Unlocking the genetic variations in sesame (Sesamum indicum L.) germplasm for waterlogging tolerance

UNLOCKING THE GENETIC VARIATIONS IN SESAME GERMPLASM FOR WATERLOGGING TOLERANCE


96 / 1

Authors

  • NEMI CHAND JATAV College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi-284 003, Uttar Pradesh
  • RAKESH CHOUDHARY College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi-284 003, Uttar Pradesh
  • ARTIKA SINGH KUSHWAHA College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi-284 003, Uttar Pradesh
  • S K CHATURVEDI College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi-284 003, Uttar Pradesh

https://doi.org/10.56739/jor.v38i3.137170

Keywords:

Genetic variations, Sesame, Tolerance, Waterlogging

Abstract

Undulating topographyand higher precipitation intensityleading towaterlogging during rainyseason adversely affects productivity of the kharif crops including sesame (Sesamum indicum L.) in Bundelkhand region. Limited information is available on existence of genetic variations for waterlogging tolerance in oilseed crops including sesame. In the present study, 609 germplasm accessions ofsesame were phenotyped under field conditions during kharif 2019 to identify accessions having waterlogging tolerance. Out of these 609 sesame accessions seven accessions viz., EC334449, EC334965, EC 334970, EC 334981, EC346727, IC204414 and IC96095 exhibited tolerance against waterlogging at three different growth stages (seedling stage, flower and capsule initiation stage) when natural waterlogging was allowed for 48 hours during experimentation. Identification of donors and development of waterlogging tolerant varieties is the most feasible and economically viable approach to bring desired stability in sesame production at the fields of resource poor farmers.

Downloads

Download data is not yet available.

References

Amri M, Ouni M H and Salem M B 2014. Waterlogging affect the development, yield and components, chlorophyll content, and chlorophyll fluorescence of six bread wheat genotypes (Triticum aestivum L.). Bulgarian Journal of Agricultural

Science, 20(3); 647-657.

Athul V 2016. Evaluation of sesame genotypes for tolerance to waterlogging. Thesis, KAU. http://krishikosh.egranth.ac.in/ handle/1/5810138037.

Bedigian D 2004. History and lore of sesame in southwest Asia. Economic Botany, 58(3): 329-353. DOI: https://doi.org/10.1663/0013-0001(2004)058[0330:HALOSI]2.0.CO;2

Bedigian D 2011. Cultivated sesame and wild relatives in the genus Sesamum L. In: Bedigian D, (Ed.). Medicinal and Aromatic Plants-Industrial Profiles Series. Sesame: the genus Sesamum. Boca Raton, FL: CRC Press, Taylor and Francis Group. DOI: https://doi.org/10.1201/b13601

Bedigian D 2003. Sesame in Africa: origin and dispersals. In: Neumann K, Butler A, Kahlheber S (Eds.), Food, fuel and fields - Progress in African Archaeobotany, Africa, pp. 17-36.

Bhat K V, Babrekar P P and Lakhanpaul S 1999. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica, 110: 21-33.

Boyer J S 1982. Plant productivity and environment. Science, 218: 443-448. DOI: 10.1126/science.218.4571.443. DOI: https://doi.org/10.1126/science.218.4571.443

Conaty W C, Tan D K Y, Constable G A, Sutton B G, Field D J and Mamum E A 2008. Genetic variation for waterlogging tolerance in cotton. The Journal of Cotton Science, 12: 53-61.

de Simone O, Haase K, Müller E, Junk W J, Gonsior G and Schmidt W 2002. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon flood plain tree species. Functional Plant Biology, 29: 1025-1035. DOI: https://doi.org/10.1071/PP01239

FAO 2017. The Impact of Disasters and Crises on Agriculture and Food Security. Food and Agriculture Organization of the United Nations, Rome, 168 pp.

FAOSTAT 2020. Food and Agriculture Organization. Statistical Databases. Available online: http://faostat.fao.org.

Huang B, Johnson J W, NeSmith D S and Bridges D C 1994. Root and shoot growth of wheat genotypes in response of hypoxia and subsequent resumption of aeration. Crop Science, 34: 1538-1544. DOI: https://doi.org/10.2135/cropsci1994.0011183X003400060023x

IOPEPC 2019. Indian oilseeds and produce export promotions council. DOI: http://www.iopepc.org/misc/2019_20/ Kharif%202019%20Sesame%20crop%20survey.pdf. Kozlowski T T 1984. Extent, causes, and impacts of flooding. In: Kozlowski TT (Ed.), Flooding and Plant Growth, Academic Press, New York, pp. 1-7. DOI: https://doi.org/10.1016/B978-0-12-424120-6.50006-7

Lee S C, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek L A C J and Serres B 2011. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist, 190: 457-471. DOI: 10. 1111/j.1469-8137.2010.03590.x. DOI: https://doi.org/10.1111/j.1469-8137.2010.03590.x

Olgun M, Kumlay A M, Adiguzel M C and Caglar A 2008. The effect of waterlogging in wheat (T. aestivum L.). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 58(3):193-198, DOI: 10.1080/09064710701794024. DOI: https://doi.org/10.1080/09064710701794024

Mai Nhat Linh, Le Vinh Thuc, Jun-Ichi Sakagami, Susan Orgill, Tran Huu Van, Nguyen Quoc Khuong, Pham Phuoc Nhan 2021. Effects of waterlogging on the growth of different varieties of sesame (Sesamum indicum L.). International Journal of Plant Research, 11(1): 1-6. DOI: https://doi.org/10.3923/ajcs.2021.1.8

Musgrave M E and Ding N 1998. Evaluating wheat cultivars for waterlogging tolerance. Crop Science, 38: 90-97. DOI: https://doi.org/10.2135/cropsci1998.0011183X003800010016x

Mustroph A 2018. Improving flooding tolerance of crop plants. Agronomy, 160; DOI: org/10.3390/agronomy8090160. DOI: https://doi.org/10.3390/agronomy8090160

Myint D, Gilani S A, Kawase M and Watanabe K N 2020. Sustainable sesame (Sesamum indicum L.) production through improved technology: an overview of production, challenge and Opportunitiesin Myanmar. Sustainability, 12: 3515; DOI: DOI: https://doi.org/10.3390/su12093515

3390/su12093515.

Najeeb U, Mirza M Y, Jilani G, Mubashir A K and Zhou W J 2012. Sesame. In:Gupta S K (Ed.), Technological Innovations in Major World Oil Crops, Vol. 1. Springer, New York, pp. 131-145. DOI: https://doi.org/10.1007/978-1-4614-0356-2_5

Saha R R, Ahmed F, Mokarroma N, Rohman M M and Golder P C 2016. Physiological and biochemical changes in waterlog tolerant Sesame genotypes. SAARC Journal of Agriculture, 14(2): 31-45. DOI: https://doi.org/10.3329/sja.v14i2.31243

Sarkar P K, Khatun A and Singh A 2016. Effect of duration of water-logging on crop stand and yield ofsesame. International Journal of Innovation and Applied Studies, 14(1): 1-6.

Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K 2017. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 214, 1403-1407. DOI: 10.1111/nph.14519. DOI: https://doi.org/10.1111/nph.14519

Semthurst C F and Shabala S 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, DOI: https://doi.org/10.1071/FP02192

photosynthesis, biomass and chlorophyll content. Functional Plant Biology, 30: 335-343.

Valliyodan B, Ye H, Song L, Murphy M, Grover Shannon and J Nguyen H T 2017. Genetic diversity and genomic strategies forimproving drought and waterlogging tolerance in soybeans. Journal of Experimental Botany, 68: 1835-1849. DOI: https://doi.org/10.1093/jxb/erw433

Wang L, Zhang Y, Qi X, Li D, Wei W and Zhang X 2012.Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Acta Physiologiae Plantarum, 34(6): 2241-2249. DOI: https://doi.org/10.1007/s11738-012-1024-9

Wang L, Li D, Zhang Y, Gao Y, Yu J, Wei X and Zhang X 2016. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS ONE, 11(3):

e0149912. DOI:10.1371/ journal.pone.0149912.

Wang L, Li D, Zhang Y, Gao Y, Yu J, Wei X 2016a. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS ONE, 11: e0149912. DOI: https://doi.org/10.1371/journal.pone.0149912

Yeung E, van Veen H, Vashisht D, Paiva ALS, Hummel M, Rankenberg T 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. DOI: https://doi.org/10.1101/276519

Proceedings of the National Academy of Sciences of the USA, 115: E6085-E6094.DOI: 10.1073/pnas.1803841115. DOI: https://doi.org/10.1073/pnas.1803841115

Downloads

Submitted

2023-06-01

Published

2021-10-13

How to Cite

NEMI CHAND JATAV, RAKESH CHOUDHARY, ARTIKA SINGH KUSHWAHA, & S K CHATURVEDI. (2021). Unlocking the genetic variations in sesame (Sesamum indicum L.) germplasm for waterlogging tolerance: UNLOCKING THE GENETIC VARIATIONS IN SESAME GERMPLASM FOR WATERLOGGING TOLERANCE. Journal of Oilseeds Research, 38(3). https://doi.org/10.56739/jor.v38i3.137170