Research Article

Genetic cryptic demographic mode shift analysis in buffaloes of Odisha using STR markers shows an absence of recent bottleneck

Surarapu Lava Kumar^{1,2}, Ravinder Singh³, Ankita Gurao¹, Shallu Saini¹, Vikas Vohra⁴, Saket Kumar Niranjan¹, Monika Sodhi¹, Sushant Kumar Dash⁵ and Ranjit Singh Kataria¹

¹ICAR-National Bureau of Animal Genetic Resources, Karnal-132001, Haryana, India

²DBT-National Institute of Animal Biotechnology, Hyderabad-500032, Telangana, India

³Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar-144030, Punjab, India

⁴ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India

⁵Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneshwar-751003, Odisha, India

ABSTRACT

India is known for its livestock diversity, particularly in the buffalo population, which is highly diversified and the country is placed top among the buffalo rearing across the globe. Odisha state is home to exemplary and varied buffalo populations, featuring prominent breeds and populations like Chilika, Kalahandi, Paralakhemundi, Sambhalpuri, and the latest registered breed, Manda. It is intriguing to know if some rare alleles are contributing to the survival and adaptability of Odisha buffalo breeds in the niche, which is generally hostile to other Indian buffalo breeds. The data already generated using a set of 20 highly polymorphic heterologous markers on 192 animals of Chilika, Kalahandi, Paralakhemundi and Sambhalpuri buffalo populations was analyzed for the current study. The mutation drift equilibrium analysis for buffalo populations revealed no significant heterozygosity excess, when evaluated using three different models of evolution viz. infinite alleles model (IAM), step-wise mutation model (SMM) and two-phase model (TPM). The buffalo populations, few of them being small in size, still did not show significant heterozygosity excess under any of the three models of microsatellite evolution, thus indicating the absence of any recent genetic bottleneck. Mode shift analysis displayed a normal L-shaped curve which is indicative of the absence of any recent past bottleneck. The results of the present study will help formulate rational breeding strategies as well as the conservation of unique germplasm of Odisha buffaloes.

Key words: Bottleneck, Buffaloes, Mutation drift equilibrium, Odisha

 $\hbox{\bf *Corresponding author:} \ katariaranji@yahoo.co.in$

INTRODUCTION

India is one of the 17 countries harboring highly diverse species, which is reflected in its highly diversified buffalo population. India has seen the highest buffalo population, with a percentage increase of 13-20% during the decades of 1991-2002 and 2003-2017 (Hegde, 2019). Buffalo belongs to the Bovidae family, further classified into two main species: the Asiatic buffalo (Bubalus bubalis) and the African buffalo (Syncerus caffer). The domestication of Asiatic buffaloes, also known as water buffaloes and located in India, started there 5,000 years ago (Kierstein et al., 2004). The water buffaloes are classified into two classes based on their habitat, riverine and swamp, which diversified approximately 10,000 to 1.7 million years ago, long before domestication of the buffaloes (Michelizzi et al., 2010). Except for Chilika buffaloes, which feature a small minority of hybrid riverine

swamp animals, all of the Odisha buffalo breeds are predominantly riverine (Singh *et al.*, 2017; Kumar *et al.*, 2019a; Singh *et al.*, 2020).

The population bottleneck is a central paradigm of population genetics and conservation biology (Nei *et al.*, 1975). A sharp reduction in the size of a population leading to a decrease in variability and distorting the population structure is defined as a 'genetic bottleneck'. Various approaches have been implemented for bottleneck detection. At the demographic level, the regular census of livestock populations can record the population bottleneck, but in India, a periodic census is not available at the breed level for several reasons (Kataria *et al.*, 2010). Alternately, genetic bottleneck analysis is preferred for such endemic or remote livestock populations' bottleneck monitoring. The genetic bottleneck analysis based on the SSR markers primarily investigates the allele deficiency based on

two main approaches: the first involves testing for heterozygosity excess under three different mutation models: IAM (Kimura and Crow, 1964), SMM (Kimura and Ohta, 1978), and TPM (Di Rienzo *et al.*, 1994), and the second involves plotting the frequency of allele distribution, also known as a 'site-frequency spectrum graph' or 'mode-shift analysis'. The cryptic bottleneck occurring due to poor census, high variance in family size, artificial insemination, or polygamous or polyandrous breeding systems needs to be monitored by genetic bottleneck methods, in terms of estimated effective population size (Ne) (Kataria *et al.*, 2010).

Odisha being a coastal area, the environmental conditions are severe and ever-changing; therefore, the buffaloes of Odisha province (Chilika, Kalahandi, Paralakhemundi, and Sambhalpuri) are highly diversified to adapt to the highly adverse conditions of their tropical habitat (Singh et al., 2018; Kumar et al., 2019b; Mishra et al., 2020; Singh et al., 2021; Kumar et al., 2022). The underlying cause for this adaptation can be assumed to be at the genetic level, specifically that the presence of rare alleles is responsible for resistance to fluctuating conditions. The introduction of milch breeds, especially Murrah, in these areas, must have created selective pressure on particular alleles, which resulted in the loss of those beneficial rare alleles (Kathiravan et al., 2009). The microsatellite markers are useful in revealing if the given population has undergone a bottleneck. The microsatellite marker has been utilized for mutation drift analysis in several Indian buffalo breeds (Kataria et al., 2009a; Kataria et al., 2009b; Mishra et al., 2009; Mishra et al., 2010; Joshi et al., 2015). Therefore, the present study was proposed to see whether the populations of Odisha state, mainly Chilika, Kalahandi, Paralakhemundi and Sambhalpuri,

have undergone any bottleneck in the recent period. This has been achieved by using 20 highly polymorphic microsatellite markers.

MATERIALS AND METHODS

Population selection and microsatellite genotyping

The already generated data on 20 highly polymorphic microsatellite markers on Chilika, Kalahandi, Paralakhemundi, and Sambhalpuri (n=48, each) that have been submitted in the Dyrad, open data publishing platform under DOI: 10.5061/dryad.s4mw6m97q (Kumar et al., 2022) was utilized in the present study. The breeding tracts of the buffalo populations are depicted in Fig. 1. Briefly, the STR data generation involved isolating DNA from whole blood samples obtained from unrelated the buffaloes and amplifying the aforementioned microsatellite markers (ILSTS025, ILSTS056, ILSTS019, ILSTS033, CSSM33, ILSTS061, ILSTS028, HEL13, ILSTS058, ILSTS052, CSSM19, CSSM57, ILSTS030, CSSM47, ILSTS060, ILSTS089, CSSM66, ILSTS026, CSSM45, and ILSTS029), using primer sets previously published (Kataria et al., 2009a). Following the verification of the amplified products on agarose gel electrophoresis, the four PCR products were multiplexed, primers end-labeled with different dyes in a single well, with GS500LIZ (Applied Biosystems, USA) serving as an internal lane control. The PCR products were then genotyped using an automated DNA sequencer (ABI 300). Following post-fragment analysis on an automated DNA sequencer, allele size information was extracted from the raw data using GENEMAPPER software (Imle, 2005), and further GenAlEx 6.5 software (Peakall and Smouse, 2006) was used to export the data in the GENEPOP format.

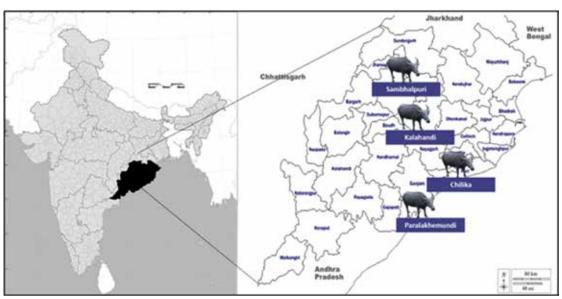


Fig. 1: Geographical distribution of Odisha buffalo populations considered in the present study.

Statistical Analysis

"BOTTLENECK" (Piry et al., 1999) software was used to analyze mutational drift equilibrium. In an Excel file, a chart was created using the allele frequency data. To determine if the population was in mutational drift equilibrium, four distinct tests were run using allele frequency data: the sign test, the standardized differences test, the Wilcoxon sign rank test, and a qualitative test of mode shift.

RESULTS AND DISCUSSION

Bottleneck analysis in Odisha buffaloes (Chilika, Kalahandi, Paralakhemundi, and Sambhalpuri) was performed using different methods in this study by using 20 microsatellite markers to understand the change in effective population size (Ne). The absence of bottleneck in Manda, another registered buffalo breed of Odisha has been reported earlier (Kumar *et al.*, 2022). The reduction in the effective population size leads to the progressive reduction of allele numbers and heterozygosity, resulting in the bottleneck in a breed/population (Cornuet and Luikart, 1996). Both the number of alleles (k) and gene diversity will decline in a population that has experienced a bottleneck due to a

reduction in effective population size, although the rate of gene diversity reduction will be slower than that of allele number reduction (k). This leads to an increase in the observed gene diversity than the observed one (Kathiravan *et al.*, 2010).

Sign rank, standardized differences, and Wilcoxon tests were used to assess if these populations had recently undergone any bottlenecks under three mutation models—the two-phase model (TPM), which is better suited to account for the evolution of microsatellites, the infinite allele model (IAM), and the stepwise mutation model (SMM). The 'BOTTLENECK' software used for the aforesaid analysis assumes the population to be under mutation drift equilibrium. The variance for TPM was set at 30 and the proportion of SMM in TPM (%) was set to 70 with 1000 iterations under the 3 mutation models with 3 statistical tests during analysis. The sign test within the IAM mutational model established significant deviations from mutation drift equilibrium. The heterozygous deficit was observed to be highest in Paralakhemundi (10 loci). The heterozygous excess (He excess expected/observed<0) was found in Kalahandi under IAM model under the sign test (Table 1).

Table 1: Mutation drift equilibrium was tested under different mutational models with different statistical tests for four buffalo populations.

Breeds	Mutation Models	Sign Test		Standardized Differences Test		Wilcoxon Signed-Rank Test
		H _{ex} / H _d	Level of significance	Т2	Level of significance	Level of significance (one-tail probability test for H _{ex})
Sambhalpuri	IAM	12/8	Ns	1.561	ns	*
	SMM	4/16	***	-9.098	ns	ns
	TPM	9/11	Ns	-2.297	*	ns
Kalahandi	IAM	13/7	Ns	0.485	ns	ns
	SMM	4/16	***	-12.869	ns	ns
	TPM	8/12	Ns	-3.993	***	ns
Paralakhemundi	IAM	10/10	Ns	-1.975	*	ns
	SMM	2/18	***	-20.054	ns	ns
	TPM	3/17	***	-8.692	ns	ns
Chilika	IAM	12/8	Ns	-0.286	ns	ns
	SMM	2/18	***	-14.51	ns	ns
	TPM	6/14	**	-5.094	ns	ns

^{***}P<0.001; **0.001<P<0.01; *0.01<P<0.05; ns P>0.05; H_{PV}/H_d = Obs heterozygous excess/ heterozygous deficit

In the IAM model any mutation in the previous allele leads to the formation of a new allele irrespective of the existing one (Kimura and Crow, 1964). Under the IAM model, the standardized differences test and Wilcoxon signed-rank test revealed no significant heterozygosity

excess in all the buffalo breeds. In the standardized differences test, the T2 values were found to be positive in all the buffalo breeds except for Paralakhemundi (P<0.05) and Chilika breeds (P>0.05). The one-tail Wilcoxon signed-rank test for heterozygosity excess

only for Sambhalpuri (P>0.05) (Table 1). The observed heterozygous excess loci were found to be higher in Nagpuri (Kataria *et al.*, 2009a), UP buffaloes (Joshi *et al.*, 2015) than all Odisha buffaloes. In the IAM mutation model under various tests, only Sambhalpuri was found to have a significant heterozygous excess when compared with previous reports (Kathiravan *et al.*, 2009; Mishra *et al.*, 2009; Kataria *et al.*, 2010, Kathiravan *et al.*, 2010), except Paralakhemundi which showed a higher value, equal to that of South Kanara buffalo.

The SMM mutational model assumes the allele maneuver as a unit with bidirectional sense, positive or negative (Kimura and Ohta, 1978). The heterozygous deficient was found to be significantly (P < 0.05) higher than the heterozygous excess under SMM ranging from 16 (Sambhalpuri, and Kalahandi) to 18 (Paralakhemundi and Chilika) loci out of 20 loci included for analysis (Table 1). The T2 values are found to be negative in all the breeds with a high negative in Paralakhemundi and Chilika breeds (Table 1). The negative T2 values indicate tilting towards heterozygosity deficiency (Kataria et al., 2010), and the high negative values in all Odisha populations indicate tilting towards heterozygosity deficiency. In the standardized difference test, the T2 values were found to be negative (P>0.05) in all the buffalo breeds analyzed. Wilcoxon signed-rank test (one-tail probability test for H_{ex}) was non-significant for all the buffalo populations under the stepwise mutation model. The observed heterozygous excess loci were found to be lower in all Odisha breeds when compared with other Indian breeds (Kathiravan et al., 2009; Kataria et al., 2009a; Kataria et al., 2009b; Mishra et al., 2009; Joshi et al., 2015). In the TPM mutation model, all the buffalo populations had heterozygous deficit higher than heterozygous excess (p<0.05), except for Sambhalpuri the high value of heterozygous deficit was non-significant (p>0.05). The expansion of all Odisha populations is reflected in significant negative T2 values under TPM and (standardized differences test) which are consistent with results from previous reports in Banni (Mishra et al., 2009), SouthKanara (Kathiravan et al., 2010) and UP buffaloes (Joshi et al., 2015). But it was found only in the SMM model (Kathiravan et al., 2009; Kataria et al., 2009a).

The TPM is better suited for microsatellite data than SMM or IAM (Kathiravan *et al.*, 2010). In all the Odisha buffalo populations studied under the TPM model (sign test), the number of loci with observed heterozygosity excess was lower than expected. The statistically significant p value was found in Paralakhemundiand Chilika buffalo populations with sign test suggesting deviation from mutation drift equilibrium. In the standardized differences test, The T2 values were

found to be negative in all buffalo breeds with a highly significant value across all the populations except Paralakhemundi and Chilika buffaloes. Wilcoxon signed-rank test revealed one-tail test of heterozygosity excess to be non-significant P values (P>0.05). Thus, rejects the null hypothesis and confirms the absence of any bottleneck in all the Odisha buffaloes. The Odisha buffaloes showed lower heterozygous excess loci under TPM than other Indian buffaloes (Kathiravan et al., 2009; Kataria et al., 2009a). The results are in contrast to the previous reports on UP buffaloes (Joshi et al., 2015). The observed heterozygous excess loci were more than Odisha buffaloes, except Sambhalpuri but Kalahandi showed the same number of loci with observed heterozygous excess with South Kanara under the TPM model (Kathiravan et al., 2010). Toda reported higher heterozygous excess under the TPM model (Kataria et al., 2009b).

The heterozygosity excess was found to be non-significant except for Sambhalpuri (under IAM and TPM), Kalahandi (under TPM), and Paralakhemundi (IAM). The heterozygosity excess was found in the Kalahandi buffalo population under IAM model but the values were statistically non-significant. The Odisha buffalo populations studied have no bottleneck since the populations that recently underwent bottleneck have a significant excess of heterozygosity. However, under both SMM and TPM models, none of the buffalo populations showed heterozygosity excess. The SMM showed the same results as previous reports on buffalo and poultry along with in poultry, were as it was contrasting under TPM model (Kataria *et al.*, 2010; Kathiravan *et al.*, 2009; Tantia *et al.*, 2006).

The Marathwada, Banni, Nagpuri, Jaffarabadi, Toda, Assamese Murrah, Chilika, Pandharpuri, Surti, Jaffarabadi, Nili-Ravi were not found to be undergoing bottleneck in the recent past except Mehsana breed (Kataria et al., 2010; Kathiravan et al., 2009; Mishra et al., 2009; Kataria et al., 2009a; Kataria et al., 2009b; Mishra et al., 2010). In the present report, the Odisha buffalo breeds were also not found to have undergone any bottleneck in the recent past. Apart from the mutational models used to estimate the mutation drift equilibrium, we have also assessed mode-shift distortion to graphically evaluate the allele frequency distribution as an indicator for genetic bottleneck. The qualitative test for mode shift was performed in all the Odisha populations using the allelic frequency. The absence of low-frequency alleles indicates the cause of the bottleneck, due to increasing inbreeding and along with selective breeding that decreases the fitness of a particular breed. Thus, all are reported for mode shift analysis as normal L-shaped curve which are indicative of absence of any recent past bottleneck in all the buffalo populations (Fig. 2).

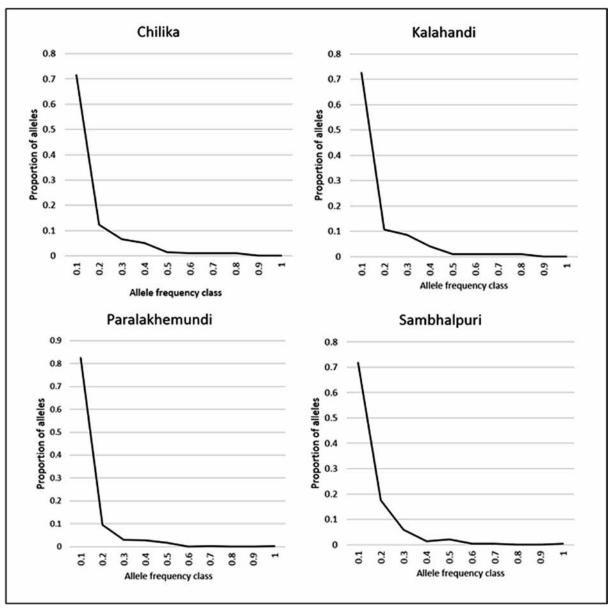


Fig. 2: Allele frequency distribution in different buffalo populations showing normal L-shaped mode shift graph.

The normal L-shaped curves are shown in other Indian buffaloes (Kataria *et al.*, 2009a, Kataria *et al.*, 2009b, Mishra *et al.*, 2009, Mishra *et al.*, 2010, Joshi *et al.*, 2015). These buffaloes did not show significant heterozygosity excess under any of the three models of microsatellite evolution, thus indicating an absence of any recent genetic bottleneck. In conclusion, the populations are deviating from mutation drift equilibrium, there was no significant heterozygosity excess indicating an absence of genetic bottleneck in the recent past. Thus, there is a need for conservation of these highly diversified buffaloes.

ACKNOWLEDGMENT

Authors wish to place on record gratitude for the financial assistance received from ICAR-NBAGR, Karnal, India, under the project 'Phenotypic and genetic

characterization of buffalo populations of Odisha', Project Code-2.9.

Data availability: Data that support the findings of the study, has been deposited at Dryad data repository (https://datadryad.org/stash), and is available under doi: https://doi.org/10.5061/dryad.s4mw6m97q.

REFERENCES

Cornuet JM, and Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics*,144:2001-2014.

Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, and Freimer NB. 1994. Mutational processes of simplesequence repeat loci in human populations. *Proceedings* of the National Academy of Sciences, USA, 91:3166-3170.

- Hegde NG. 2019. Buffalo husbandry for sustainable development of small farmers in India and other developing countries. *Asian Journal of Research in Animal and Veterinary Sciences*,3:1-20.
- Imle P. 2005. Fluorescence-based fragment size analysis. *Pharmacogenomics*:139-146.
- Joshi BK, Sodhi M, Mukesh M, and Mishra BP. 2012. Genetic characterization of farm animal genetic resources of India: A review. *Indian Journal of Animal Sciences*, 82:1259.
- Joshi J, Salar RK, Banerjee P, Sharma U, Tantia, MS, and Vijh RK 2015. Assessment of genetic variability and structuring of riverine buffalo population (Bubalus bubalis) of Indo-Gangetic basin. *Animal Biotechnology*, 26:148-155.
- Kataria RS, Kathiravan P, Bulandi SS, Pandey D, and Mishra BP. 2010. Microsatellite-based genetic monitoring to detect cryptic demographic bottleneck in Indian riverine buffaloes (Bubalus bubalis). *Tropical Animal Health and Production*, 42:849-855.
- Kataria RS, Sunder S, Malik G, Mukesh M, Kathiravan P, and Mishra BP. 2009a. Genetic diversity and bottleneck analysis of Nagpuri buffalo breed of India based on microsatellite data. *Russian Journal of Genetics*, 45:826-832.
- Kataria RS, Kathiravan P, Bulandi SS, Yadav NK, Dubey PK, and Mishra BP. 2009b. Assessment of Genetic Diversity, Mutation Drift Equilibrium and Mitochondrial D-Loop Variation in Toda buffalo—The Endangered Breed of South India. *Journal of Applied Animal Research*, 35:67-72.
- Kathiravan P, Mishra BP, Kataria RS, and Sadana DK. 2009. Evaluation of genetic architecture and mutation drift equilibrium of Marathwada buffalo population in Central India. Livestock Science, 121:288-293.
- Kathiravan P, Mishra BP, Kataria RS, Goyal S, Tripathy K, and Sadana DK. 2010. Short tandem repeat based analysis of genetic variability in Kanarese buffalo of South India. Russian Journal of Genetics, 46:988-993.
- Kierstein G, Vallinoto M, Silva A, Schneider MP, Iannuzzi L, and Brenig B. 2004. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny. *Molecular Phylogenetics and Evolution*, 30:308-324.
- Kimura M, and Crow JF. 1964. The number of alleles that can be maintained in a finite population. *Genetics*, 49:725.
- Kimura M, and Ohta T. 1978. Stepwise mutation model and distribution of allelic frequencies in a finite population. *Proceedings of the National Academy of Sciences, USA*, 75:2868-2872.
- Kumar L, Singh R, Niranjan SK, Kumar P, Vohra V, Dash S, and Kataria RS. 2019a. Cytogenetic characterization of

- Sambalpuri and Manda buffaloes of Odisha. *The Indian Journal of Animal Sciences*, 89:53-56.
- Kumar A, Mishra, SK, Lavakumar S, Singh KV, Kumari N, Sodhi M, Mukesh M, Niranjan SK, Kumar A, and Kataria RS. 2019b. Detection of polymorphism in the promoter region of TNF-alpha gene of water buffalo (Bubalus bubalis) and its association with disease resistance. *Indian Journal of Animal Research*, 53(12):1572-1576.
- Kumar SL, Singh R, Gurao A, Mishra SK, Kumar P, Vohra V, Niranjan SK, Sodhi M, Dash SK, Sarangdhar S, and Mukesh M. 2022. Genetic admixture and population structure analysis of Indian water buffaloes (*Bubalus bubalis*) using STR markers. *Molecular Biology Reports*, 49(7):6029-6040.
- Michelizzi VN, Dodson MV, Pan Z, Amaral MEJ, Michal JJ, McLean DJ, Womack JE, and Jiang Z. 2010. Water buffalo genome science comes of age. *International Journal of Biological Sciences*, 6:333.
- Mishra BP, Kataria RS, Kathiravan P, Bulandi SS, Singh KP, and Sadana DK. 2009. Evaluation of genetic variability and mutation drift equilibrium of Banni buffalo using multi locus microsatellite markers. *Tropical Animal Health and Production*, 41:1203-1211.
- Mishra BP, Prakash B, Kataria RS, Sadana DK, Kathiravan P, Das GC, Goswami RN, Joshi BK, Bhasin V, Rasool TJ, and Bujarbaruah KM. 2010. Genetic diversity analysis and cytogenetic profiling of Assamese buffaloes from North-East India. *Indian Journal of Animal Sciences*, 80:142-147.
- Mishra SK, Niranjan SK, Singh R, Kumar P, Kumar SL, Banerjee B, and Kataria RS, 2020. Diversity analysis at MHC class II DQA locus in buffalo (Bubalus bubalis) indicates extensive duplication and trans-species evolution. *Genomics*, 112(6):4417-4426.
- Nei M, Maruyama T, and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. *Evolution*, 1-10.
- Peakall ROD, and Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*, 6:288-295.
- Piry S, Luikart G, and Cornuet JM. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. *Journal of Heredity*, 90:502-503.
- Russell DW, and Sambrook J. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Singh KV, Das R, Lavakumar S, Sodhi M, and Kataria RS. 2021. Karyotypic and mtDNA based characterization of 'Bhangor', swamp buffalo population of

- Tripura. International Journal of Livestock Research, 11(3):149-153.
- Singh R, Lava Kumar S, Mishra SK, Gurao A, Niranjan SK, Vohra V, Dash SK, Rajesh C, and Kataria RS. 2020. Mitochondrial sequence-based evolutionary analysis of riverine–swamp hybrid buffaloes of India indicates novel maternal differentiation and domestication patterns. *Animal Genetics*, 51:476-482.
- Singh R, Lavakumar S, Gurao A, Mishra SK, Niranjan SK, Vohra V, Dash SK, and Kataria RS. 2018. STR markers based genetic diversity evaluation of Chilika buffalo of Odisha state. *Journal of Livestock Biodiversity*, 8(1):29-35.
- Singh R, Niranjan SK, Rajesh C, Mishra SK, Vohra V, Dash SK, Misra D, and Kataria RS. 2017. Cytogenetic characterization of Kalahandi and Paralakhemundi buffaloes of Odisha state confirms their riverine status. *Indian Journal of Dairy Science*, 71:279-83.
- Tantia MS, Vijh RK, Mishra B, Kumar ST, and Ahlawat SPS. 2006. Evaluation of Indian fowl populations for mutation drift equilibrium. *Indian Journal of Animal Sciences*, 76:937-943.