QTL mapping for rust resistance in groundnut (Arachis hypogaea L.)

Abstract views: 33 / PDF downloads: 3



  • ROHINI M KOLEKAR Department of Biotechnology, University of Agricultural Sciences, Dharwad-580 005, Karnataka



Groundnut, Linkage map, Marker assisted selection, Molecular markers, QTL, Rust


Among biotic stress, rust is the major fungal disease of groundnut which causes drastic yield loss globally. Cultivation ofresistant genotype is better than the use of chemical fungicides for sustainable agriculture. Considering the limitations of traditional breeding method which rely on the phenotypic selection, Marker assisted breeding (MAB) is more advantageous for the development of resistant genotype. Many different types of molecular markers are being developed in the groundnut and also being used to map Quantitative trait loci (QTL) for rust resistance. Identification of molecular markers which are closely linked to the QTL and/or candidate gene for rust resistance and their utilization in the Marker assisted selection (MAS) has been noticed in this review. Breeders can implement those molecular markers for the screening and development of rust resistant genotypes in groundnut.


Download data is not yet available.


Alves D M, Pereira R W, Leal-Bertioli S C, Moretzsohn M C, Guimaraes P M and Bertioli D J 2008. Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp.). Genetics and Molecular Research, 7(3): 631-642.

Anderson W, Holbrook C and Brenneman T 1993. Resistance to Cercosporidium personatumwithin peanut germplasm. Peanut Science, 20(1): 53-57.

Anonymous 2016. World Agricultural Production. United State Department of Agriculture, Foreign Agricultural Services.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimaraes P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C, Xun X, Jackson, S A, Michelmore R and Ozias-Akins P 2016. The genome sequences ofArachis duranensis andArachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48(4): 438-446.

Bravo J P, Hoshino A A, Angelici C M, Lopes C R and Gimenes M A 2006. Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genetics and Molecular Biology, 29(3): 516-524.

Bromfield K and Bailey W 1972. Inheritance of resistance to Puccinia arachidis in peanut. Phytopathology, 62: 748.

Chopra R, Burow G, Farmer A, Mudge J, Simpson C E, Wilkins T A, Baring M R, Puppala N, Chamberlin K D and Burow M D 2015. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Molecular Genetics and Genomics, 290(3): 1169-1180.

Chu Y, Wu C, Holbrook C, Tillman B, Person G and Ozias-Akins P 2011. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 4(2): 110-117.

Dwivedi S L, Gurtu S, Chandra S, Yuejin W and Nigam S N 2001. Assessment of genetic diversity among selected groundnut germplasmI: RAPD analysis. Plant Breeding, 120(4): 345-349.

Gajjar K N, Mishra G P, Radhakrishnan T, Dodia S M, Rathnakumar A L, Kumar N, Kumar S, Dobaria J R and Kumar A 2014. Validation of SSR markers linked to the rust and late leaf spot diseases resistance in diverse peanut genotypes. Australian Journal of Crop Science, 8(6): 927-936.

Gohel V, Singh A, Vimal M, Ashwini P and Chhatpar H 2006. Review-Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5(2): 54-72.

Guo B, Pandey M K, He G, Zhang X, Liao B, Culbreath A, Varshney R K, Nwosu V, Wilson R F and Stalker H T 2013. Recent advances in molecular genetic linkage maps of cultivated peanut. Peanut Science, 40(2): 95-106.

Gupta S K, Baek J, Carrasquilla-Garcia N and Penmetsa R V 2015. Genome-wide polymorphism detection in peanut using next-generation restriction-site-associated DNA (RAD) sequencing. Molecular Breeding, 35(7): 1-10.

Halward T, Stalker H T and Kochert G 1993. Development of an RFLP linkage map in diploid peanut species. Theoretical and Applied Genetics, 87(3): 379-384.

Halward T M, Stalker T H, Larue E A and Kochert G 1991. Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome, 34(6): 1013-1020.

He G and Prakash C 2001. Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genetic Resources and Crop Evolution, 48(4): 347-352.

Herselman L 2003. Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica, 133(3): 319-327.

Hilu K W and Stalker H T 1995. Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): Evidence from RAPDs. Plant Systematics and Evolution, 198(3): 167-178.

Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, Ren X, Chen Y, Zhou X and Lei Y 2016. Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS One, 11(5): e0156633.

Janila P, Nigam S N, Pandey M K, Nagesh P and Varshney R K 2013. Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Science, 4: 23-56.

Janila P, Variath M T, Pandey M K, Desmae H, Motagi B N, Okori P, Manohar S S, Rathnakumar A L, Radhakrishnan T, Liao B and Varshney R K 2016a. Genomic tools in groundnut breeding program: Status and perspectives. Frontiers in Plant Science, doi: 10.3389/fpls.2016.00289.

Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P and Varshney R K 2016b. Molecular breeding for introgression offatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science, 242: 203-213.

Kalekar A, Patil B and Deokar A 1984. Inheritance of resistance to rust in groundnut. Madras Agricultural Journal, 71(2): 125-126.

Khedikar Y, Gowda M V C, Sarvamangala C, Patgar K, Upadhyaya H D and Varshney R 2010. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 121(5): 971-984.

Khedikar Y, Pandey M K, Sujay V, Singh S, Nayak S N, Klein-Gebbinck H W, Sarvamangala C, Mukri G, Garg V, Upadhyaya H D, Nadaf H L, Gowda M V C, VarshneyR K and Bhat R S 2018. Identification of main effect and epistatic quantitative morphological and yield-related traits in peanut (Arachis hypogaea L.). Molecular Breeding, 38: 7.

Khera P, Upadhyaya H D, Pandey M K, Roorkiwal M, Sriswathi M, Janila P, Guo Y, McKain M R, Nagy E D and Knapp S J 2013. SingleNucleotide Polymorphism-based genetic diversity in the reference set of peanut (spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome, 6: 1-11.

Kilian A 2008 DArT-based whole genome profiling and novel information technologies in support systemofmodern breeding of groundnut. In: Proceeding of 3rd International Conference for Peanut Genomics and Biotechnology on "Advances in Arachis through Genomics and Biotechnology", 4-8, November 2008, ICRISAT, Patancheru, India, p. 2.

Knauft D 1987. Inheritance of rust resistance in groundnut. Groundnut rust disease. In: Proceedings of Discussion Group Meeting, ICRISAT, Patancheru, India, pp. 183-187.

Kochert G, Stalker H T, Gimenes M, Galgaro L, Lopes C R and Moore K 1996. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). American Journal ofBotany, 83(10): 1282-1291.

Kolekar R M, Sujay V, Shirasawa K, Sukruth M, Khedikar Y P, Gowda, M V C, Pandey M K, Varshney R K and Bhat R S 2016. QTL mapping for late leafspot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica, 209: 147-156.

Kolekar R M, Sukruth M, Shirasawa K, Nadaf H L, Motagi B N, Lingaraju S, Patil, P V, Bhat R S 2017. Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breeding, 136(6): 948-953.

Leal-Bertioli S C, Cavalcante U, Gouveia E G, Ballen-Taborda C, Shirasawa K, Guimaraes P M, Jackson S A, Bertioli D J and Moretzsohn M C 2015. Identification of QTLs for Rust Resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3: Genes Genomes Genetics, 5: 1403-1414.

Mace E, Phong D, Upadhyaya H, Chandra S and Crouch J 2006. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica, 152(3): 317-330.

Mallaiah K and Rao A 1979. Groundnut rust: factors influencing disease development, sporulation and germination of uredospores. Indian Phytopathology, 32(3): 382-388.

McDonald D, Subrahmanyam P, Gibbons R W and Smith D H 1985. Early and late leaf spots of groundnut. Information Bulletin, 21: 1-19.

Mehan V, Reddy P, Vidyasagar Rao K and McDonald D 1994. Components of rust resistance in peanut genotypes. Phytopathology, 84(12): 1421-1426.

Mehan V, Reddy P, Subrahmanyam P, McDonald D and Singh A 1996. Identification of new sources of resistance to rust and late leaf spot in peanut. International Journal of Pest Management, 42(4): 267-271.

Mishra G P, Radhakrishnan T, Kumar A, Thirumalaisamy P, Kumar N, Bosamia T C, Nawade B and Dobaria J R 2015. Advancements in molecular marker development and their applications in the management of biotic stresses in peanuts. Crop Protection, 77: 74-86.

Mondal S and Badigannavar A 2010. Molecular diversity and association of SSR markers to rust and late leafspot resistance in cultivated groundnut(Arachis hypogaeaL.). Plant Breeding, 129(1): 68-71.

Mondal S, Badigannavar A M, Murty G S S 2007. RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica, 159: 233-239.

Mondal S, Badigannavar A M, D'Souza S F 2012a. Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenassii. Molecular Breeding, 29: 467-476.

Mondal S, Badigannavar A M, D'Souza S F 2012b. Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica, 188: 163-173.

Mondal S, Hande P and Badigannavar A M 2013. Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. Journal of Phytopathology, 162(7-8): 548-552.

Mondal S and Badigannavar A M 2018. Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, doi: 10.1007/s00122-018- 3106-6.

Motagi B, Angadi C, Gowda M and Naidu G 2013. Genetics of rust resistance inmutants and interspecific derivatives of groundnut (Arachis hypogaea L.). Karnataka Journal of Agricultural Sciences, 26(1): 14-16.

Nagy E D, Guo Y, Tang S, Bowers J E, Okashah R A, Taylor C A, Zhang D, Khanal S, Heesacker A F and Khalilian N 2012. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BioMed Central Genomics, 13(1): 469.

Pandey M K, Khan A W, Singh V K, Vishwakarma M K, Shasidhar Y, Kumar V, Garg V, Bhat, R S, Chitikineni A, Janila P, Guo B, and Varshney R K. 2017. QTL-seq approach

identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal, 15(8): 927-941.

ParamasivamK, Jayasekhar M, RajasekharanR and Veerabadhiran P 1990. Inheritance of rust resistance in groundnut (Arachis hypogaea L.). Madras Agricultural Journal, 77(1): 50-52.

Paratwagh S A and Bhat R S 2015. Development of superior introgression lines for resistance to foliar diseases and productivity in groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding, 6(4): 1034-1040.

Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, da Silva F R, Martins N F and Guimaraes P M 2007. ESTs from a wild Arachis species for gene discovery and marker development. BioMed Central Plant Biology, 7(1): 7-17.

Reddy L J, Nigam S N, Dwivedi S L and Gibbons R W 1987. Breeding groundnut cultivars resistant to rust (Puccinia arachidis Speg.). In: Proceedings of a Discussion Group Meeting. 24-28 September 1984, ICRISAT, Patancheru, Andhra Pradesh India.

Reddy P N and Khare M N 1988. Components of resistance in groundnut cultivars to Puccinia arachidis Speg. Journal of Oilseeds Research, 5: 153-154.

Sarvamangala C, Gowda M V C and Varshney R K 2011. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Research, 122(1): 49-59.

Savary S, Bosc J P, Noirot M and Zadoks J 1988. Peanut rust in West Africa: a new component in a multiple pathosystem. Plant Disease, 72(12): 1001-1009.

Shirasawa K, Kuwata C, Watanabe M, Fukami M, Hirakawa H and Isobe S 2016. Target amplicon sequencing for genotyping genome-wide single nucleotide polymorphisms identified by whole-genome resequencing in peanut. Plant Genome, 9(3):1-8.

Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T and Isobe S 2012. Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theoretical and

Applied Genetics, 124(8): 1429-1438.

Simpson C, Starr J, Church G, Burow M and Paterson A 2003. Registration of'NemaTAM' peanut. Crop Science, 43(4): 1561.

Singh A K and Nigam S 2016. Arachis Gene Pools and Genetic Improvement in Groundnut. Gene Pool Diversity and Crop Improvement, Springer, pp. 17-75.

Singh A, Subrahmanyam P and Moos J 1984. The dominant nature of resistance to Puccinia arachidis in certain wild Arachis species. Oleagineux, 39(11): 535-538.

Singh A K, Mehan V K and NigamS N 1997. Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Information Bulletin, 50, ICRISAT, Patancheru, Andhra Pradesh.

Stalker H T, Tallury S P, Seijo G R and Leal-Bertioli S C 2016. Biology speciation and utilization of peanut species. (Eds. Stalker H T and Wilson R F) Academic Press and AOCS Press, Elsevier, Amsterdam, Netherlands, pp. 27-66.

Subrahmanyam P and McDonald D 1987. Groundnut rust disease: epidemiology and control. In: Proceedings of Groundnut Rust Disease, 24-28 September 1984, ICRISAT, Patancheru, pp. 27-39.

Subrahmanyam P and McDonald D 1983. Rust disease of groundnut. Information Bulletin 13. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India.

Subramanian V, Gurtu S, Rao R C N and Nigam S N 2000. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 43(4): 656-660.

Sujay V, Gowda M V C, Pandey M K, Bhat R S, Khedikar Y P, Nadaf H L, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp S J and Varshney R K 2012. QTL

analysis and construction of consensus genetic map for foliar disease resistance based on two RIL populations in cultivated groundnut (Arachis hypogaea L.). Molecular Breeding, 30(2): 773-788.

Sukruth M, Paratwagh S A, Sujay V, Varshakumari, Gowda M V C, Nadaf H L, Motagi B N, Lingaraju S, Pandey M K, VarshneyR K andBhat R S 2015. Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.). Euphytica, 204(2): 343-351.

Tiwari S, Ghewande M and Misra D 1984. Inheritance ofresistance to rust and late leaf spot in groundnut (Arachis hypogaea L.). Journal of Cytology and Genetics, 19: 97-101.

Van Wyk E, Cilliers S and Bredenkamp G 2000. Vegetation analysis of wetlands in the Klerksdorp Municipal Area, North West Province, South Africa. South African Journal of Botany, 66(1): 52-62.

Varma T, Dwivedi S, Pande S and Gowda M 2005. SSR markers associated with resistance to rust (Puccinia arachidis Speg.) in groundnut (Arachis hypogaea L.). SABRAO Journal of Breeding and Genetics, 37(2): 107-119.

Varman P, Ravendran T and Ganapathy T 1991. Genetic analysis of rust resistance in groundnut Arachis hypogaea L. Journal of Oilseeds Research, 8: 35-39.

Varshney R K, Pandey M K, Pasupuleti J, Nigam S N, Sudini H, Gowda M V C, Sriswathi M, Radhakrishan T, Manohar S S and Patne N 2014. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 127(8): 1771-1781.

Vasanthi R and Raja ReddyC 1997. Inheritance of testa colour and resistance to late leaf spot and rust in groundnut (Arachis hypogaea L.). Journal of Oilseeds Research, 14: 244-248.

Waliyar F, McDonald D, Subba Rao P V and Reddy P M 1993. Components of resistance to an Indian source of Cercospora arachidicola in selected peanut lines. Peanut Science, 20(2): 93-96.

Yeri S B and Bhat R S 2016. Development of late leafspot and rust resistant backcross lines in JL 24 variety of groundnut (Arachis hypogaea L.). Electronic Journal of Plant Breeding, 7(1): 37-41.

Yeri S B, Shirasawa K, Pandey M K, Gowda M V C, Sujay V, Shriswathi M, Nadaf H L, Motagi B N, Lingaraju S, Bhat A R S, Varshney R K, Krishnaraj P U and Bhat R S 2014.

Development of NILs from heterogeneous inbred families for validating the rust resistance QTLs in peanut (Arachis hypogaea L.). Plant Breeding, 133: 80-85.

Yol E, Upadhyaya H D and Uzum B 2016. Identification of rust resistance in groundnut using a validated SSR marker. Euphytica, 210(3): 405-411.

Zhou X, Dong Y, Zhao J, Huang L, Ren X, Chen Y, Huang S, Liao B, Lei Y and Yan L 2016. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BioMed Central Genomics, 17(1): 420-434.






How to Cite

ROHINI M KOLEKAR. (2018). QTL mapping for rust resistance in groundnut (Arachis hypogaea L.): QTL MAPPING FOR RUST RESISTANCE IN GROUNDNUT (ARACHIS HYPOGAEA L.). Journal of Oilseeds Research, 35(2). https://doi.org/10.56739/jor.v35i2.137397