Standardization of GR50 dose of gamma rays in safflower (Carthamus tinctorius L.) to develop beneficial mutants

STANDARDIZATION OF GR50 DOSE OF GAMMA RAYS IN SAFFLOWER TO DEVELOP MUTANTS


116 / 4

Authors

  • RAJEEV SHRIVASTAVA College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, Chhattisgarh
  • NIRMALA B PATEL College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, Chhattisgarh
  • SHAMPA PURKAYASTHA College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, Chhattisgarh
  • YENGKHOM LINTHOINGAMBI DEVI College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, Chhattisgarh
  • BHASKAR SAHOO College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur-492 012, Chhattisgarh

https://doi.org/10.56739/jor.v38i3.137148

Keywords:

Gamma rays, GR50 dose, Mutation breeding, Mutation frequency, Safflower

Abstract

Practicing an optimal dose for mutation induction is the first key step in any mutation breeding programme. The study optimized the GR50 dose of gamma rays in four different genotypes of safflower. During early seedling stage an in vitro experiment detected very high GR50 value of 579.2 Gy based on reduction of root length. Field experiments revealed significant difference in GR50 values among four safflower genotypes in two phenophases. Based on the seedling height data at 42 days after sowing, the GR50 values varied in between 248.7 to 374.3 Gy. While, GR50 values of 301.2 to 447.6 Gy were noticed at 72 days after sowing. Based on this finding a consensus optimal dose of 300 Gy was used for large scale mutation breeding programme that fetched beneficial mutants in safflower crop with an overall mutation frequency of 7.3 x 10-4.
.

Downloads

Download data is not yet available.

References

Ahloowalia B S, Maluszynski M and Nichterlein K 2004. Global impact of mutation-derived varieties. Euphytica, 135:187-204. DOI: https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

Álvarez-Holguín A, Morales-Nieto C R, Avendaño-Arrazate C H, Corrales-Lerma R, Villarreal-Guerrero F, Santellano-Estrada E and Gómez-Simuta Y 2019. Mean lethal dose (LD50) andgrowth reduction (GR50) due to gamma radiation in Wilmanlovegrass (Eragrostis superba). Revista Mexicana de Ciencias Pecuarias, 10(1): 227-238. DOI: https://doi.org/10.22319/rmcp.v10i1.4327

FAO/IAEA 2018. Manual on Mutation Breeding, Third Edition, Spencer-Lopes M M, Forster B P and Jankuloski L (Eds.), Food and Agriculture Organization of the United Nations. Rome, Italy, 301 pp.

Ghorpade D S, Tambe S I, Shinde P B and Zope R E 1993. Variability pattern in agromorphological characters in safflower (Carthamus tinctorius L.). Indian Journal of Genetics and Plant Breeding, 53(3): 264-268.

Kodym A, Afza R, Forster B P, Ukai Y, Nakagawa H and Mba C 2011. Methodology for physical and chemical mutagenic treatments. In: Shu Q Y, Forster B P and Nakagawa H (Eds.), Plant Mutation Breeding and Biotechnology, IAEA, Vienna, Austria, pp .169-180. DOI: https://doi.org/10.1079/9781780640853.0169

Kotcha A, Wongyai W, Wongpiyasatid A and Pongtongkam P 2007. Gamma radiation induced genetic variability in M2 population of safflower. In: Proceedings of the 45th Kasetsart University Annual Conference, Bangkok, Thailand.

Kumar G and Srivastava P 2010. Comparative radio-cytological effect of gamma rays and laser rays on safflower. Romanian Journal of Biology - Plant Biology, 55(2): 105-111.

Kurhade G M, Charjan S U and Prasad B H V 2015. Genetic studies of half sib families in random mating population of safflower. PKV Research Journal, 39(1&2): 12-20.

Mallikarjunradhaya K 1978. Induced mutagenesis in safflower, Carthamus tinctorius L. by using gamma rays, ethyl methanesulphonate, alone and in combination. Mysore Journal of Agricultural Sciences, 12(1): 178-179.

Mba C, Afza R, Bado S and Jain S M 2010. Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture and Essential Methods, 20: 111-130. DOI: https://doi.org/10.1002/9780470686522.ch7

Mondal S, Petwal V C, Badigannavar A M, Bhad P G, Verma V P, Goswami S G and Dwivedi J 2017. Electron beam irradiation revealed genetic differencesin radio-sensitivity and generated mutants in groundnut (Arachis hypogaea L.). Applied Radiation and Isotope, 122: 78-83. DOI: https://doi.org/10.1016/j.apradiso.2017.01.016

Ramchandram M and Goud J V 1983. Mutagenesis in safflower (Carthamus tinctorius L.): Differential radiosensitivity. Mysore Journal of Agricultural Sciences, 37(3-4):309- 318.

Rampure N H, Majumdar P N and Badere R S 2014. Genetic variability for morphological and biochemical characters in safflower (Carthamus tinctorius L.). Indian Journal of Genetics and Plant Breeding, 74: 353-361. DOI: https://doi.org/10.5958/0975-6906.2014.00853.0

Rampure N H, Chodhary A D, Jambhulkar S J and Badere R S 2017. Isolation of desirable mutants in safflower for crop improvement. Indian Journal of Genetics and Plant Breeding, 77(1): 134-144. DOI: https://doi.org/10.5958/0975-6906.2017.00018.9

Ranga Rao V, Ramchan M and Arunachalam V 1977. An analysis of association of components of yield and oil in safflower. Theoretical and Applied Genetics, 50(4): 185-191. DOI: https://doi.org/10.1007/BF00277740

Roopa V K and Ravikumar R L 2008. Character association studies on cultivars of safflower (Carthamus tinctorius L.). Karnataka Journal of Agricultural Sciences, 21(3): 436-437.

Roy U, Basak D and Nath S 2019. Mutagenic sensitivity analysis of gamma irradiations in cowpea (Vigna unguiculata L. Walp). Emergent Life Science Research, 5(2): 12-16. DOI: https://doi.org/10.31783/elsr.2019.521216

Sao R, Sahu P K, Sharma D, Vishwakarma G, Nair J P, Petwal V C and Das B K 2020. Comparative study of radio-sensitivity and relative biological effectiveness of gamma rays, X-rays, electron beam and proton beam in short grain aromatic rice.

Indian Journal of Genetics and Plant Breeding, 80(4): 384-394.

Shu Q X, Li W H, Xia Y W, Wu D X and Rui J Y 1996. Study on the M1 generation of the biological effects of electron beam implanted seeds of rice. Journal of Nuclear Agricultural Science, 17: 162-164.

Singh V and Nimbkar N 2006. Safflower (Carthamus tinctorius L.). Chapter 6. In: Singh R J (Ed.), Genetic Resources, Chromosome Engineering, and Crop Improvement. Volume 4, CRC Press, Boca Raton. Pp. 167-194. DOI: https://doi.org/10.1201/9781420005363.ch6

Srivastava P and Kumar G 2011. EMS-induced cytomictic variability in safflower (Carthamustinctorius L.). Cytology & Genetics, 45: 240. DOI: https://doi.org/10.3103/S0095452711040104

Velasco L, Perez-Vich B, Munoz-Ruz J and Fernandez Martinez J 2000. Inheritance of plant height in the dwarf mutant 'Enana' of safflower. Plant Breeding, 119: 525-527. DOI: https://doi.org/10.1046/j.1439-0523.2000.00534.x

Verma R C and Shrivastava P 2014. Radiation-induced reciprocal translocations in safflower. Cytologia, 79(4): 541-545. DOI: https://doi.org/10.1508/cytologia.79.541

Viana V E, Pegararo C, Busanello C and Oliveira A C 2019. Mutagenesis in rice: The basisfor breeding a new super plant. Frontiers in Plant Science, 10: 326. DOI: https://doi.org/10.3389/fpls.2019.01326

Downloads

Submitted

2023-06-01

Published

2021-10-13

How to Cite

RAJEEV SHRIVASTAVA, NIRMALA B PATEL, SHAMPA PURKAYASTHA, YENGKHOM LINTHOINGAMBI DEVI, & BHASKAR SAHOO. (2021). Standardization of GR50 dose of gamma rays in safflower (Carthamus tinctorius L.) to develop beneficial mutants: STANDARDIZATION OF GR50 DOSE OF GAMMA RAYS IN SAFFLOWER TO DEVELOP MUTANTS. Journal of Oilseeds Research, 38(3). https://doi.org/10.56739/jor.v38i3.137148