of the Bengal Basin from rainfall to surface water. *Communications Earth & Environment* **4**(1): 14. https://doi.org/10.1038/s43247-022-00650-z
- Jha, B.C., Nath, D., Srivastava, N.P. and Satpathy, B.B. (2008). Estuarine fisheries management options and strategies. Policy Papers 3, Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India. pp1-23.
- Jhingran, A.G. and Ghosh, K.K. (1978). The fisheries of the Ganga River system in the context of Indian aquaculture. *Aquaculture* 14(2): 141-162.
- Kanga, S., Meraj, G., Das, B., Farooq, M., Chaudhuri, S. and Singh, S.K. (2020). Modeling the spatial pattern of sediment flow in lower Hugli estuary, West Bengal, India by quantifying suspended sediment concentration (SSC) and depth conditions using geoinformatics. *Applied Computing and Geosciences* 8: 100043. https://doi.org/10.1016/j.acags.2020.100043
- Karmakar, S. (2018). Ethnic identity and forest preservation: A sociological enquiry on Sundarbans, West Bengal. *Journal of Research in Social Science and Humanities* **6**(1): 20-25.
- Khan, R. (2013). Wildlife of the Sundarban. Sundarban: Rediscovering Sundarban, The Mangrove

- *Beauty of Bangladesh*, K. Reza (ed.), Nymphea Publication, Dhaka, Bangladesh. pp 36-73.
- Khoshoo, T.N. (1997). Conservation of India's endangered mega animals: Tiger and lion. *Current Science* **73**(10): 830-842.
- Koli, P. (2021). *Hooghly River Swims*. Available from https://prabhatkoli.com/hooghly-river-swim/ (Accessed 17/05/2024)
- Kubalíková, L. (2020). Cultural ecosystem services of geodiversity: A case study from Stránskáskála (Brno, Czech Republic). *Land* **9**. https://doi.org/10.3390/land9040105
- Kuhn, T. K., Oinonen, S., Trentlage, J., Riikonen, S., Vikström, S., and Burkhard, B. (2021). Participatory systematic mapping as a tool to identify gaps in ecosystem services research: insights from a Baltic Sea case study. *Ecosystem Services* 48: 101237. https://doi.org/10.1016/j.ecoser.2020.101237
- Kumar, P., Kailasam, M., Sundaray, J.K. and Ghoshal, T.K. (2022). Sustainable fisheries/aquaculture of hilsa, *Tenualosa ilisha* in changing and dynamic riverine ecosystem of India and its neighborhood. *Ecological Significance of River Ecosystems*: 455-480.
- Lal, D.M., Sreekanth, G.B., Shivakrishna, A., Kumar, R., Nayak, B.B. and Abidi, Z.J. (2021). Ecosystem health status and trophic modeling of an anthropogenically impacted small tropical estuary along India's west coast. *Environmental Science and Pollution Research* **28**(26): 35073-35093.
- Lama, T.D., Burman, D., Mandal, U.K., Sarangi, S.K. and Sen, H.S. (2021). Transforming Coastal Zone for Sustainable Food and Income Security. Proceedings *International Symposium of ISCAR on Coastal Agriculture*, Indian Society of Coastal Agricultural Research, March 16-19, 2021, Central Soil Salinity Research Institute, Canning Town, West Bengal. https://doi.org/10.1007/978-3-030-95618-9
- Madhav, N.V. and Victor, J.R. (2011). Wryneck Jynx torquilla feeding on bird in Sundarbans, West Bengal, India. In: *Indian Birds*, A. Pittie (eds.), New Ornis Foundation, Hyderabad. 48 p.
- Mahmood, H. (2015). Handbook of Selected Plant

- Species of the Sundarbans and the Embankment Ecosystem, Sustainable Development and Biodiversity Conservation in Coastal Protection Forests, Bangladesh, GIZ GmbH, German Federal Ministry for Economic Cooperation and Development (BMZ), Dhaka, 116 p.
- Mallick, J.K. (2023). A review and field verification of avian diversity and habitat use in the greater Sundarbans of India, Bangladesh and their hinterland. *Probe-Animal Science* **5**(1): 1-42.
- Mandal, M.H., Roy, A. and Siddique, G. (2021). Spatial dynamics in people-wetland association: an assessment of rural dependency on ecosystem services extended by Purbasthali Wetland, West Bengal. *Environment, Development and Sustainability* **23**(7): 10831-10852.
- Mandal, S., Debnath, M., Ray, S., Ghosh, P.B., Roy, M. and Ray, S. (2012a). Dynamic modelling of dissolved oxygen in the creeks of Sagar island, Hooghly-Matla estuarine system, West Bengal, India. *Applied Mathematical Modelling* **36**(12): 5952-5963.
- Mandal, S., Ray, S. and Ghosh, P.B. (2012b). Modelling the impact of mangroves on fish population dynamics of Hooghly-Matla estuarine system, West Bengal, India. *Procedia Environmental Sciences* 13: 414-444.
- Mandal, S.R., Sarkarb, A. and Ghoshc, P.B. (2009). Degradation of mangrove litter and its contribution as dissolved inorganic nitrogen to the adjacent estuary of Sagar island, Sunderban mangrove ecosystem, India. In: *Mangroves Ecology, Biology and Taxonomy,* J.N. Metras (eds.), Nova Science Publishers, Inc., New York. pp 1-19.
- Marois, D.E. and Mitsch, W.J. (2015). Coastal protection from tsunamis and cyclones provided by mangrove wetlands A review. *International Journal of Biodiversity Science, Ecosystem Services & Management* 11(1): 71-83.
- Martin, C.L., Momtaz, S., Gaston, T. and Moltschaniwskyj, N.A. (2020). Estuarine cultural ecosystem services valued by local people in New South Wales, Australia, and

- attributes important for continued supply. *Ocean & Coastal Management* **190**: 105160. https://doi.org/10.1016/j.ocecoaman.2020.105160
- Merida, V.E., Cook, D., Ögmundarson, Ó. and Davíðsdóttir, B. (2022). Ecosystem services and disservices of meat and dairy production: A systematic literature review. *Ecosystem Services* **58**: 101494. https://doi.org/10.1016/j.ecoser.2022.101494
- Miah, M.Y., Hossain, M.M., Schneider, P., Mozumder, M.M.H., Mitu, S.J. and Shamsuzzaman, M.M. (2021). Assessment of ecosystem services and their drivers of change under human-dominated pressure-the Meghna River estuary of Bangladesh. *Sustainability* **13**(8): 4458. https://doi.org/10.3390/su13084458
- Mitra, A. (2020). *Mangrove forests in India,* First edition, Springer International Publishing, Switzerland. 361 p. https://doi.org/10.1007/978-3-030-20595-9
- Mitra, A. and Zaman, S. (2021). Estuarine Acidification: Exploring the Situation of Mangrove Dominated Indian Sundarban Estuaries, First edition, Springer, Cham. https://doi.org/10.1007/978-3-030-84792-0.
- Mitra, A., Zaman, S., Mitra, A. and Zaman, S. (2020). Water pollution and its mitigation. In: *Environmental Science-A Ground Zero Observation on the Indian Subcontinent*, A. Mitra and S. Zaman (eds.), Springer, Cham. pp 277-313.https://doi.org/10.1007/978-3-030-49131-4 8
- Mitra, D. (2023). Lost Art Form of Sunderbans Revived. The Telegraph. Available from https://www.telegraphindia.com/my-kolkata/news/lost-art-form-of-sunderbans-revived/cid/1910339 (Accessed 18/06/2024)
- Mitra, P.M., Karmakar, H.C., Sinha, M., Ghosh, A. and Saigal, B.N. (1997). Fisheries of the Hooghly-Matlah Estuarine System-an Appraisal. Technical Bulletin No. 67, Central Inland Fisheries Research Institute. Kolkata, India. 49 p. Available from https://citeseerx.ist.psu.edu/document?repid=rep1 & type=pdf&doi=80678 ad4ac85e8 68d4fbc5f00 d38aa3a6d9 d9205

- (Accessed 18/06/2024)
- Mitra, S., Ghosh, S., Satpathy, K.K., Bhattacharya, B.D., Sarkar, S.K., Mishra, P. and Raja, P. (2018). Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach. *Marine Pollution Bulletin* 126: 592-599.
- Mukherjee, J., Karan, S., Chakrabarty, M., Banerjee, A., Rakshit, N. and Ray, S. (2019). An approach towards quantification of ecosystem trophic status and health through ecological network analysis applied in Hooghly-Matla estuarine system, India. *Ecological Indicators* **100**: 55-68.
- Mukherjee, P., Pramanick, P., Zaman, S. and Mitra, A. (2021). Phytoremediation of heavy metals by the dominant mangrove associate species of Indian Sundarbans. *Journal of Environmental Engineering and Landscape Management* **29**(4): 391-402.
- Mukhopadhyay, K. (2004). An assessment of a biomass gasification based power plant in the Sunderbans. *Biomass and Bioenergy* 27(3): 253-264.
- Mukhopadhyay, S.K., Biswas, H., De, T.K. and Jana, T.K. (2006). Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarbans, NE coast of Bay of Bengal, India. *Journal of Marine Systems* **62**(1-2): 9-21.
- Mukhopadhyay, S.K., Sreeraj, C.R., Raghunathan, C. and Sen, A. (2022). First report of a hermit crab *Clibanariuslongitarsus* (De Haan, 1849) (Crustacea: Anomura) from sunderbans, India. *Journal of Entomology and Zoology Studies* **10**(1): 220-223.
- Nahlik, A.M., Kentula, M.E., Fennessy, M.S. and Landers, D.H. (2012). Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. *Ecological Economics* 77: 27-35.
- National Mission for Clean Ganga, (2020). *Namami Gange Programme at a Glance*, Ministry of Jal Shakti, New Delhi. Available from https://nmcg.nic.in/pdf/NGP-At%20a%20Glance%20(Final%20 Version%20Printed).pdf (Accessed 17/06/2024)

- Naz, A. and Chowdhury, A. (2022). Eco-Engineering and mangrove restoration methods to stabilize earthen embankments and establishing bioshield against natural disasters: A case study from Sundarban Ramsar Wetland, India. In: Assessing, Mapping and Modelling of Mangrove Ecosystem Services in the Asia-Pacific Region, R. Dasgupta, S. Hashimoto and O. Saito (eds.), Science for Sustainable Societies. Springer, Singapore. pp 183-198.
- Neogi, S.B., Dey, M., Lutful Kabir, S.M., Masum, S.J.H., Kopprio, G.A., Yamasaki, S. and Lara, R.J. (2016). Sundarban mangroves: Diversity, ecosystem services and climate change impacts. *Asian Journal of Medical and Biological Research* **2**(4): 488-507.
- Pal, D., Pahari, D., Chatterjee, T., Mondal, S., Ghosh, D., Chaudhury, P. and Mitra, B. (2022). An illustration on the foraging activity of Nomia sp. (Family Halictidae) and *Apis (Megapis) dorsata* (Family Apidae) on *Acanthus ilicifolius* at Kanaichatta, Purba Medinipur. *Journal of Advanced Scientific Research* 3: 229-239.
- Patra, P. (Director) (2023). *Drifting in the Waters of Sundarbans*, Wild Tiger Productions, New Delhi. Available from https://www.imdb.com/title/tt27262998/ (Accessed 14/07/2024)
- Paul, A.K., Ray, R., Kamila, A. and Jana, S. (2017). Mangrove degradation in the Sundarbans. In: Coastal wetlands: Alteration and remediation, C. Makowski (ed.), Springer, Cham. pp 357-392.
- Powerline. (2020). Case in point: Best practices in water management at TPPs, Powerline, New Delhi. Available from https://powerline.net.in/2017/07/08/case-in-point/(Accessed 14/07/20 24)
- Qasim, S.Z. (2003). *Indian E stuaries*, First edition, Allied Publishers Pvt. Ltd., New Delhi, India. 420 p.
- Rai, A. and Das, S. (2022). Religious tourism in the age of commodification and reconstruction of heritagescapes: A neighborhood-based study along the stretch of river Hooghly, North 24 Parganas, West Bengal, India. In: Advances in Urbanism, Smart Cities, and Sustainability, U. Chatterjee,

- A. Biswas, J. Mukherjee and S. Majumdar (eds.), CRC Press,Boca Raton. pp 59-90.
- Raja, R.A., Ghoshal, T.K., Sundaray, J.K., De, D., Biswas, G., Kumar, S., Panigrahi, A., Kumaran, M. and Pradhan, J.K. (2012). Status and challenges of livestock farming community in Sunderban India. *The Indian Journal of Animal Sciences* 82(4): 436-438.
- Ramesh, R. (2009). *River Hooghly*. Poem Hunter. Available at https://www.poemhunter.com/poem/river-hooghly/ (Accessed 16/06/2024)
- Ray, S. and Straškraba, M. (2001). The impact of detritivorous fishes on a mangrove estuarine system. *Ecological Modelling* **140**(3): 207-218.
- Roshith, C. M., Meena, D. K., Manna, R. K., Sahoo, A. K., Swain, H. S., Raman, R. K., Sengupta, A. and Das, B. K. (2018). Phytoplankton community structure of the Gangetic (Hooghly-Matla) estuary: Status and ecological implications in relation to eco-climatic variability. *Flora* **240**: 133-143.
- Roshith, C.M., Sharma, A.P., Manna, R.K., Satpathy, B.B. and Bhaumik, U. (2013). Ichthyofaunal diversity, assemblage structure and seasonal dynamics in the freshwater tidal stretch of Hooghly estuary along the Gangetic delta. *Aquatic Ecosystem Health & Management* **16**(4): 445-453.
- Roy, A., Manna, R.K., Ghosh, S., Sahu, S.K. and Das, B.K. (2023). Assessment of women's contribution in small scale fisheries in Indian Sundarbans: Issues, strategies, and way forward for sustainability. *Fisheries Management and Ecology* **30**(4): 378-391.
- Roy, U., Sarwardi, S., Majee, N.C. and Ray, S. (2016). Effect of salinity and fish predation on zooplankton dynamics in Hooghly-Matla estuarine system, India. *Ecological Informatics* **35**: 19-28.
- Ruiz-Agudelo, C.A., Suarez, A., Gutiérrez-Bonilla, F.D.P. and Cortes-Gómez, A.M. (2022). The economic valuation of ecosystem services in Colombia. Challenges, gaps and future pathways. *Journal of Environmental Economics and Policy*: **12**(3): 285-304.

- Sadanah, K. (2014). Roar, AA Films, Mumbai. Available from https://en.wikipedia.org/wiki/Roar:\_Tigers\_ of the Sundarbans (Accessed 15/06/2024)
- Saha S. (2022). Floated, a chance to kayak down the river Yacht club to be launched this winter hopes to turn hospitality hub into tourism hot spot, Telegraph, West Bengal, India. Available from https://www.telegraphindia.com/west-bengal/floated-a-chance-to-kayak-down-the-river-yacht-club-to-be-launched-this-winter-hopes-to-turn-hospitality-hub-into-tourism-hot-spot/cid/1262135 (Accessed 15/06/2024)
- Saha, A. and Sarkar, C. (2022). Protecting the precious Sundarbans: A comprehensive review of biodiversity, threats and conservation strategies in the mangrove ecosystem. *Conscientia* **10**: 60-80.
- Saha, S. and Dash, G. (2021). Climatic stress on cultured Scylla sp.: Impact on livelihood and public health in West Bengal. *International Journal of Researches in Biosciences, Agriculture & Technology* 17: 331-344.
- Sahoo, A.K., Wahab, M.A., Phillips, M., Rahman, A., Padiyar, A., Puvanendran, V., Bangera, R., Belton, B., De, D.K., Meena, D.K. and Behera, B.K. (2018). Breeding and culture status of Hilsa (Tenualosailisha, Ham. 1822) in South Asia: A review. *Reviews in Aquaculture* **10**(1): 96-110.
- Sannigrahi, S., Pilla, F., Basu, B., Basu, A.S., Zhang, Q., Wang, Y., Joshi, P.K., Chakraborti, S., Coscieme, L., Keesstra, S. and Roy, P.S. (2020). Identification of conservation priority zones using spatially explicit valued ecosystem services: A case from the Indian Sundarbans. *Integrated Environmental Assessment and Management* 16(5): 773-787.
- Sarkar, S., Das, S.K. and Bhakta, D. (2017). Length weight relationship and relative condition factor of Indian shad, *Tenualosailisha* from Hooghly estuary system, West Bengal. *Journal of Inland Fisheries Society of India* **49**(1): 22-26.
- Sen, S. (2020). Sunderban mangroves, post Amphan: An overview. *International Journal of Creative Research Thoughts* **8**(6): 2751-2255.
- Sharma, A., Srivastava, J., Kar, S.K. and Kumar, A. (2012). Wind energy status in India: A short

- review. Renewable and Sustainable Energy Reviews 16(2): 1157-1164.
- Sheehy, J.M., Taylor, N.L., Zwerschke, N., Collar, M., Morgan, V. and Merayo, E. (2022). Review of evaluation and valuation methods for cetacean regulation and maintenance ecosystem services with the joint cetacean protocol data. *Frontiers in Marine Science* **9**: 872679. https://doi.org/10.3389/fmars.2022.872679
- Singh, A., Bhattacharya, P., Vyas, P. and Roy, S. (2010). Contribution of NTFPs in the livelihood of mangrove forest dwellers of Sundarban. *Journal of Human Ecology* **29**(3): 191-200.
- Sinha, M. (2004). Farakka barrage and its impact on the hydrology and fishery of Hooghly estuary. In: *The Ganges Water Diversion: Environmental Effects and Implications*, M.M.Q. Mirza (ed.), Springer, Dordrecht. pp 103-124.
- Soren, D.D.L., Barman, J., Roy, K.C., Naskar, S. and Biswas, B. (2023). Evaluation of groundwater quality of South Bengal, India. *Journal of Earth System Science* **132**(3): 130. https://doi.org/10.1007/s12040-023-02152-8
- Sousa, L., Sousa, A., Alves, F. and Lillebø, A. (2016). Ecosystem services provided by a complex coastal region: challenges of classification and mapping. *Scientific Reports*, **6**(1). https://doi.org/10.1038/srep22782
- Subramanian, A., Nagarajan, A.M., Vinod, S., Chakraborty, S., Sivagami, K., Theodore, T., Sathyanarayanan, S.S., Tamizhdurai, P. and Mangesh, V.L. (2023). Long-term impacts of climate change on coastal and transitional eco-systems in India: An overview of its current status, future projections, solutions, and policies. *Royal Society of Chemistry Advances* 13(18): 12204-12228.
- Subrato, G. (2019). Fattening of mud crab *Scylla serrata* in estuarine region of south-eastern West Bengal, India. *Aquaculture Asia Magazine* **23**(1):11-19.
- T.E.E.B. (2010). The Economics of Ecosystems and Biodiversity: Ecological and Economic

- Foundations, First edition, Earthscan, London and Washington.
- Tiemann, A. and Ring, I. (2022). Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. *Ecological Indicators* **137**: 108704. https://doi.org/10.1016/j.ecolind.2022.108704
- Titumir, R.A.M. (2022). Introduction: The Sundarbans as our mind. In: *Sundarbans and its Ecosystem Services*, R.A.M. Titumir (ed.), Sustainable Development Goals Series. Palgrave Macmillan, Singapore. pp 1-20.
- Travel triangle. (2024). Places to visit in Gangasagar.

  Travel Triangle. Available from https://
  traveltriangle.com/blog/places-to-visit-ingangasagar (Accessed 19/07/2024)
- Vander Wilde, C.P. and Newell, J.P. (2021). Ecosystem services and life cycle assessment: A bibliometric review. *Resources, Conservation and Recycling* **169**: 105461.https://doi.org/10.1016/j.resconrec. 2021.105461
- Von Thenen, M., Frederiksen, P., Hansen, H.S. and Schiele, K.S. (2020). A structured indicator pool to operationalize expert-based ecosystem service assessments for marine spatial planning. *Ocean & Coastal Management* **187**: 105071.https://doi.org/10.1016/j.ocecoaman.2019.105071
- Vyas, P., Sengupta, K., Pande, A. and Kuppusamy S. (2013). Status report of coastal and marineprotected areas in West Bengal. In: *ENVIS Bulletin on Coastal and Marine Protected Areas in India: Challenges and Way Forward,* K. Sivakumar (ed.), ENVIS Bulletin: Wildlife & Protected Areas, Wildlife Institute of India, Dehradun, India.
- Zieritz, A., Sousa, R., Aldridge, D.C., Douda, K., Esteves, E., Ferreira-Rodríguez, N., Mageroy, J.H., Nizzoli, D., Osterling, M., Reis, J. and Riccardi, N. (2022). A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. *Biological Reviews* **97**(5): 1967-1998.