

Assessment of genetic diversity for salinity tolerance in Indian mustard using SSR markers

Ankit Dhillon^{1*}, Neeraj Kumar¹, Ram Avtar¹, Manjeet Singh², Mahavir Bishnoi¹, Raju Ram Choudhary³, Annu¹ and Shreya¹

Raju Ram Choudhary³, Annu⁴ and Shreya⁴

¹CCS Haryana Agricultural University, Hisar, Haryana, India-125004

²USDA-ARS Center for Grain and Animal Health Research, Manhattan, Kansas, US

³Sri Karan Narendra Agriculture University, Jobner-303329

*Corresponding author email: ankitdhill@gmail.com

(Received: 25 August 2024; Revised: 20 September 2024; Accepted: 12 November2024)

https://doi.org/10.56093/JOB.v16i1.16

Abstract

Salinity presents a major challenge for Indian mustard cultivation, especially during the seedling stage in salt-affected soils. Developing salt-tolerant mustard lines through targeted breeding, supported by germplasm screening and genetic variability assessment, can enable cultivation in these areas. This study aimed to evaluate salinity tolerance and assess genetic diversity among 48 Indian mustard genotypes under greenhouse conditions at the seedling stage, exposed to control, 8 dSm⁻¹, and 12 dSm⁻¹ salinity stress levels. Molecular diversity was analysed using 59 SSR primers, of which 24 polymorphic primers produced 48 distinct alleles. The mean polymorphism information content (PIC) was 0.40, with a gene diversity of 0.49. Based on Jaccard's dissimilarity coefficients, the genotypes clustered into two main groups. These SSR markers hold potential for marker-assisted selection, and the genetically diverse genotypes identified can serve as valuable parents in breeding programs aimed at enhancing salt tolerance and yield in Indian mustard. Overall, the identified genetic diversity and promising salt-tolerant germplasm provide a foundation for developing salt-tolerant cultivars in Indian mustard breeding efforts.

Keywords: Germplasm screening, genetic diversity, Indian mustard, salinity tolerance, SSR markers

Introduction

Brassica oilseeds rank as the world's third most important source of edible oil, following soybean and palm, cultivated across more than 50 countries. In India, rapeseed-mustard is the second most essential oilseed crop after soybean, contributing approximately 25% of the country's total oilseed production (Yadav *et al.*, 2019). Brassica oilseeds account for 23.4% of the total oilseed cultivation area and 24.2% of overall oilseed output (Jat *et al.*, 2019). Haryana is a leading mustard-producing state, with 0.647 million hectares under cultivation, a production of 1.31 million tonnes, and a productivity rate of 20.28 q/ha, the highest in the country (Anonymous, 2020-2021).

Despite the crop's significance, mustard production in India remains insufficient to meet the growing demand, primarily due to various biotic and abiotic stresses, with salt stress being a critical constraint. Globally, around 95 million hectares of land are affected by high salinity (Szabolcs, 1994), and in India, approximately 6.74 million hectares are classified as salt-affected (Kumar and Sharma, 2020). In Haryana alone, about 0.23 million hectares out of the total 4.42 million hectares are impacted by salinity, which substantially affects mustard productivity (Mandal and Sharma, 2010).

Molecular markers, especially microsatellite markers (SSRs), have proven valuable in genetic analysis and the development of salt-tolerant plant varieties (Tanksley, 1989). SSR markers facilitate the selection of suitable parental lines, diversity and pedigree analyses, and are particularly advantageous as they remain unaffected by environmental conditions and the plant's developmental stage (Parida, 2010). Currently, molecular markers are widely used for analyzing genetic diversity within and among populations. SSR markers are especially favored due to their high reproducibility, co-dominance, abundance, genome-wide distribution, easy scoring, and multi-allelic variability (Powell et.al., 1996). Although a substantial number of SSR markers have been developed for B. rapa (Suwabe et al., 2002; Ramchiary et al., 2011) and B. napus (Wang et al., 2012; Li et al., 2013), relatively few are characterized in B. juncea (Hopkins et al., 2007; Vinu et al., 2013; Pratap et al., 2015; Avtar et al., 2016). Understanding genetic diversity is fundamental to any breeding program, as it supports the sustainable development of resilient plant populations.

Therefore, the present study focuses on assessing genetic diversity and identifying salt-tolerant genotypes in Indian mustard (*B. juncea*) using SSR markers, aiming to provide a genetic foundation for breeding programs

CCS HAU, Hisar/India

CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India CCS HAU, Hisar/India RVSKVV, Gwalior, MP/India CSAUA&T, Kanpur/ India

RH(0E) 1808

RH 1424

RH 1906

RH 1921

RH 1923

RH 1926

RH 1936

RH 1974

RH 1975

RH 1999-15

RH 1999-19

RH 1999-21

RH 1999-22

RH 1999-23

RH 1999-24

RH 2046

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

directed at developing resilient, salt-tolerant mustard cultivars.

Materials and Methods Plant materials

This study was conducted in the greenhouse of the Department of Genetics and Plant Breeding at CCS Haryana Agricultural University, Hisar, India (latitude 29°10'N, longitude 75°46'E, elevation 215.2 m). The plant material consisted of 48 Indian mustard genotypes, obtained from the Oilseeds Section, Department of Genetics and Plant Breeding at CCS HAU, Hisar, and the Central Soil Salinity Research Institute, Karnal (Table 1).

Table 1: List of genotypes used in this study

			32.	RH 2049
SNo.	Genotypes	Source	33.	RH 2050
1.	BPR 543-2	DRMR, Bharatpur/ India	34.	RH 2051
2.	CS 52	CSSRI, Karnal/India	35.	RH 2054
3.	CS 58	CSSRI, Karnal/India	36.	RH 2055
4.	RGN 486	ARS, Sri Ganganagar/ India	37.	RH 2065
5.	NPJ 244	IARI, New Delhi/ India	38.	RH 2066
6.	DRMRIJ 18-62	DRMR, Bharatpur/ India	39.	RH 2069
7.	DRMRCI 128	DRMR, Bharatpur/ India	40.	RH 2070
8.	TM 264	BARC, Mumbai/ India	41.	RH 30
9.	RB 110	RRS Bawal, CCS HAU, Hisar/India	42.	RH 0406
10.	NRCHB 101	DRMR, Bharatpur/ India	43.	RH 725
11.	PM 28	IARI, New Delhi/ India	44.	RH 0749
12.	RB 50	RRS Bawal, CCS HAU, Hisar/ India	45.	RH 761
13.	RH(0E) 1701	CCS HAU, Hisar/India	46.	RH 8812
14.	RH(0E) 1801	CCS HAU, Hisar/India	47.	RVM 2
15.	RH(0E) 1806	CCS HAU, Hisar/India	48.	Varuna

SSR Primers

A total of 59 random SSR primers were initially used, from which 24 polymorphic primers were selected for detailed

analysis (Table 2). Primer sequences are available at http://mustard.pw.usda.gov. These primers were sourced from Imperial Life Sciences Pvt. Ltd, India.

Table 2: A brief description of polymorphic SSR primers used in present investigation

Primer	Forward Primer	Reverse Primer
BG1	GCTGGCTGCACAATAACAGA	GTACCACTGGAGGAGCTTCG
BG4	CTGGTTTGGTTCGGTTTGAT	CCTGACAAATAGCAAGAAGTCG
BG9	GGTGACCACCTCCGTCTTCTT	CTGTATGGAGCCCCAAGCTC
BG 15	CATAACCACACGGCCTCCTC	AAGTCATGCCCATTCGCCTA
BG 19	CGTTGTGTGAAATCGCTCAAAT	TCCGAACTAGAAACCGAAAATATCC
BG23	GAGGCAAAAGCGAAGGTGAA	AGCACCCAAACACTCCCAAA
BG 79	CGTTTCCTCAGCCTCCTTCA	TGCCTACATCCACCGGAGTT
BG 102	GGACCGACTTTAGCAAGTCCA	GGGTAGCTTAGAAGATCATCTCTTTGG
BG 105	TCGATCTTTTTGCGGTGGAT	TTGCAATGGGCATTACATCCT
BG 109	AAGCCGGTTCTGCAAGTGTT	CATGGCATCCTACGTGGACA
BG113	ATTGCTTCCGGAACTTGTCG	GCGTCACAGAGGCGGTTATT
BG114	GCAAAATCCATTGGTAATCAGGA	TGGGCAAGTCACACTCACTCA
BG 115	GAGGAGGAGAAGGAGGA	CCATCTTTGAAAAACCCCAAT
BG 124	TAGATCATTTCACACGGTGGAT	TCATAGCGACAAAAGTGACAGG

BG 125	CGAACCGCGAACATAGTGTA	TAAGTGCCAGTCCATTGCAT
BG 126	AGAACGAGTCGCGAGGATT	AGTGGGTGGAAGTTCGGTTA
BG 127	GCGCCATCTAAACCGATATT	TACCGCGCCATTGATACATA
BG 129	CGGAGATAACCGGAATGGAA	GGATGCTCTGAGACACCCAAA
BG 130	TTGTCAGGGCGGATTTAGGA	TGAACCAGGAGACTTCCACAA
BG 142	TCGATGATTAGTTTAGTTATTTCACG	CCTCAAACCAAGGAAGATTTCA
BG 144	TTGAATAACAACAATAACATTGGATAA	GAAAAGTTGTTGGACCCTTTCA
BG 149	TATGTGAACCTTGCCCTGGT	ATTCCGCAATCAAATTCCAG
BG 150	TCCAAAGATTTCAACGGTCA	CATGCATGAGGTTTGGTCGT
BG 153	CCGTACAAAGATACGCACGA	ACAGAACTCGGGGCTACCTC

DNA amplification

Polymerase chain reaction (PCR) was conducted in 20 ìL reaction volumes, containing: 12.35 μ L of nuclease-free water, 2 μ L genomic DNA, 2 μ L of 10X PCR buffer with MgCl₂, 0.40 μ M of each forward and reverse primer (Integrated DNA Technology, India), 0.4 μ L dNTP mix (Thermo Scientific) and 0.25 μ L Taq DNA polymerase (Thermo Scientific).

PCR amplification protocol

PCR reactions were conducted in a T100™ Thermal Cycler (Bio-Rad) using 96-well plates. The PCR conditions were as follows:

- 1. Initial denaturation at 94°C for 2 minutes
- 2. Denaturation at 94°C for 1 minute
- 3. Annealing at 50–60°C (primer-specific) for 1 minute, for a total of 38 cycles
- 4. Extension at 72°C for 2 minutes
- 5. Final extension at 72°C for 7 minutes

Agarosegel electrophoresis

PCR-amplified DNA fragments were separated by electrophoresis in 2.0% (w/v) agarose gels. Agarose was melted in 0.5X TBE buffer, and ethidium bromide (1 $\mu L/$ mL) was added once the gel was warm. The gel solution was poured into a casting plate with a comb to create wells, then allowed to set. After setting, the gel was placed in an electrophoresis chamber and submerged in 0.5X TBE buffer. Samples, mixed with 6X loading dye, were loaded into the wells, and electrophoresis was conducted at a constant voltage of 3 V/cm until the dye front reached the end of the gel. DNA bands were visualized using a UV transilluminator (Gel Imaging and Analysis System, Benchtop).

Allele scoring

SSR bands were scored based on their presence (1) or absence (0). The sizes of the amplified bands were estimated by comparing their migration with a 100 bp

DNA ladder (Thermo Scientific) loaded alongside the samples to determine the approximate band size.

Statistical analysis

Data were analysed using NTSYS software.

Results and Discussion SSR polymorphism

To assess genetic diversity and relationships among 48 Indian mustard genotypes, 59 SSR primers were employed. Out of these, 24 primers were polymorphic, 27 were monomorphic, and 8 failed to amplify. The 24 polymorphic primers generated a total of 58 alleles, of which 48 were polymorphic, exhibiting distinct band sizes. Each primer produced an average of 2.5 alleles, ranging from 1 to 4 alleles per primer. Among the polymorphic markers, 13 primers generated 2 alleles each, 10 generated 3 alleles, while primer BG129 yielded a maximum of 4 alleles. The amplified fragment sizes ranged from 100 bp (BG124) to 900 bp (BG144), with allele size variations spanning from 35 bp (BG1, BG124) to 680 bp (BG153). Figure 1 shows the PCR amplification results of 48 Indian mustard genotypes using SSR primer BG150 on a 2% agarose gel. The primer generated polymorphic bands across the genotypes, indicating genetic variability. The amplified bands are of varying sizes, demonstrating allelic diversity at the SSR loci targeted by BG150. The presence of multiple alleles among the genotypes confirms the effectiveness

Fig. 1: PCR amplification profile with primer BG150 on 2 % agarose gel: L-100 bp DNA ladder, 1-48: genotypes

of BG150 for assessing genetic diversity in Indian mustard.

The polymorphism information content (PIC) values for these markers ranged from 0.09 to 0.66, with an average PIC of 0.40, indicating a moderate discriminatory power of the SSR markers. Primer BG129 exhibited the highest PIC value of 0.66, while BG130 had the lowest at 0.09, marking BG129 as the most informative and BG130 as the least informative primer. The polymorphic range among the primers varied between 33.3% and 100%. Specifically,

primer BG115 exhibited 33.3% polymorphism, five primers (BG1, BG15, BG126, BG127, BG150) showed 50% polymorphism, two primers (BG113, BG149) exhibited 66.6% polymorphism, one primer showed 75%, and 15 primers achieved 100% polymorphism. The mean expected heterozygosity (He) was 0.49, with BG129 having the maximum value of 0.72 and BG130 the minimum at 0.09. Overall, 82.97% polymorphism was observed across the primers used in this study (Table 3).

Table 3: Polymorphic primers depicting number of alleles, per cent polymorphism, band size (bp) range and polymorphism information content (PIC) and heterozygosity/gene diversity (H₂)

Primer		Monomorphic	Polymorphic	%	Band size	PIC	H value
	bands/ alleles			Polymorphism	(bp)		
BG1	2	1	1	50	115-150	0.33	0.42
BG4	2	0	2	100	200-280	0.37	0.50
BG9	2	0	2	100	200-250	0.31	0.38
BG15	2	1	1	50	270-700	0.37	0.49
BG19	2	0	2	100	270-400	0.37	0.49
BG23	2	1	1	100	110-290	0.26	0.30
BG79	3	0	3	100	110-400	0.58	0.66
BG102	2	0	2	100	110-190	0.37	0.50
BG105	3	0	3	100	320-600	0.53	0.59
BG109	3	0	3	100	195-250	0.50	0.59
BG113	3	1	2	66.6	300-500	0.14	0.14
BG114	2	0	2	100	250-300	0.35	0.45
BG115	3	2	1	33.3	115-600	0.59	0.66
BG124	2	0	2	100	100-135	0.37	0.50
BG125	3	0	3	100	140-200	0.49	0.57
BG126	2	1	1	50	110-160	0.37	0.49
BG127	2	1	1	50	215-600	0.37	0.50
BG129	4	1	3	75	180-600	0.66	0.72
BG130	2	0	2	100	200-400	0.09	0.09
BG142	3	0	3	100	160-280	0.50	0.58
BG144	3	0	3	100	380-900	0.59	0.66
BG149	3	1	2	66.6	160-400	0.34	0.41
BG150	2	1	1	50	150-400	0.37	0.49
BG153	3	0	3	100	120-800	0.48	0.57

Genetic distance and cluster analysis

The genetic dissimilarity coefficients ranged from 0.079 to 0.94. The highest dissimilarity (0.94) was recorded between genotypes RGN 486 and RH 1424, while the lowest dissimilarity (0.079) was observed between RH 2054 and RH 2055. Notably, RH 1424 was identified as the most diverse genotype, showing high dissimilarity with several other genotypes, including 0.94 with RGN 486, 0.93 with PM28,0.92 with RB 110, and 0.88 with NRCHB 101. Similarly, RH (OE) 1801 and PM 28 displayed a high level of genetic dissimilarity, with RH (OE) 1801 having coefficients of 0.92

with RGN 486 and 0.91 with PM 28 and RB 110. PM 28 also exhibited a dissimilarity coefficient of 0.92 with RGN 486 and 0.90 with RB 110.

A dendrogram was constructed using the UPGMA method based on Jaccard's dissimilarity matrix, which categorized the 48 genotypes into two primary clusters (Fig. 2). Group A comprised 44 genotypes, further divided into subgroups A1 and A2. Group B included four genotypes, forming two subgroups, B1 and B2 (Fig. 3). Potential cross combinations between genotypes were proposed based on their dissimilarity coefficients (Table 4).

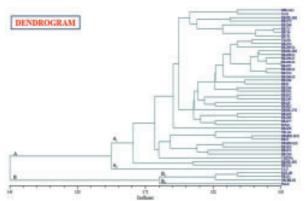


Fig. 2: Genetic relationship among 48 genotypes of Indian mustard revealed by UPGMA based dendrogram constructed using genotyping data of 59 SSRs primers

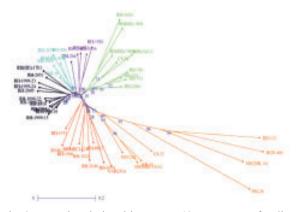


Fig. 3: Genetic relationship among 48 genotypes of Indian mustard revealed by NJ tree constructed using genotyping data of 24 polymorphic SSRs

Table 4: Possible cross combinations between genotypes based on dissimilarity coefficient

Dissimilarity coefficient	Genotypes
0.94	RGN 486 and RH 1424
0.93	PM 28 and RH 1424
0.92	RGN 486 and PM 28
0.92	RGN 486 and RH(0E) 1801
0.92	RB 110 and RH 1424
0.91	PM 28 and RH(0E) 1801
0.90	RB 110 and PM 28
0.90	RB 110 and RH(0E) 1801

While morphological and agronomic traits have traditionally been used to assess genetic diversity, they cover only a limited part of the genome, are influenced by environmental factors, and vary across developmental stages. In contrast, molecular markers provide a reliable means for evaluating genetic diversity, as they are not affected by environmental conditions and are

independent of the plant's developmental stage (Gomez et al., 2004; Marvaldi et al., 2002). Studies indicate that molecular marker data can more accurately classify genotypes in terms of genetic diversity and phylogenetic relationships than phenotypic variables alone (Franco et al., 2001). Among molecular markers, SSRs are frequently used in genetic diversity studies due to their high reproducibility and co-dominance (Ali et al., 2008).

In this study, we analyzed molecular diversity among 48 genotypes of Indian mustard using SSR markers. Indian mustard, a natural amphiploid, exhibits limited intraspecific diversity, reflecting its narrow genetic base (Thakur *et al.*, 2018). The development of PCR-based molecular marker techniques, such as SSRs, has enabled detailed molecular diversity studies in Indian mustard, facilitating the identification of genotypes with favorable agronomic traits. The 24 polymorphic SSR primers used in this study generated a total of 48 alleles, with an average of 2.5 alleles per primer, aligning with findings by Sudan *et al.* (2016), Nanjundan *et al.* (2015) and Avtar *et al.* (2016), who reported similar allele counts.

The polymorphism information content (PIC) and gene diversity (H) values are effective indicators of genetic variation within crop germplasm. Our study yielded an average PIC value of 0.40, with a range from 0.09 to 0.66, which is consistent with previous studies by Singh et al. (2017), Avtar et al. (2016) and Prajapat et al. (2014). Minor variations in PIC values are likely due to differences in genotypes and sample sizes. According to Botstein et al. (1980), SSR markers with PIC values between 0.25 and 0.50 are moderately informative, while those above 0.50 are highly informative. In our study, five SSR markers had PIC values exceeding 0.50, indicating their effectiveness in distinguishing between genotypes and detecting polymorphism at specific loci. The average gene diversity (H) was 0.49, slightly higher than the mean PIC value, as expected, since gene diversity tends to be greater than PIC.

The overall polymorphic percentage of 82.97% demonstrated considerable genetic variation among the markers, though slightly lower than the 100% polymorphism reported by Nanjundan *et al.* (2015) for a different set of Indian mustard genotypes. This difference may be attributed to the distinct genotypes and markers used in each study. The Jaccard's dissimilarity coefficients among the 48 genotypes ranged from 0.079 to 0.94, indicating higher genetic diversity than previously reported by Abbas *et al.* (2009), who found a range of 0.05 to 0.61. Our findings support the efficacy of SSR markers in estimating genetic distances within Indian

mustard genotypes.

The dendrogram constructed from Jaccard's dissimilarity matrix grouped the 48 genotypes into two main clusters. Group A included 44 genotypes, further divided into two subgroups (A1 and A2), while Group B contained four genotypes, also split into two subgroups (B1 and B2). These results demonstrate that SSR marker data effectively differentiate genotypes based on genetic diversity. The clustering pattern observed in the dendrogram was consistent with the structure analysis, affirming the accuracy of the grouping and supporting the utility of SSR markers in Indian mustard genetic diversity studies.

Conclusion

This study utilized 59 SSR primers to assess genetic diversity among 48 Indian mustard genotypes for salinity tolerance, with 24 primers identified as polymorphic, yielding a total of 48 alleles across genotypes with an average of 2.5 alleles per primer. The PIC value of 0.40 and mean gene diversity (H₂) of 0.49 indicate a moderate level of genetic variation among the genotypes, valuable for breeding programs targeting salinity tolerance. Cluster analysis based on Jaccard's dissimilarity coefficients grouped the genotypes into two major clusters: Cluster A, comprising 44 genotypes including the checks CS 58 and CS 52, and Cluster B, which included four genotypes. The high similarity coefficient (0.95) between genotypes RH 2055 and RH 1999-19 suggests a close genetic relationship. Overall, these findings provide a solid foundation for the use of SSR markers in selecting diverse and salt-tolerant Indian mustard genotypes, facilitating the development of resilient cultivars through targeted breeding efforts.

References

- Abbas SJ, Farhatullah Marwat KB, Khan IA and Munir I. 2009. Molecular analysis of genetic diversity in *Brassica* species. *Pak J Botany*, **41**: 167-176.
- Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, and Dweikat I. 2008. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. *Molecular Breeding*, **21**: 497-509.
- Anonymous (2020-21). Ministry of agriculture & farmers welfare, Govt. of India, (2930)
- Avtar R, Rani B, Jattan M, Manmohan, Kumari N and Rani A. 2016. Genetic diversity analysis among elite gene pool of Indian mustard using SSR markers and phenotypic variations. *The Bioscan*, **11**: 3035-3044
- Botstein D, White RL, Skolnick M and Davis RW. 1980. Construction of a genetic linkage map in man using

- restriction fragment length polymorphisms. *The American J Human Genet*, **32**: 314-331.
- Franco J, Crossa J, Ribaut JM, Bertran J, Warburton ML, and Khairallah M. 2001. A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. *Theoret Appl Genet*, **103**: 944-952.
- Gomez OJ, Blair MW, Frankow Lindberg BE and Gullberg U. 2004. Molecular and phenotypic diversity of common bean landraces from Nicaragua. *Crop Science*, 44: 1412-1418.
- Hopkins CJ, Cogan NO, Hand M, Jewell E, Kaur J, Li X I and Batley J. 2007. Sixteen new simple sequence repeat markers from *Brassica juncea* expressed sequences and their cross species amplification. *Molecular Ecology Notes*, 7: 697-700.
- Jat RS, Singh VV, Sharma P, and Rai PK. 2019. Oilseed brassica in India: Demand, supply, policy perspective and future potential. *OCL Oilseeds and Fats, Crops and Lipids*, **26**: 8.
- Kumar, P and Sharma, PK 2020. Soil Salinity and Food Security in India. *Frontiers in Sustainable Food Systems*, **4**: 618230.
- Li H, Younas M, Wang X, Li X, Chen L, Zhao B, Chen X, Xu J, Hou F, Hong B, Liu G, Zhao H, Wu X, Du H, Wu J and Liu K. 2013. Development of a core set of single-locus SSR markers for allotetraploid rapeseed (*Brassica napus* L.). *Theoret Appl Genetics*, **126**: 937-947
- Mandal, A.K., Sharma, RC, Singh, G and Dagar, JC 2010. Computerised database on salt affected soil in India. *Technical Bulletin No. CSSRI/Karnal/2/2010*: 28, 28.
- Marvaldi, AE, Sequeira, AS, O'Brien, CW, and Farrell, BD 2002. Molecular and morphological phylogenetics of weevils (Coleoptera, Curculio-noidea): do niche shifts accompany diversification? *Systematic biology*, **51**: 761-785.
- Nanjundan, J, Thakur, AK, Singh, KH, Verma, V. 2015. Assessment of genetic diversity in Indian mustard [*Brassica juncea* (L.) Czern & Coss.]for high-temperature tolerance using SSR markers. *Vegetos*, 28: 122-130.
- Parida, SK, Yadava, DK and Mohapatra, T. 2010. Microsatellites in Brassica unigenes: relative abundance, marker design, and use in comparative physical mapping and genome analysis. *Genome*, **53**: 55-67.
- Powell, W, Morgante, M and Andre, C. 1996. The comparison of RFLP, RAPD, AFLP and SSR

- (microsatellite) markers for germplasm analysis. *Molecular Breeding*, **2**: 225-238.
- Prajapat P, Sasidharan N, Kumar M and Prajapati V. 2014. Molecular characterization and genetic diversity analysis in four *Brassica* species using microsatellite markers. *The Bioscan*, **9**: 1521-1527.
- Pratap P, Thakur AK, Meena PD, Meena HS, Sharma P, Singh D and Majumdar R. 2015. Genetic diversity assessment in Indian mustard (*Brassica juncea* L.) for Alternaria blight tolerance using SSR markers. *J Oilseed Brassica*, 6: 175-182.
- Ramchiary N, Nguyen VD, Li X, Hong CP, Dhandapani V, Choi SR, Yu G, Piao ZY and Lim YP .2011. Genic microsatellite markers in *Brassica rapa*: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. *DNA Research*, **18**: 305-320.
- Singh S, Singh VV, Ambawat S, Dubey M and Singh D. 2017. Screening and estimation of allelic differentiation in Indian mustard using SSR markers for background selection. *International Journal of Current Microbiology and Applied Science*, **6**: 2506-2516.
- Sudan J, Khajuria P, Gupta SK and Singh R. 2016. Analysis of molecular diversity in Indian and exotic genotypes of *Brassica juncea* using SSR markers. *Ind J Genet Plant Breed*, **76**: 361-364.
- Suwabe K, Iketani H, Nunome T, Kage T and Hirai M. 2002. Isolation and characterization of microsatellites in *Brassica rapa* L. *Theoret Appl Genet*, **104**: 1092-1098.

- Szabolcs I.1994. Soils and salinisation. *Handbook of plant and crop stress*, 3-11.
- Tanksley SD, Young ND, Paterson AH and Bonierbale, MW. 1989. RFLP mapping in plant breeding: new tools for an old science. *Biotechnology*, 7: 257-264.
- Thakur AK, Singh KH, Singh L, Nanjundan J, Khan YJ and Singh D. 2018. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. *Hereditas*, **155**: 1-11.
- Vinu V, Singh N, Vasudev S, Yadava DK, Kumar S, Naresh S, Bhat SR and Prabhu KV. 2013. Assessment of genetic diversity in *Brassica juncea* (Brassicaceae) genotypes using phenotypic differences and SSR markers. *Revista de Biología Tropical*, **61**: 1919-1934.
- Wang F, Wang XF, Chen X, Xiao Y, Li H, Zhang S, Xu J, Fu J, Huang L, Liu C, Wu J and Liu K. 2012. Abundance, marker development and genetic mapping of microsatellites from unigenes in *Brassica napus*. *Molec Breed*, **30**: 731-744.
- Yadav MS, Godika S, Yadava DK, Ahmad N, Mehta N, Bhatnagar K, Chattopadhyay C. 2019. Prioritizing components of package of integrated pest management in Indian mustard (*Brassica juncea*) in India for better economic benefit. *Crop Protection*, 120: 21-29.