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ABSTRACT
Deciphering the genetic ancestry in livestock species has important applications in population stratification and 
is to used explore the genetic basis for differences among the breeds within the populations. Genetic ancestry 
plays a crucial role in identifying population structure by determining the number of subpopulations within a 
population and assigning individuals to their respective groups. It is also instrumental in defining the number 
of ancestral populations in admixed populations and estimating the proportions of these ancestral populations 
in admixed individuals. The study of  Ancestry Informative Markers (AIMs)  has significantly advanced our 
understanding of genetic variation within populations, with applications ranging from anthropology to livestock 
management. AIMs are specific genetic markers, such as SNPs, that show significant allele frequency differences 
between populations, allowing researchers to trace lineage and analyse population structure. With the advent of 
next-generation sequencing technologies and SNP genotyping, AIMs have become invaluable for uncovering the 
biogeographical origins of species, aiding in conservation efforts, and improving livestock breeding strategies. In 
this review, we have briefly explained an overview of about the AIMs, methods of estimation and their importance 
in livestock management.
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INTRODUCTION
The study of genetic variation within and across 
populations has been a basis of evolutionary biology 
and anthropology for many years. With the offset of 
high-throughput sequencing and Next-Generation 
Sequencing (NGS) technologies our ability to investigate 
these variations with unprecedented detail and 
accuracy has also advanced (Satam et al., 2023). The 
development of genotyping methods and NGS has made 
it easier to study genetic variation and structure, which 
is critical to understanding our evolutionary history. 
The NGS analysis of biological components can lead to 
ancestry and phenotypic insights, encompassing results 
such as AIMs (Ancestry Informative Markers) and 
SNPs (Single Nucleotide Polymorphisms) as depicted 
in workflow given below (Fig. 1). AIMs emerged as a 
concept in early 2000s with advancements in genetic 
research and the growing availability of genome-
wide data. They are a set of informative SNPs with 
significant differences in allele frequency between 
ancestral populations and have become essential tools 
for determining genomic ancestry (Santangelo et al., 
2017; Kehdy et al., 2015; Vongpaisarnsin et al., 2015). 
They provide insights into the biogeographic origins of 
individuals and populations by examining the frequency 
of specific alleles rather than their complete presence 
or absence (Das et al., 2018). This approach is not 

only crucial for anthropological research but has also 
found applications in other fields, including forensic 
science, personalized medicine, and, increasingly, 
livestock management. Initially, researchers sought to 
understand human population history and structure 
by identifying genetic variations that were significantly 
different between distinct populations. AIMs were 
identified as key markers that could distinguish these 
differences.
Also, population genetic structure analyses have 
demonstrated that continental population groups 
can be distinguished by examining allele frequency 
differences (Rosenberg et al., 2002, 2005). In recent 
years, research has revealed that thousands of single 
nucleotide polymorphisms (SNPs) across the genome 
exhibit significant allele frequency disparities between 
two or more continental populations (Mao et al., 2007; 
Price et al., 2007; Smith et al., 2004). These findings 
have laid the groundwork for admixture mapping 
and accounting for population genetic structure in 
association studies. The latter is crucial, as differences 
in population genetic structure between case and 
control groups can confound SNP-disease associations, 
potentially leading to false-positive or false-negative 
results (Campbell et al., 2005; Clayton et al., 2005; 
Freedman et al., 2004). Methods to quantify and 
address population structure differences in association 
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testing have been developed (Epstein et al., 2007; 
Hoggart et al., 2003) and are particularly applicable 
in whole-genome association (WGA) scans. However, 
for subsequent association studies aiming to refine 

critical candidate regions in larger population sets or to 
analyze additional populations, a compact set of AIMs 
is highly valuable.

Fig. 1: Information generated from biological samples using NGS methods that include AIMs and SNPs.

The development of AIMs was driven by the need to 
trace lineage and understand the genetic diversity 
within and between populations. Early studies focused 
on human genetics, using AIMs to infer ancestral origins 
and migration patterns. These markers soon proved 
valuable in other fields, including livestock genetics, 
where they provided insights into the history and 
genetic composition of different breeds.

The significance of Ancestry Informative Markers 
AIMs help in analysing the genetic structure of 
populations by revealing how different groups are 
related and how they have evolved (Das et al., 2019). 
The importance of AIMs in livestock cannot be 
overstated. Livestock breeds have been developed over 
centuries through selective breeding, often influenced 
by geographical, cultural, and economic factors. 
Understanding the ancestry of these breeds helps in 
preserving genetic diversity, which is crucial for the 
long-term sustainability of livestock populations. 
Moreover, AIMs can assist in identifying the genetic 
basis of traits associated with productivity, evolutionary 
genetics, biomedical research, and forensic analyses 
(Mekhfi et al., 2024).
One of the primary applications of AIMs in livestock is 
in the assessment of genetic diversity. Understanding 
the genetic variation within and among breeds allows 
for better management of breeding programs. For 
example, in sheep breeding, AIMs have been used to 
identify genetic markers associated with wool quality 

and reproductive traits (Somenzi et al., 2020; Getachew 
et al., 2017). In goats, researchers have utilized 
AIMs to assess genetic diversity among indigenous 
breeds, contributing to conservation efforts and the 
development of sustainable breeding programs (Monau 
et al., 2022).
In addition to conservation, AIMs play a crucial role 
in breeding programs. By identifying specific genetic 
markers associated with desirable traits, such as 
disease resistance, growth rate, and milk production, 
breeders can implement marker-assisted selection 
(MAS) (Rezende et al., 2012). This approach allows 
for more efficient selection of animals that carry 
advantageous alleles, ultimately improving the overall 
performance of livestock populations. For instance, 
studies have shown that AIMs can be used to select 
for traits like heat tolerance in cattle (Macciotta et al., 
2017), which is increasingly important in the face of 
climate change.
Admixture is a common form of gene flow between 
populations. It refers to the process in which two or more 
genetically and phenotypically diverse populations with 
different allele frequencies mate and form a new, mixed 
or ‘hybrid’ population (Chakraborty, 1986). Modeling 
studies showed that in contrast to the million markers 
suggested to be necessary for genome-wide association 
studies (GWAS) (Hirschhorn et al., 2005), 2000 and 5000 
well-distributed ancestry informative markers (AIMs) 
distinguishing parental origins are sufficient for whole 



Journal of Livestock Biodiversity	 Volume 12 Issue 1, 2022-23

3

genome scanning under the admixture mapping strategy 
(Tian et al., 2007). Hence, it is important to identify 
and choose most ancestry informative markers across 
populations, the power of admixture mapping relies 
heavily on the ability of informative markers to infer 
ancestry along the chromosomes of admixed individuals 
(Shriver et al., 2003).

Estimation of genetic ancestry: Global and local 
Global ancestry (GA) represents the proportion of 
genomic ancestry in each admixed individual that can 

be attributed to the ancestral populations contributing 
to the recently admixed population (Fig. 2A). Various 
approaches can be used to estimate GA. Among the 
most widely used methods, probabilistic models that 
utilize genotype data is most preferred. These methods 
often assume Hardy–Weinberg equilibrium within 
populations and complete linkage equilibrium across 
all loci included in the estimation, such as STRUCTURE 
(Falush et al., 2007) and ADMIXTURE (Alexander et 
al., 2009).

Fig. 2: Global (A) and local (B) genetic ancestries in a recently admixed population with three ancestral populations. The 
proportion of each of the ancestral populations is represented by the colours yellow, green, and purple.

Local ancestry (LA) refers to the ancestral origins of 
specific chromosome segments, known as ancestral 
tracts, within recently admixed individuals (Fig. 2B). 
For this, the number of copies derived of each ancestral 
population, in each genomic position, could be inferred 
per individual (from zero to two copies). Thus, GA 
can also be obtained by summarizing LA across the 
individual genomes. Briefly, the choice of the most 
suitable approach depends on the number and density 
of available markers, as well as the evolutionary history 
of the admixed population. Some models use haplotype 
data and require specific reference panels, which may 
not be available for all populations (Dias-Alves et al., 
2018; Maples et al., 2013). Additionally, local ancestry 
inference becomes challenging in cases of admixture 
between populations with limited genetic divergence or 
in ancient admixture events (Winkler et al., 2010). Some 
of the genetic characteristics of  admixed population 
allow the estimation of ancestry with a relatively 

small number of genetic markers. These markers are 
Ancestry Informative Markers. Their number will also 
depend on the assessed populations, the ancestral 
groups, and the time since the admixture event. To 
identify those markers that are useful and informative 
of ancestry, multiple measurements of population 
differentiation have been proposed (Rosenberg et al., 
2003; Ding et al., 2011).

Measures of Marker Informativeness for Ancestry 

The various methods for estimating marker 
informativeness are summarized below: 

1.	 Fisher Information Content (FIC) measures the 
amount of information a genetic marker provides 
about an individual’s ancestry. It is particularly 
effective in distinguishing between different ancestral 
populations, making it valuable for enhancing the 
precision of ancestry estimations in genetic studies.
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2.	 Shannon Information Content (SIC) derived from 
Shannon entropy, quantifies the uncertainty involved 
in predicting an individual’s ancestry based on a 
specific genetic marker. Higher SIC values indicate 
that the marker is more informative, which is crucial 
for assessing the diversity of alleles in a population 
and understanding the degree of heterogeneity.

3.	 F-Statistics (FST) is a metric that measures population 
differentiation due to genetic structure. It compares 
the genetic variability within sub populations relative 
to the total population. FST is widely used to quantify 
genetic differences between populations, helping to 
identify markers that are highly differentiated and 
thus particularly informative for ancestry analysis.

4.	 Informativeness for Assignment Measure (In) 
assesses how well genetic markers can assign 

individuals to specific populations. It evaluates the 
probability that a given marker can correctly classify 
the ancestry of an individual, making it particularly 
useful in studies aiming for accurate population 
assignment.

5.	 Absolute Allele Frequency Differences (δ) 
calculates the absolute difference in allele frequencies 
between two populations. A high δ value indicates 
that the allele is differentially distributed between 
populations, making it informative for ancestry 
inference. This measure is commonly used to identify 
markers that distinguish between populations, aiding 
in understanding population structure and migration 
patterns (Ding et al., 2011).

	 The process for identifying ancestry informative 
markers is illustrated in Fig. 3.

Fig. 3: Process of identification of Ancestry Informative Markers.

These methods offer complementary insights into 
genetic ancestry by evaluating the informativeness of 
genetic markers from different angles. FIC and SIC focus 
on the information content, FST measures population 
differentiation, evaluates assignment accuracy, and δ 
highlights allele frequency differences. Together, they 
form a comprehensive toolkit for ancestry analysis in 
population genetics.

Research and Advances in Ancestry Informative 
Markers 
Recent research in livestock genetics has seen 
significant advancements in the use of informative 
markers. One of the key developments is the 
refinement of SNP panels, which now offer greater 
resolution and accuracy in genetic analysis. Modern 

SNP panels can cover millions of SNPs across the 
genome, providing a comprehensive view of genetic 
variation and ancestry.

High-Density SNP Panels

High-density SNP panels have revolutionized livestock 
genetics by enabling more detailed and accurate genetic 
assessments. These panels include a large number 
of SNPs distributed across the genome, allowing 
researchers to pinpoint genetic variations associated 
with specific traits and diseases. For example, high-
density SNP panels have been used to identify markers 
linked to resistance to diseases such as mastitis in dairy 
cattle or heat tolerance in beef cattle (Cardoso et al., 
2020; Macciotta et al., 2017).
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Genome-Wide Association Studies (GWAS)
Genome-wide association studies have become a 
powerful tool for identifying genetic markers associated 
with complex traits. By analysing the entire genome of 
a large population of livestock, researchers can find 
correlations between SNPs and traits of interest. 
Recent GWAS have provided valuable insights into the 
genetic basis of traits such as meat quality, reproductive 
performance, and feed efficiency (Sbardella et al., 2021; 
Zhang et al., 2020).

Admixture Analysis
Admixture analysis is another area where informative 
markers have made a significant impact. Admixture 
occurs when individuals from different genetic 
backgrounds interbreed, resulting in a new population 
with mixed ancestry. Understanding admixture patterns 
can help researchers identify the genetic contributions 
of different breeds or populations, which is important 
for breeding programs and conservation efforts 
(VonHoldt et al., 2018). Recent studies have used SNP 
panels to assess admixture in livestock populations. 
For example, admixture analysis has been used to 
trace the influence of exotic breeds on local livestock 
populations, helping breeders make informed decisions 
about improving genetic diversity and performance 
(Berthouly-Salazar et al., 2012; Edea et al., 2015).
Also, the ancestry informative markers research 
in livestock have technological improvements in 
genotyping and sequencing, leading to significant 
breakthroughs in understanding breed development, 
hybridization, and selection. AIMs have been integrated 
into genomic selection programs, helping identify 
markers linked to key traits such as milk production, 
growth rate, and disease resistance in cattle, thereby 
enhancing breeding strategies and improving livestock 
performance (Lewis et al., 2011). These markers have 
also uncovered historical hybridization events, revealing 
the genetic contributions of ancestral breeds to modern 
commercial livestock, which is crucial for maintaining 
genetic diversity and managing inbreeding (Yaro et al., 
2017). Additionally, AIMs have played a vital role in 
the conservation of endangered breeds by identifying 
unique genetic variants that need preservation, helping 
guide efforts to protect populations at risk (Supple and 
Shapiro, 2018). Furthermore, AIMs have provided 
insights into the genetic basis of disease resistance, 
such as in sheep, where markers linked to resistance 
against parasites like gastrointestinal nematodes have 
been identified (Alvarez et al., 2019). This knowledge 
allows for the development of targeted breeding 
strategies to enhance the overall resilience and health 
of livestock populations, ensuring their sustainability 
in the face of environmental and disease challenges.

In conclusion, ancestry informative markers are 
powerful tools that have revolutionized the study of 
livestock genetics. By providing insights into the origins 
and genetic composition of livestock breeds, AIMs 
have become indispensable for breeding programs, 
conservation efforts, and research into disease 
resistance and productivity traits. The continued 
advancement of AIMs research, combined with new 
genomic technologies, will undoubtedly lead to even 
greater improvements in livestock management and 
sustainability in the years to come.
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