

Line x tester analysis for combining ability in Indian mustard [Brassica juncea (L.) Czern & Coss]

Ramesh Kumar^{1*}, PKP Meena², Ruchi Bishnoi³ and Kamal Kumar Sharma⁴

1.3,4Department of Genetics and Plant Breeding, College of Agriculture,

Ummedganj-Kota Agriculture University, Kota, Rajasthan, India

²Department of Genetics and Plant Breeding, ARS, Ummedganj-Kota, Agriculture University, Kota, Rajasthan, India

*Corresponding author: yramesh617@gmail.com

(Received: 16 November 2024; Revised: 20 December 2024; Accepted: 28 December 2024)

https://doi.org/10.56093/JOB.v16i1.5

Abstract

Line × tester analysis was carried out to estimate combining ability of 36 hybrids developed by crossing 9 lines with 4 testers of Indian mustard. Estimates of GCA effects indicated that Kranti, RH-749, Pusa Mustard-30 and Pusa Mahak and Tester, PM-27 were good general combiner. Significant SCA effects for seed yield per plant and other attributing traits in desirable direction were recorded in a series of hybrids and a close association between SCA effects and heterosis was observed amongst the best hybrids identified on the basis of SCA effects. The three hybrids; PM- 30 x CS 54, NRCHB 101 x PM 27, RH 749 x JM 1, IC-597889 x JM-1 and RH-30 x CS-54 exhibited highly significant SCA effects and higher *per se* performance for seed yield and important traits. The high yielding cross combinations can be further exploited for improving the seed yield by development superior genotypes.

Keywords: General combining ability, Indian mustard, line x tester, specific combining ability

Introduction

Brassica juncea L. is an important oilseed crop plays a crucial role in edible oil economy of India and occupies premier position in Indian agriculture. It is major rabi oilseed crop of the Indian subcontinent occupies more than 80% of the total rapeseed-mustard cultivated area. Contributes nearly 27% of edible oil pool in India and accounts for more than 13% of the global edible oil production (Meena et al., 2014 and Pratap et al., 2014). Improving the genetic potential of crop for increasing yield with quality characters should be over emphasized. line × tester analysis which involves 'l' line and 't' tester is an extension of the analysis of two factorial experiment developed by Kempthorne (1957), which provides a reliable information on the general and specific combining ability effects of parents and their hybrid combinations are used to generate the information. Information on combining ability provides guidelines to the plant breeder in selecting the elite parents and desirable cross combinations to be used in the formulation of systematic breeding programme.

Materials and Methods

The experiment was carried out at Agricultural Research Station, Ummedganj, Kota, Agriculture University, Kota during 2021-22 and 2022-23. The experimental material consisted of 36 F₁ s of Indian mustard (*Brassica juncea* L.) involving 9 lines namely RH-749, DRMRIJ-31, NRCHB 101, Kranti, Pusa Mustard-30, PusaMahak, PusaTaraka,

RH 30, IC-597889 and four testers *viz.*, Pusa Mustard-27, JM-1, CS-54 and EJ-20 were crossed in line × tester design during 2021–22. The aim of the present study was to evaluate GCA and SCA of high yielding varieties and breeding lines. The crosses along with their parents were planted in randomized complete block design with three replications during *rabi* 2022-23. The treatments were raised in rows of 4m length with a distance of 30cm between rows and 10cm between plants. The recommended package and practices were followed during the crop period.

Observations were recorded on thirteen quantitative traits, *viz.*, days to 50% flowering, days to maturity, plant height (cm), number of primary branches per plant, number of secondary branches per plant, number of siliquae per plant, siliqua length (cm), number of seeds per siliqua, 1000-seed weight (g), biological yield per plant (g), seed yield per plant (g), harvest index (%) and oil content (%). Observations on days to 50% flowering and maturity were recorded on per plot basis and the observations on remaining traits were recorded on randomly selected five competitive plants in each replication. The combining ability analysis was carried out as per the method of Kempthorne (1957).

Results and Discussion

Analysis of variance for combining ability are presented in table 1. The components of variance attributable to lines and testers were used as a measure of general combining ability effects and the variance due to interaction between lines and testers was used as a measure of specific combining ability effects. The analysis of variance for combining ability that significant mean sum of squares due to crosses for all the traits indicated difference among crosses for traits under study. The mean sum of squares due to line x tester interaction was also found significant for all the traits except for plant height under study. Akabari *et al.*, (2017), Malviya *et al.*, (2019) and Choudhary *et al.*, (2020) also reported significant mean square due to lines, testers and line × tester for seed yield and it's contributing characters.

General combining ability

A perusal of general combining ability (gca) effects of parents indicated that none of the parent was found to be good general combiner for all the traits (table 2). However, one of the line Kranti was found to be a good general combiner for seven characters *viz.*, plant height, number of siliquae per plant, length of siliqua, no. of seed per siliqua, 1000- seed weight, biological yield per plant and seed yield per plant by exhibiting desirable significant positive gca effect.

Line RH-749 (for days to 50% flowering, days to maturity, number of secondary branches per plant, length of silique, no. of seed per siliqua and seed yield per plant) and Pusa Mustard-30 were observed to be good general combiners for four characters viz., no. of primary branches per plant, length of siliqua, 1000-seed weight and harvest index; line Pusa Mahak were observed to be good general combiners for four characters viz., days to 50% flowering, no. of secondary branches per plant, no. of silique per pant and oil content. Tester, PM-27 exhibited significant desirable GCA effects for days to 50% flowering, no. of silique per plant, no. of seed per siliqua, 1000- seed weight, biological yield per plant and seed yield per plant. It can be concluded that parent Kranti, RH-749, Pusa Mustard-30 and Pusa Mahak and Tester, PM-27 possess desirable alleles for most of the characters. Hence, these parents could be used in future breeding programme for improvement of respective characters. Similar results also found by Kaur et al., (2019), Choudhary et al., (2020) and Kaur et al., (2020).

Specific combining ability

None of the cross combination was found to be a common combiner for all the characters under study (table 3). Cross combination IC-597889 X EJ 20 showed highly significant desirable negative specific combining ability (sca) effects

Table 1: Analysis of variance for combining ability for different traits in mustard

						Mean	sums of squares	quares						
Sources	df	DF	DM	PH	NPBPP	NSBPP	NSPP	IS	NSPS	SW	BYPP	GYPP	HI	ос С
Crosses	35	15.53**	7.57**	143.0*	1.03**	7.23**	1548**	0.23**	1.56**	0.73**	235.60**	5.47**	14.45**	1.60**
Line effects	∞	16.78	6.34	211.61	92.0	7.25	770.45	0.25	2.10	1.02	364.17	5.30	20.55	3.21*
Tester effect	3	18.15	6.40	53.20	1.78	3.70	1768.87	0.12	3.91*	0.45	296.25	12.47	3.03	1.74
LxTeffect	77	14.78**	8.12**	131.36	1.02**	7.66**	1779.5**	0.24**	1.09**	0.67**	185.10**	4.65**	13.85**	1.04**
Error	92	0.94	1.09	84.29	90:0	0.24	352.14	90:0	80.0	0.00	51.65	1.00	2.762	0.16

and ** represent level of significance at 5 and 1%, respectively; DF= Days to 50 % flowering; DM= Days to maturity; PH= Plant height; NPBPP= Number of primary branches per plant; NSBPP=Number of secondary branches per plant; NSPP=Number of siliqua per plant; LS=Length of siliqua; NSPS = Number of seed per siliqua; SW = 1000-seed weight; BYPP = Biological yield per plant; GYPP= Grain yield per plant; HI= Harvest index; OC= Oil content

Table 2: Estimates GCA effects of parents for yield and its attributing traits in mustard

	Traces CO. 1	d to month	מוכז הווס	٠.									
Parents	DFF	DM	ЬН	NPBPP	NSBPP	NSPP	LS	NSPS	1000SW	BYPP	SYPP	IH	0C
LINES													
RH-749	-0.657*	-1.157**	-2.385	-0.032	0.859**	-2.270	0.182*	0.517**	090:0	-0.169	1.580**	0.728	-0.094
DRMRIJ-31	-0.574*	0.593 *	-4.868*	0.093	-0.328	-12.083 *	0.040	-0.096	0.255**	8.372**	-0.170	-2.832**	-0.152
NRCHB-101	-1.074**	-0.407	4.181	0.160	-0.445*	-5.662	0.007	-0.646**	0.020	2.197	0.261	-0.414	0.503**
Kranti	0.343	0.593*	6.594**	-0.166	0.144	12.421*	0.190*	0.510**	0.276**	6.764**	1.035**	-0.432	-0.447**
PM-30	-0.157	0.926**	4.257	0.434**	-0.191	4.433	0.207**	-0.206	0.435**	-5.303*	-0.060	1.606**	-0.734**
P. Mahak	-0.991**	0.009	0.608	0.159	1.54**	12.499 *	-0.011	0.144	-0.046	-1.261	0.050	0.504	0.309*
P. Tarak	0.000	0.426	5.075 *	-0.157	-1.09**	0.989	-0.056	0.278*	*060.0-	2.497	0.172	-0.708	0.528**
RH-30	2.843**	0.009	2.280	-0.416**	-0.108	0.717	-0.293**	0.420**	-0.615**	-6.119**	-0.578	1.136*	-0.566**
IC-597889	0.259	-0.991**	1.134	0.209	-0.378*	-0.307	-0.070	0.184	-0.144**	-6.978**	-1.289**	0.411	0.653**
SE	0.2651	0.2853	2.3904	0.1202	0.1766	5.2806	0.0745	0.1064	0.0402	2.2233	0.2971	0.5436	0.1276
Gigi.	0.3749	0.4034	3.3806	0.1699	0.2498	7.4680	0.1054	0.1505	0.0568	3.1443	0.4202	0.7687	0.1804
TESTERS													
PM-27	-0.991**	0.065	1.754	0.130	0.095	10.078**	0.075	0.476**	0.110**	4.430**	0.926**	-0.180	0.110
JM-1	1.009**	0.546**	-1.286	-0.348**	0.084	0.146	-0.070	-0.323**	0.055*	0.089	0.054	0.278	0.015
CS-54	-0.102	0.028	0.499	0.244**	-0.52**	-9.732**	0.036	-0.292**	-0.187**	-1.019	-0.342	-0.383	0.232**
EJ-20	0.083	-0.639**	-0.967	-0.026	0.346**	-0.493	-0.041	0.139	0.023	-3.500*	-0.639**	0.285	-0.358**
SE	0.1767	0.1902	1.5936	0.0801	0.1178	3.5204	0.0497	0.0709	0.0268	1.4822	0.1981	0.3624	0.0850
Gi-gi	0.2499	0.2689	2.2537	0.1133	0.1665	4.9786	0.0702	0.1003	0.0379	2.0962	0.2801	0.5125	0.1203

* and ** represent level of significance at 5 and 1%, respectively

Table 3: Estimates of sca effects of top three combinations for thirteen characters in Indian mustard

Cross combination	Specific combining ability effects	General combining ability effect of parents
Days to 50% flowering		
IC-597889 X EJ 20	-3.25**	PxP
P. Mahak X CS 54	-2.89**	GxA
RH-30 X PM-27	-2.73**	PxG
Days to maturity		
P. Tarak X EJ 20	-2.73**	PxG
NRCHB 101 X PM 27	-1.81**	AxP
PM-30 X PM-27	1.80**	$P \times P$
Plant height		
IC-597889 X EJ 20	12.98**	AxP
NRCHB 101 X CS 54	9.53*	PxA
DRMRIJ-31 X EJ 20	7.32	$P \times P$
No. of primary branches per plant		
PM- 30 X PM-27	1.26**	GxA
Kranti X EJ 20	1.05**	$P \times P$
P. Mahak X PM-27	0.70**	AxA
Number of secondary branches po	er plant	
PM-30 X PM-27	2.58**	PxA
NRCHB-101 X CS-54	2.11**	PxP
Kranti X EJ-20	1.75**	AxG
Number of siliqua per plant	11,0	11110
NRCHB 101 X CS 54	35.15**	PxP
DRMRIJ31 X CS 54	33.38**	PxP
PM- 30 X PM-27	33.18**	AxG
Length of siliqua	33.10	TING
IC-597889 X EJ 20	0.47**	PxP
RH 749 X CS 54	0.42**	GxA
DRMRIJ-31 X JM 1	0.33**	AxP
Number of seed per siliqua	0.55	11/11
NRCHB 101 X EJ 20	1.01**	PxA
P. Tarak X PM-27	0.65**	GxG
IC-597889 X CS 54	0.62**	AxP
1000-seed weight	0.02	IXI
IC-597889 X PM-27	0.80**	PxG
P. Mahak X JM 1	0.57**	PxG
P. Tarak X PM-27	0.49**	PxG
Biological yield per plant	0.47	1 70
Kranti X EJ 20	16.79**	GxP
RH-30 X CS 54	13.41**	PxP
DRMRIJ-31 X JM 1	12.76**	GxA
Seed yield per plant	12.70	UAA
PM-30 X CS 54	2.40**	PxP
NRCHB 101 X PM 27	1.99**	AxG
RH 749 X JM 1	1.67**	GxA
Harvest index	1.07	UXA
P. Tarak X PM-27	3.21**	PxP
IC-597889 X JM 1	3.03**	AXA
	3.03*** 2.79**	
Kranti X JM 1	Z.19***	PxA
Oil content	0.72**	D A
RH-30 X JM 1	0.72**	PxA
PM-30 X CS 54	0.69**	PxG
P. Tarak X JM 1	0.68**	GxA

^{*} and ** represent level of significance at 5 and 1%, respectively

Table 4: Top ranking crosses for seed yield per plant and other characters in Indian mustard

Crosses	Per se	Per se Specific	General	eral	Other characters with same specific combining ability effect
	performance combining ability effec	combining ability effect	comb ability	combining ability effect	
			PI	P2	
PM-30 X CS 54	14.28	2.40**	-0.06	-0.34	1000- seed weight and oil content
NRCHB 101 X PM 27	13.07	1.99**	0.26	0.92	Days to 50% flowering and days to maturity
RH 749 X JM 1	14.59	1.67**	1.58	0.05	Days to 50% flowering, no. Secondary branches per plant, no. Of siliqua per plant
					and 1000-seed weight
IC-597889 X JM-1	9.12	1.67**	-1.28	0.05	Harvest index
RH-30xCS-54	69:6	1.63**	-0.58	-0.34	Biological yield per plant

for days to 50% flowering and cross combination P. Tarak X EJ 20 exhibited highly significant negative sca effect for days to maturity. These cross combinations can be exploited to isolate early maturing genotype in later generations. Cross combination NRCHB-101 x CS-54 was good specific combiner for plant height, number of secondary branches per plant and no. of siliquae per plant. Cross combination Pusa Mustard-30 x Pusa Mastard-27 was proved to be a good specific combiner for no. of primary branches per plant, no. of secondary branches per plant and number of siliquae per plant. Cross combination PM- 30 x CS 54, NRCHB 101 x PM 27, RH 749 x JM 1, IC-597889 x JM-1 and RH-30 x CS-54 showed significant positive sca effects for seed yield (table-4).

It was observed for most of the characters that there was close association between mean performance and gca effects of the parents. However, combinations having high mean did not exhibit high sca effects for all the characters suggested that only good general combiner on the basis of mean performance may be reliable but not good specific combiner. Parents involved in these crosses were P x P, A x G, G x A, P x A and P x P combiners. The cross combinations involving either both or one parent with high gca effect indicated additive gene action in controlling the expression of respective trait. These cross combinations would give rise to transgressivesegregants in later generations. While cross combinations involving P x P combiners reflected non-additive gene action, which is nonfixable in nature and could be exploited only through heterosis breeding for further improvement of the respective trait. Similar findings were reported by earlier workers Mall et al., (2010), Parmaret al., (2011), Verma et al., (2011) and Kumar et al., (2021).

Reference

- Akabari VR, Sasidharan N, Kapadiya V. 2017. Combining ability and gene action study for grain yield and its attributing traits in India mustard. *Electronic J Plant Breeding*, **8**: 226-235.
- Choudhary P, Sharma H, Sanadya SK, Dodhiya NS, Bishop V. 2020. Combining ability for agronomic and quality traits in Indian mustard. *Int J Chem Studies*, **8**: 720-724.
- Kaur G, Kaur M, Kuma R. 2020. Line × Testers analysis for quantitative traits in Indian mustard (*Brassica juncea* L.). *J Oilseed Brassica*, **11**: 77-87.
- Kaur S, Kumar R, Kaur R, Singh I, Singh H, Kumar V. 2019. Heterosis and combining ability analysis in Indian mustard (*Brassica juncea*). J Oilseed Brassica 10: 38-46.

- Kempthorne O. 1957. An Introduction to General Statistics. John Wiley and Sons. Inc. New York. Chapman and Hall Ltd. London, p. 468-470.
- Kumar N, Avatar R and Vivek KS. 2021. Combining ability Analysis mustard in [*Brassica juncea* (L.) Czern & Coss]. *Electronic J Plant Breeding*, **12**: 667-672.
- Mall AK, Bhajan R, Kumar K and Verma OP. 2010. Combining ability analysis for some metric traits over environments in Indian-mustard [*Brassica juncea* (L.) Czern & Coss]. *Pantnagar J Research*, 8: 20-25.
- Malviya N, Kumar K, Upadhyay DK. 2016. Combining ability and heterosis for seed yield, its component traits and oil content in Indian mustard [Brassica juncea (L.) Czern and Coss]. J Pharmacognosy Phytochemistry, 8: 696-699.
- Meena HS, Ram B, Kumar A, Singh BK, Meena PD, Singh VV and Singh D. 2014. Heterobeltiosis and standard

- heterosis for seed yield and important traits in *B. juncea. J Oilseed Brassica*, **5**: 134-140.
- Parmer SA, Jaimini SN and Ram B. 2011. Combining ability analysis for seed yield and its components over environments in Indian mustard [*Brassica juncea* (L.) Czern & Coss]. *J Oilseed Brassica*, 2: 61-66.
- Pratap P, Meena PD, Singh BK, Meena HS, Meena SS, Sharma P, Majumdar R and Singh D. 2014. Development and evaluation of Alternaria blight tolerant lines in Indian mustard (*B. juncea*). *J Oilseed Brassica*, **5**: 141-148.
- Verma OP, Yadav R, Kumar K, Singh R, Maurya KN and Ranjana. 2011. Combining ability and heterosis for seed yield and its components in Indian mustard [*Brassica juncea* (L.) Czern & Coss]. *Plant Archives*, 11: 863–865.