

# Impact of cluster front line demonstration on mustard productivity in Lalitpur district of Uttar Pradesh

NK Yadav<sup>1</sup>, Nitin Kumar Pandey<sup>2\*</sup>, Dinesh Tiwari<sup>3</sup>, Shalini<sup>4</sup> and SPS Somwanshi<sup>5</sup>

1. 2.4. <sup>5</sup>Subject Matter Specialist, KVK, Hamirpur

3Subject Matter Specialist, KVK, Lalitpur

Banda University of Agriculture and Technology, Banda-210001, Uttar Pradesh

\*Corresponding author: nitin\_agril@rediffmail.com

https://doi.org/10.56093/job.v16i2.9

#### **Abstract**

Mustard [Brassica juncea (L.) Czern & Coss] is one of the most important oilseed crop of Bundelkhand region of Uttar Pradesh, India. KrishiVigyan Kendra, Lalitpurconducted 135 Cluster Front Line Demonstrations (CFLDs) on mustard during Rabi season of 2019-20 to 2020-21. The front line demonstration (FLD) is one of the most powerful tools for transfer of technology. The critical inputs were identified in existing production technology through meetings and discussion with farmers. Prevailing farmers practices were treated as control for comparison with recommended practices. An average yield of mustard were 14.7 q/ha and 15.3 q/ha during 2019-20 and 2020-21, respectively under demonstrated technology however under farmers practices the average yield were 12.0 q/ha and 11.2 q/ha during respective years and the average yield of two year was reported 15.0 q/ha over farmers practices (11.6 q/ha). On the basis of average of two years, net returns from CFLD practices were Rs 38816/ha as compared to Rs 25533/ha in farmers practices. An average BCR were 2.95 in recommended practices as compared to 2.4 in farmer's practices.

Keywords: Bundelkhand, cluster front line demonstration, mustard, productivity, technology

# Introduction

Mustard [Brassica juncea (L.) Czern & Coss] is one of the first domesticated crop in Rabi season. It is widely cultivated in tropical and sub-tropical areas of the world. Globally, it is mainly cultivated in India, Canada, China, Pakistan, Poland, Bangladesh, Sweden and France. Mustard is group of crops comprising rapeseed (toria, brown sarson and yellow sarson). The mustard seed gives edible oil which is used as cooking medium in north India. Oil content in mustard varies from 30 to 49 per cent. India is the fifth largest rapeseed-mustard producer in the world after China and Canada with 16 per cent of world's total production. The major mustard growing states in India are Rajasthan, Uttar Pradesh, Haryana, Madhya Pradesh, Gujarat and West Bengal. Indian mustard is an important oilseed crop of Indian subcontinent contributes more than 80 per cent of the total rapeseed-mustard production in India (Meena et al., 2014; Meena et al., 2015). In Lalitpur district, mustard was sown in 5321 ha with total production 4188 mt and productivity 7.87 tonnes during 2018-19 (Agriculture Department, Lalitpur). The productivity of mustard is very low in the district due to use of old varieties and traditional cultivation practices. KrishiVigyan Kendra Lalitpur had done intensive efforts on training about scientific cultivation of mustard and demonstration of new varieties. The present study was conducted to increasing the productivity of mustard in Lalitpur district through cluster frontline demonstrations (CFLDs).

# **Materials and Methods**

The study was carried out in the Lalitpur district of Bundelkhand region and lies at 24°41' N latitude and 78° 24' E longitude. Cluster Frontline demonstrations (CFLDs) were conducted during Rabi season of 2019-20 and 2020-21. In this study, KVK conducted 135 frontline demonstrations on mustard on farmers field in different blocks namely Bar, Jakhora and Birdhaof the district. During two years of study, in area of 65 ha was covered under Cluster front line demonstration. The list of farmers was prepared through awarenessprogramme and group meeting. The critical inputs were provided to selected farmers along with technological interventions were taken as per prescribedpackages and practices for mustard crops (Table 1). The sowing was done in the first fortnight of November. The spacing was 45 cm x 15 cm apart and the seed rate of mustard was used 5 kg/ha. The fertilizers were given as per recommended dose per hectare. Thinning and first weeding was done at 15-20 DAS and second weeding was done at 45-50 DAS. Monitoring of FLD sites were done by scientists at every stage of crop and needful suggestion was given to farmers. The crop was harvested at perfect maturity stage. The grain yield, per cent yield increase, gap analysis, input cost, net return and BCR parameters were recorded (Table 2 and 3). Further technology index, technology gap, extension gap and B:C ratio were calculated using the following formula as given by Samui et al., (2000).

| Particulars                           | Farmers practices                    | Technological Interventions                                                                                                                 |  |  |
|---------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Farming situation                     | Irrigated                            | Irrigated                                                                                                                                   |  |  |
| Improved variety                      | Local/old Variety                    | RH 749                                                                                                                                      |  |  |
| Seed rate                             | 6 kg/ha                              | 5 kg/ha                                                                                                                                     |  |  |
| Time of sowing                        | First fortnight of November          | Second fortnight of October                                                                                                                 |  |  |
| Method of sowing                      | Broadcasting                         | Line sowing (45cm x15 cm)                                                                                                                   |  |  |
| Seed treatment                        | No seed treatment                    | Thiram @2 g/kg seed                                                                                                                         |  |  |
| Basal application of fertilizers      | DAP 50 kg/acre and no use of sulphur | NPK (60-90:40:40) and 25 kg sulphur/ha                                                                                                      |  |  |
| Thinning                              | No thinning                          | 15-20 DAS                                                                                                                                   |  |  |
| Weed management                       | No weeding                           | Two hand weeding                                                                                                                            |  |  |
| Control of insects pests and diseases | No control measures                  | Removal of disease infected plants, spraying of 0.2% Zineb for disease, spraying of Imidacloprid 17.8 SL @ 0.5 ml/l water for aphid control |  |  |

Table 2: Grain yield and gap analysis of front line demonstration on mustard

| Year       | Variety | Area | Farmers | Yield     |        |      | %    | TechnologyExtensionTechnology |        |       |  |
|------------|---------|------|---------|-----------|--------|------|------|-------------------------------|--------|-------|--|
|            |         | (ha) | (no.)   |           | (q/ha) |      | over | gap                           | gap    | Index |  |
|            |         |      |         | Potential | RP     | FP   | FP   | (q/ha)                        | (q/ha) | (%)   |  |
| 2019-20    | RH-749  | 10   | 25      | 24.0      | 14.7   | 12.0 | 32.2 | 9.3                           | 14.0   | 38.7  |  |
| 2020-21    | RH-749  | 55   | 110     | 24.0      | 15.3   | 11.2 | 26.8 | 8.7                           | 12.8   | 36.2  |  |
| Total/Mean |         | 65   | 135     | 24.0      | 15.0   | 11.6 | 29.5 | 9.0                           | 13.4   | 37.5  |  |

RP: Recommended Practices; FP: Farmers Practices

Technolgy index = 
$$\frac{Potential\ yield - Demonstration\ Yield}{Potential\ yield} \times 100$$

Technology gap = Potential yield - Demonstration yield

Extension gap = Demonstration yield - Yield under farmers practices

$$B: C = \frac{Gross \ return \ (Rs/ha)}{Cost \ of \ cultivation \ (Rs/ha)}$$

% increased over famers practices = 
$$\frac{\text{Improved practices} - \text{Farmers practices}}{\text{Farmers practices}} \times 100$$

# Results and Discussion Yield analysis

It is apparent from the data in Table 2 that selected variety of RH-749 has significant and beneficial effect on grain yield of mustard crop. The result of cluster front line demonstration at farmers field clearly reveal that average yield of mustard were 14.7 q/ha and 15.3 q/ha during 2019-20 and 2020-21, respectively under demonstrated technology however under farmers practices the average yield were 12.0 q/ha and 11.2 q/ha during respective years and the average yield of two years was reported 15.0 q/ha over farmers practice (11.6 q/ha). However, the per cent

increases yield over farmers practices were 32.2 per cent and 26.8 per cent during 2019-20 and 2020-2021, respectively and average of per cent increases yield over farmers practices of two years was reported 29.5 per cent. The similar results were also observed by Singh (2013), G Lal (2015), Chaudhary *et al.*, (2018) and Meena *et al.*, (2019).

#### Gap analysis

Technology yield gap is the difference between the demonstration yield and potential yield. The gap of demonstrated plot were 9.3 q/ha and 8.7 q/ha during 2019-20 and 2020-21, respectively. The average technology gap of two years was reported 9.0 q/ha. This gap may be due to crop management practices, soil fertility status and climatic condition of area. Extension gap means the difference between yield under demonstration plot and farmer practice plot. On the basis of two years average, extension gap under demonstration plot was 13.4 q/ha. This emphasized the need to educate farmers for adoption of latest technology of mustard cultivation. The technology index shows the feasibility of the demonstrated technology at the farmer's field. The technology index were 38.75 and 36.25 per cent during 2019-20 and 2020-21, respectively. On an average technology index was observed 37.5 per cent in the district which shows the efficacy of good performance of technical

| Year                          | Yield (q/ha)         |                      | Economics of demonstration plot (Rs/ha) |                         |                         | Economics of farmers plot (Rs/ha) |                         |                         |                         |                   |
|-------------------------------|----------------------|----------------------|-----------------------------------------|-------------------------|-------------------------|-----------------------------------|-------------------------|-------------------------|-------------------------|-------------------|
|                               | Demo                 | Check                | Gross<br>cost                           | Gross<br>return         | Net<br>return           | BCR<br>(R/C)                      | Gross<br>cost           | Gross<br>return         | Net<br>return           | BCR<br>(R/C)      |
| 2019-20<br>2020-21<br>Average | 14.7<br>15.3<br>15.0 | 12.0<br>11.2<br>11.6 | 19750<br>19450<br>19600                 | 55632<br>61200<br>58416 | 35882<br>41750<br>38816 | 2.8<br>3.1<br>2.95                | 18000<br>17800<br>17900 | 42066<br>44800<br>43433 | 24066<br>27000<br>25533 | 2.3<br>2.5<br>2.4 |

Table 3: Economics analysis of front line demonstration on mustard

interventions. This will accelerate the adoption of demonstrated technical interventions to increase the yield performance of mustard at farmers field. Similar finding were recorded by Tiwari *et al.*, (2017) Chaudhary *et al.*, (2018) and Shivran *et al.*, (2020).

## **Economic analysis**

Economic analysis of cluster front line demonstration on mustard revealed that total net return from recommend practice were Rs 35882/ha and Rs 41750/ha during 2019-20 and 2020-21, respectively. The net returns in farmers practices were Rs24066/ha and Rs27000/ha during 2019-20 and 2020-21, respectively. On the basis of average of two years, net returns from CFLD practices were Rs 38816/ha as compared to Rs 25533/ha in farmers practices. An average BCR were 2.95 in recommended practices as compared to 2.4 in farmer's practices. Similar economic benefits owing to adoption of improved technology interventions were also reported by Balai *et al.*, (2012), Choudhary and Suri (2014), Meena and Dudi (2018); Meena and Singh (2019) and Shivran *et al.*,(2020).

# **Conclusion**

The present study revealed that RH-749, variety of mustard gave higher yield and net returns in recommended practices than farmer's practices. From the above findings it can be concluded from the study that wide gap between the demonstration plot and farmer plot yield were observed due to technology and extension gaps and lack of awareness of improved technologies of mustard cultivation. It requires collaborative extension efforts to enhance adoption level of crop specific technologies among the farmers for bridging technology and extension gaps.

# Acknowledgement

The financial support to meet the expenses towards frontline demonstrations by Department of Agricultural & Farmers Welfare, Government of India under National Food Security Mission scheme through its nodal agency ICAR-Agricultural Technology Application Research Institute, Kanpur, Uttar Pradesh is gratefully acknowledged.

#### References

- Balai CM, Meena RP, Meena BL, Bairwa RK. 2012. Impact of front-line demonstration on rapeseed-mustard yield improvement. *Ind Res J Ext Edu*, **12**: 113–116.
- Chaudhary RP, Chaudhary CK, Prasad R, Rekha Singh and Chaturvedi AK. 2018. Impact assessment of front line demonstration on mustard crop. *Int J Curr Mircobiol Applied Sci*, 7: 4737-4742.
- Choudhary AK and Suri VK.2014. Front line demonstration program: an effective technology transfer tool for adoption of oilseed production technology in Himachal Pradesh, India. *Comm Soil Sci Plant Ana*, **45**:1480-1498.
- DayanandVerma, RK and Mehta SM. 2012.Boosting mustard production through front-line demonstrations. *Ind Res J Ext Edu*, **121**: 121–123.
- Lal G, Sharma YK, Meena RS, Meena NK andMaheria SP.2015.Performance of front line demonstrations of fenugreek on yield and farmers returns in Kukanwali area of Rajasthan. *Int J Seed Spices*, **5**:38-42.
- MeenaKC, Sharma Nupurand Meena BL. 2019. Augmenting the productivity of mustard through CFLD's in Sawaimadhopur, Rajasthan. *J Pharmacognosy and Phytochemistry*, **8**: 3313-3316.
- Meena HS, Kumar A, Ram B, Singh VV, Singh BK, Meena PD and Singh D.2015. Combining ability and heterosis for seed yield and its components in Indian mustard (*B. junceaL.*). *J Agric Sci Technol*, **17**: 1861-1871.
- Meena HS, Ram B, Kumar A, Singh BK, Meena PD, Singh VV and Singh D. 2014. Heterobeltiosis and standard heterosis for seed yield and important traits in *B. juncea. J Oilseed Brassica*, **5**: 134-140.
- Meena ML and Dudi A.2018.Boosting the mustard production technology through frontline demonstration in Pali district of Rajasthan. *J Oilseed Brassica*, **9**: 176–181.
- Meena ML and Singh, D. 2019. Dissemination of salt tolerant mustard varieties through frontline demonstrations approach for sustainable mustard production in Pali district of Rajasthan. *J Oilseed Brassica*, **10**: 122–129.

- Samui SK, Maitra S, Ray DK,Mondal AK and Saha D.2000. Evaluation on frontline demonstration on groundnut (*Arachis hypogeal* L.), *J Ind Soc Coastal Agric Res* **18**:180-183.
- Shivran RK, Ummed Singh, Naval Kishor, Bhagwat Singh Kherawat, Richa Pant and Keshav Mehra. 2020. Gap analysis and economic viability of frontline demonstration in Indian mustard (*Brassica Juncea* L.) under Hyper arid partial irrigated zone of Rajasthan. *Int J Bio-resource and Stress Manage* 11: 353-360.
- Singh Ishwar. 2013. Impact of frontline demonstration on yield and economics of gram in Burhanpur district of MP. *Ind J Ext Edu Rural Dev* **21**:68-71.
- Tiwari DK, Vikas Chandra, Pandey SK, Ratna Sahay, Archana Singh and Singh AK. 2017. Effect of front line demonstration on production, profitability and social impact on Mustard. *Bull Environ, Pharmocology Life Sci* 6: 134-137.