A comprehensive review on host plant resistance of wonder crop, soybean (Glycine max) against whitefly (Bemisia tabaci)

A COMPREHENSIVE REVIEW ON HOST PLANT RESISTANCE OF SOYBEAN AGAINST WHITEFLY


112 / 4

Authors

  • PRIYANSHU PAWAR Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur-482 004, Madhya Pradesh
  • ARCHANA ANOKHE ICAR-Directorate of Weed Research, Jabalpur-482 004, Madhya Pradesh
  • ABHISHEK SHUKLA Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur-482 004, Madhya Pradesh
  • P DURAIMURUGAN ICAR- Indian Institute of Oilseeds Research, Hyderabad-500 030, Telangana
  • POOJA KUMARI Chaudhary Charan Singh Haryana Agricultural University, Hisar-125 004, Haryana
  • JARPLA MOUNIKA Navsari Agricultural University, Navsari-396 450, Gujarat

https://doi.org/10.56739/4m4ssm64

Keywords:

Biochemistry, Defence mechanisms, Resistance, Soybean, Whitefly

Abstract

Whiteflies are significant pests that adversely affect soybean yield qualitatively and quantitatively. Understanding the host plant resistance traits of soybean against whiteflies is crucial for developing resistant cultivars for sustainable management of whitefly. This review provides an overview of the defensive proteins, secondary metabolites, signalling molecules, and antioxidant systems involved in soybean's resistance mechanisms. Additionally, it discusses the genetic and molecular basis of resistance, breeding strategies, and the influence of environmental and agronomic factors.

Downloads

Download data is not yet available.

References

Antony B and Palaniswami M S 2006. Bemisia tabaci feeding induces pathogenesis-related proteins in cassava (Manihotesculenta Crantz).

Atkins M D 1981. Introduction to Insect Behaviour, pp. 237. DOI: https://doi.org/10.7560/730175-012

Baldin E L L, Cruz P L, Morando R, Silva I F, Bentivenha J P F, Tozin L R S and Rodrigues T M 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology, 110(4): 1869-1876. DOI: https://doi.org/10.1093/jee/tox143

Bebber D P, Ramotowski M A and Gurr S J 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3(11): 985-988. DOI: https://doi.org/10.1038/nclimate1990

Bonato O, Lurette A, Vidal C and Fargues J 2007. Modelling temperature dependent bionomics of Bemisia tabaci (Qbiotype). Physiological Entomology, 32(1): 50-55. DOI: https://doi.org/10.1111/j.1365-3032.2006.00540.x

Broekgaarden C, Snoeren T A L, Dicke M and Vosman B 2011. Exploiting natural variation to identifyinsect-resistance genes. Plant Biotchnol Journal, 9: 819-825. DOI: https://doi.org/10.1111/j.1467-7652.2011.00635.x

Channarayappa C, Shivashankar G, Muniyappa V and Frist R H 1992. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canadian Journal of Botany, 70(11): 2184-2192. DOI: https://doi.org/10.1139/b92-270

Chen C S, Zhao C, Wu Z Y, Liu G F, Yu X P and Zhang P J 2021. Whitefly induced tomato volatiles mediate host habitat location of the parasitic wasp Encarsia formosa, and enhance its efficacy as a bio control agent. Pest Management Science, 77(2): 749-757. DOI: https://doi.org/10.1002/ps.6071

Chu C C, Natwick E T and Henneberry T J 2002. Bemisia tabaci (Homoptera: Aleyrodidae) biotype B colonization on okra-and normal-leaf upland cotton strains and cultivars. Journal of Economic Entomology, 95(4): 733-738. DOI: https://doi.org/10.1603/0022-0493-95.4.733

Cui H, Sun Y, Su J, Ren Q, Li C and Ge F 2012. Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Interactions, 6: 425-437. DOI: https://doi.org/10.1007/s11829-012-9189-0

de Lima Toledo C A, da Silva Ponce F, Oliveira M D, Aires E S, Seabra Júnior S, Lima G P P and de Oliveira R C 2021. Change in the physiological and biochemical aspects of tomato caused by infestation by cryptic species of Bemisia tabaci MED and MEAM1. Insects, 12(12): 1105. DOI: https://doi.org/10.3390/insects12121105

Dowell R V 1979. Host Selection by the citrus blackfly Aleurocanthus Woglumi (Homoptera: Aleyrodidae) 1. Entomologia Experimentalis et Applicata, 25(3): 289-296. DOI: https://doi.org/10.1111/j.1570-7458.1979.tb02881.x

Du H, Xu H X, Wang F, Qian L X, Liu S S and Wang X W 2022. Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin. NewPhytologist, 234(5): 1848-1862. DOI: https://doi.org/10.1111/nph.18063

Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassão D G, Luck K and Morin S 2018. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. Insect Biochemistry and Molecular Biology, 100: 10-21. DOI: https://doi.org/10.1016/j.ibmb.2018.05.008

Elbaz M, Halon E, Malka O, Malitsky S, Blum E, Aharoni A and Morin S 2012. Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Molecular Ecology, 21(18): 4533-4546. DOI: https://doi.org/10.1111/j.1365-294X.2012.05713.x

Erb M and Reymond P 2019. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology, 70: 527-557. DOI: https://doi.org/10.1146/annurev-arplant-050718-095910

Feng H, Acosta-Gamboa L, Kruse L H, Tracy J D, Chung S H, Nava Fereira A R and Jander G 2021. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Molecular Biology, 1-18. DOI: https://doi.org/10.21203/rs.3.rs-596878/v1

Ferrero V, Baeten L, Blanco Sánchez L, Planelló R, Díaz PendónJ A, Rodríguez Echeverría S and de la Peña E 2020. Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. New Phytologist, 226(1): 254-266. DOI: https://doi.org/10.1111/nph.16353

Gong C, Yang Z, Hu Y, Wu Q, Wang S, Guo Z and Zhang Y 2022. Silencing of the BtTPS genes by transgenic plant mediated RNAi to control Bemisia tabaci MED. Pest Management Science, 78(3): 1128-1137. DOI: https://doi.org/10.1002/ps.6727

Götz M and Winter S 2016. Diversity of Bemisia tabaci in Thailand and Vietnam and indications ofspecies replacement. Journal of Asia-Pacific Entomology, 19(2): 537-543. DOI: https://doi.org/10.1016/j.aspen.2016.04.017

Gulluoglu L, Arioglu H and Kurt C 2010. Field evaluation of soybean cultivars for resistance to whitefly (Bemisia tabaci Genn.) infestations. African Journal of Agricultural Research, 5(7): 555-560.

Guo J Y, Cong L and Wan F H 2013. Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Insect Science, 20(4): 541-549. DOI: https://doi.org/10.1111/j.1744-7917.2012.01546.x

Harish G N, Singh R, Sharma S and Taggar G K 2023. Changes in defense-related antioxidative enzymes amongst the resistant and susceptible soybean genotypes under whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) stress. Phytoparasitica, 51(1): 63-75. DOI: https://doi.org/10.1007/s12600-022-01028-9

Hasanuzzaman A T M, Islam M N, Zhang Y, Zhang C Y and Liu T X 2016. Leaf morphological characters can be a factor for intra-varietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. Plos One, 11(4): e0153880. DOI: https://doi.org/10.1371/journal.pone.0153880

Ho J Y, Weide R, Ma H M, van Wordragen M F, Lambert K N, Koornneef M and Williamson V M 1992. The root knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. The Plant Journal, 2(6): 971-982. DOI: https://doi.org/10.1046/j.1365-313X.1992.t01-8-00999.x

Howe G A and Jander G 2008. Plant immunity to insect herbivores. Annual Review of Plant Biology, 59: 41-66. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092825

Isah T 2019. Stress and defense responses in plant secondary metabolites production. Biological Research, 52. 39 (2019). https://doi.org/10.1186/s40659-019-0246-3. DOI: https://doi.org/10.1186/s40659-019-0246-3

Jackson J E, Burhan H O and Hassan H M 1973. Effects of season, sowing date, nitrogenous fertilizer and insecticide spraying on the incidence of insect pests on cotton in the Sudan Gezira. The Journal of Agricultural Science, 81(3): 491-505. DOI: https://doi.org/10.1017/S0021859600086548

Jiang Y X, Nombela G and Muñiz M 2001. Analysis by DC-EPG of the resistance to Bemisia tabaci on an Mi tomato line. Entomologia experimentalis et applicata, 99(3): 295-302. DOI: https://doi.org/10.1046/j.1570-7458.2001.00828.x

Jongsma M A and Bolter C 1997. The adaptation of insects to plant protease inhibitors. Journal of Insect Physiology, 43(10): 885-895. DOI: https://doi.org/10.1016/S0022-1910(97)00040-1

Kennedy G G, Yamamoto R T, Dimock M B, Williams W G and Bordner J 1981. Effect of day length and light intensity on 2-tridecanone levels and resistance in Lycopersicon hirsutum f. glabratum to Manduca sexta. Journal of Chemical Ecology, 7: 707-716. DOI: https://doi.org/10.1007/BF00990303

Kisha J S 1981. Observations on the trapping of the whitefly Bemisia tabaci by glandular hairs on tomato leaves. Annals of Applied Biology, 97(2): 123-127. DOI: https://doi.org/10.1111/j.1744-7348.1981.tb03004.x

Koivisto K, Nissinen A I and Vänninen I 2011. Responses of the greenhouse whitefly to elevated CO2 on tomato. IOBC/WPRS Bulletin, 68: 93-96.

Latournerie-Moreno L, Ic-Caamal A, Ruiz-Sánchez E, Ballina-Gómez H, Islas-Flores I, Chan-Cupul W and González-Mendoza D 2015. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L. Chilean Journal of Agricultural Research, 75(1): 71-77. DOI: https://doi.org/10.4067/S0718-58392015000100010

Li X, Garvey M, Kaplan I, Li B and Carrillo J 2018. Domestication of tomato has reduced the attraction of herbivore natural enemies to pest damaged plants. Agricultural and Forest Entomology, 20(3): 390-401. DOI: https://doi.org/10.1111/afe.12271

Lu S, Chen M, Li J, Shi Y, Gu Q and Yan F 2019. Changes in Bemisia tabaci feeding behaviors caused directly and indirectly by cucurbit chlorotic yellows virus. Virology Journal, 16: 1-14. DOI: https://doi.org/10.1186/s12985-019-1215-8

Luo M, Li B, Jander G and Zhou S 2023. Non-volatile metabolites mediate plant interactions with insect herbivores. The Plant Journal, 114(5): 1164-1177. DOI: https://doi.org/10.1111/tpj.16180

MacDonald M J and D'Cunha G B 2007. A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology, 85(3): 273-282. DOI: https://doi.org/10.1139/O07-018

Madueke E D N and Coaker T H 1984. Temperature requirements of the white fly Trialeurodes vaporariorum (Homoptera: Aleyrodidae) and its parasitoid Encarsia formosa (Hymenoptera: Aphelinidae). Entomologia Generalis, 9(3): 149-154. DOI: https://doi.org/10.1127/entom.gen/9/1984/149

Malik H J, Raza A, Amin I, Scheffler J A, Scheffler B E, Brown J K and Mansoor S 2016. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Scientific Reports, 6(1): 38469. DOI: https://doi.org/10.1038/srep38469

Markovich O, Kafle D, Elbaz M, Malitsky S, Aharoni A, Schwarzkopf A and Morin S 2013. Arabidopsis thaliana plants with different levels of aliphatic-and indolyl-glucosinolates affect hostselection and performance of Bemisia tabaci. Journal of Chemical Ecology, 39: 1361-1372. DOI: https://doi.org/10.1007/s10886-013-0358-0

Mcauslane H J 1996. Influence ofleaf pubescence on ovipositional preference of Bemisia argentifolii (Homoptera: Aleyrodidae) on soybean. Environmental Entomology, 25(4): 834-841. DOI: https://doi.org/10.1093/ee/25.4.834

Mound L A 1962. Studies on the olfaction and colour sensitivity of Bemisia tabaci (Genn.) (Homoptera, Aleyrodidae). Entomología Experimentalis et Applicata, 5(2): 99-104. DOI: https://doi.org/10.1111/j.1570-7458.1962.tb00571.x

Muñiz M and Nombela G 2001. Differential variation in development of the B-and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environmental Entomology, 30(4): 720-727. DOI: https://doi.org/10.1603/0046-225X-30.4.720

Narita J P, Fatoretto M B, Lopes J R S and Vendramim J D 2023. Type-IV glandular trichomes disrupt the probing behavior of Bemisia tabaci MEAM1 and tomato severe rugose virus inoculation in tomato plants. Journal of Pest Science, 96(3): 1035-1048. DOI: https://doi.org/10.1007/s10340-023-01599-4

Nombela G and Muñiz M 2010. Host plant resistance for the management of Bemisia tabaci: a multi-crop survey with emphasis on tomato. Bemisia: Bionomics and Management of a Global Pest, 357-383. DOI: https://doi.org/10.1007/978-90-481-2460-2_14

Nombela G, Beitia F and Muñiz M 2000. Variation in tomato host response to Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to acyl sugar content and presence of the nematode and potato aphid resistance gene Mi. Bulletin of Entomological Research, 90(2): 161-167. DOI: https://doi.org/10.1017/S0007485300000274

Nomikou M, Meng R, Schraag R, Sabelis M W and Janssen A 2005. How predatory mites find plants with whitefly prey. Experimental and Applied Acarology, 36: 263-275. DOI: https://doi.org/10.1007/s10493-005-6650-0

Padilha G, Pozebon H, Patias L S, Ferreira D R, Castilhos L B, Forgiarini S E and Arnemann J A 2021. Damage assessment of Bemisia tabaci and economic injury level on soybean. Crop Protection, 143: 105542. DOI: https://doi.org/10.1016/j.cropro.2021.105542

Pal S, Karmakar P, Chattopadhyay A and Ghosh S K 2021. Evaluation of tomato genotypes for resistance to whitefly (Bemisia tabaci Gennadius) and tomato leaf curl virus in eastern India. Journal of Asia-Pacific Entomology, 24(2): 68-76. DOI: https://doi.org/10.1016/j.aspen.2021.04.001

Pascual S, Rodríguez-Álvarez C I, Kaloshian I and Nombela G 2023. Hsp90 gene is required for Mi-1-mediated resistance of tomato to the whitefly Bemisia tabaci. Plants, 12(3): 641. DOI: https://doi.org/10.3390/plants12030641

Pearse I S, LoPresti E, Schaeffer R N, Wetzel W C, Mooney K A, Ali J G and Weber M G 2020. Generalising indirect defence and resistance of plants. Ecology Letters, 23(7): 1137-1152. DOI: https://doi.org/10.1111/ele.13512

Perez-Fons L, Bohorquez-Chaux A, Irigoyen M L, Garceau D C, Morreel K, Boerjan W and Fraser P D 2019. A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biology, 19: 1-14. DOI: https://doi.org/10.1186/s12870-019-2107-1

Perring T M, Stansly P A, Liu T X, Smith H A and Andreason S A 2018. Whiteflies: Biology, ecology, and management. In: Sustainable Management of Arthropod Pests of Tomato. Academic Press. pp. 73-110. DOI: https://doi.org/10.1016/B978-0-12-802441-6.00004-8

Pizetta C S R, Ribeiro W R, Ferreira A L, da Costa Moura M, Bonfim K, Pinheiro P V and Aragão F J L 2022. RNA interference-mediated tolerance to whitefly (Bemisia tabaci) in genetically engineered tomato. Plant Cell, Tissue and Organ Culture, 148(2): 281-291. DOI: https://doi.org/10.1007/s11240-021-02185-1

Prado D J C, Peñaflor M F G V, Cia E, Vieira S S, Silva K I, Carlini Garcia L A and Lourenção A L 2016. Resistance of cotton genotypes with different leaf colour and trichome density to Bemisia tabaci biotype B. Journal of Applied Entomology, 140(6), 405-413. DOI: https://doi.org/10.1111/jen.12274

Puthoff D P, Holzer F M, Perring T M and Walling L L 2010. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. Journal of Chemical Ecology, 36: 1271-1285. DOI: https://doi.org/10.1007/s10886-010-9868-1

Raza Rani A, Malik H J, Shafiq M, Amin I, Scheffler J A, Scheffler B E and Mansoor S 2016. RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): potential technology for the control of whitefly. PLoS One, 11(4): e0153883. DOI: https://doi.org/10.1371/journal.pone.0153883

Rodríguez-Álvarez C I, López-Climent M F, Gómez-Cadenas A, Kaloshian I and Nombela G 2015. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest. Bulletin of Entomological Research, 105(5): 574-582. DOI: https://doi.org/10.1017/S0007485315000449

Sengonca C and Liu B 1999. Laboratory studies on the effect of temperature and humidity on the life table of the whitefly, Aleurotuberculatus takahashi David & Subramaniam (Homoptera: Aleyrodidae) from southeastern China. Anzeigerfür Schädlingskunde, 72: 45-48. DOI: https://doi.org/10.1007/BF02771095

Sharma A N and Shukla A K 1997. Effect of insect and disease control measures on soybean (Glycine max (L.) Merrill) yield in Madhya Pradesh.

Siddiqui S, Abro G H, Syed T S, Buriro A S, Ahmad S, Majeed M Z and Riaz M A 2021. Identification of cotton physio-morphological marker for the development of cotton resistant varieties against sucking insect pests: a biorational approach for insect-pest management. DOI: https://doi.org/10.17582/journal.pjz/20190703060702

Silva D B, Bueno V H, Van Loon J J, Peñaflor M F G, Bento J M S and Van Lenteren J C 2018. Attraction of three mirid predators to tomato infested by both the tomato leaf mining moth Tuta absoluta and the whitefly Bemisia tabaci. Journal of Chemical Ecology, 44: 29-39. DOI: https://doi.org/10.1007/s10886-017-0909-x

Silveira T A, Sanches P A, Zazycki L C F, Costa-Lima T C, Cabezas-Guerrero M F, Favaris A P and Santana A E G 2018. Phloem-feeding herbivoryon floweringmelon plants enhances attraction of parasitoids by shifting floral to defensive volatiles. Arthropod-Plant Interactions, 12(5): 751-760. DOI: https://doi.org/10.1007/s11829-018-9625-x

Slansky Jr. F 1990. Insect nutritional ecology as a basis for studyinghost plant resistance. Florida Entomologist, 359-378. DOI: https://doi.org/10.2307/3495455

Solanki R D and Jha S 2018. Population dynamics and biology of whitefly (Bemisia tabaci Gennadius) on sunflower(Helianthus annuus L.). Journal of Pharmacognosy and Phytochemistry, 7(1S): 3055-3058.

Sun, Yan-Chun, Li-Long Pan, Feng-Ze Ying, Ping Li, Xiao-Wei Wang, and Shu-Sheng Liu 2017. Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Scientific Reports, 7(1): 566. DOI: https://doi.org/10.1038/s41598-017-00692-w

Suthar T, Gupta N, Pathak D, Sharma S and Rathore P 2021. Morpho-anatomical characterization of interspecific derivatives of Gossypium hirsutum L.× G. armourianum Kearney cross for whitefly tolerance. Phytoparasitica, 1-19. DOI: https://doi.org/10.1007/s12600-021-00963-3

Taggar G K and Gill R S 2012. Preference of whitefly, Bemisia tabaci, towards black gram genotypes: Role of morphological leaf characteristics. Phytoparasitica, 40: 461-474. DOI: https://doi.org/10.1007/s12600-012-0247-z

Thakur N, Upadhyay S K, Verma P C, Chandrashekar K, Tuli R and Singh P K 2014. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. Plos One, 9(3): e87235. DOI: https://doi.org/10.1371/journal.pone.0087235

Thomas A, Anand K, Rebijith K B, Asokan R and Ramamurthy V V 2014. Bemisia tabaci (Hemiptera: Aleyrodidae) species complex from cotton cultivars: a comparative study of population density, morphology, and molecular variations. Annals of the Entomological Society of America, 107(2), 389-398. DOI: https://doi.org/10.1603/AN13124

Tissier A 2012. Glandular trichomes: what comes after expressed sequence tags?. The Plant Journal, 70(1), 51-68. DOI: https://doi.org/10.1111/j.1365-313X.2012.04913.x

Vieira S S, Lourenção A L, da Graça J P, Janegitz T, Salvador M C, de Oliveira M C N and Hoffmann-Campo C B 2016. Biological aspects of Bemisia tabaci biotype B and the chemical causes of resistance in soybean genotypes. Arthropod-Plant Interactions, 10: 525-534. DOI: https://doi.org/10.1007/s11829-016-9458-4

Wang G H, Wang X X, Sun Y C and Ge F 2014. Impacts of elevated CO2 on Bemisia tabaci infesting Bt cotton and its parasitoid Encarsia formosa. Entomologia Experimentalis Etapplicata, 152(3): 228-237. DOI: https://doi.org/10.1111/eea.12214

Weber H 1930. Biologie der Hemipteren. Biologische Studienbücher, Volume 11, Springer Book Archives mit Publikatione. DOI: https://doi.org/10.1007/978-3-642-50844-8

Weisser H 1980. Lehensweise, Okologie, Schadwirkung und Bek~mpfung der Weissen Fliege Bemisia tabaci (Genn). Diplomarbeit, Universit~t Hohenheim, Stuttgart, 184 pp.

Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H and Zhang Y 2021. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 184(7): 1693-1705. DOI: https://doi.org/10.1016/j.cell.2021.02.014

Xie M, Wan F H, Chen Y H and Wu G 2011. Effects of temperature on the growth and reproduction characteristics of Bemisia tabaci B biotype and Trialeurodes vaporariorum. Journal of Applied Entomology, 135(4): 252-257. DOI: https://doi.org/10.1111/j.1439-0418.2010.01524.x

Xu J, Lin K and Liu S S 2011. Performance on different host plants of an alien and an indigenous Bemisia tabaci from China. Journal of Applied Entomology, 135(10): 771-779. DOI: https://doi.org/10.1111/j.1439-0418.2010.01581.x

Xu R, Li W, Zhang L F, Lin Y H, Qi B and Xing H 2010. A study on the inheritance of resistance to whitefly in soybean. Scientia Agricultura Sinica, 43: 80-86.

Yactayo-Chang J P, Tang H V, Mendoza J, Christensen S A and Block A K 2020. Plant defense chemicals against insect pests. Agronomy, 10(8): 1156. DOI: https://doi.org/10.3390/agronomy10081156

Zang L S, Chen W Q and Liu S S 2006. Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomologia Experimentalis et Applicata, 121(3): 221-227. DOI: https://doi.org/10.1111/j.1570-8703.2006.00482.x

Zarate S I, Kempema L A and Walling L L 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant physiology, 143(2): 866-875. DOI: https://doi.org/10.1104/pp.106.090035

Zhang S Z, Zhang F and Hua B Z 2008. Enhancement of phenylalanine ammonia lyase, polyphenoloxidase, and peroxidase in cucumber seedlings by Bemisia tabaci (Gennadius)(Hemiptera:Aleyrodidae) infestation. Agricultural Sciences in China, 7(1): 82-87. DOI: https://doi.org/10.1016/S1671-2927(08)60025-5

Zhang X, Sun X, Zhao H, Xue M and Wang D 2017. Phenolic compounds induced by Bemisia tabaci and Trialeurodes vaporariorum in Nicotiana tabacum L. and their relationship with the salicylic acid signaling pathway. Arthropod-Plant Interactions, 11: 659-667. DOI: https://doi.org/10.1007/s11829-017-9508-6

Zhu L, Li J, Xu Z, Manghwar H, Liang S, Li S and Zhang X 2018. Identification and selection of resistance to Bemisia tabaci among 550 cotton genotypes in the field and greenhouse experiments. Frontiers of Agricultural Science and Engineering, 5(2): 236-252.

Zhu Q, Arakane Y, Beeman R W, Kramer K J and Muthukrishnan S 2008. Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences, 105(18): 6650-6655. DOI: https://doi.org/10.1073/pnas.0800739105

Zia K, Ashfaq M, Arif M J and Sahi S T 2011. Effect of physico-morphic characters on population of whiteflyBemisia tabaci in transgenic cotton. Pakistan Journal of Agricultural Sciences, 48(1): 63-69.

Zubair M, Khan M Z, Rauf I, Raza A, Shah A H, Hassan I and Mansoor S 2020. Artificial micro RNA (amiRNA)-mediated resistance against whitefly (Bemisia tabaci) targeting three genes. Crop Protection, 137: 105308. DOI: https://doi.org/10.1016/j.cropro.2020.105308

Downloads

Submitted

2025-01-27

Published

2024-04-19

How to Cite

PRIYANSHU PAWAR, ARCHANA ANOKHE, ABHISHEK SHUKLA, P DURAIMURUGAN, POOJA KUMARI, & JARPLA MOUNIKA. (2024). A comprehensive review on host plant resistance of wonder crop, soybean (Glycine max) against whitefly (Bemisia tabaci): A COMPREHENSIVE REVIEW ON HOST PLANT RESISTANCE OF SOYBEAN AGAINST WHITEFLY. Journal of Oilseeds Research, 41(1), 01-09. https://doi.org/10.56739/4m4ssm64