SWEET transporters in plants and their significance in Sugarcane


415 / 370

Authors

https://doi.org/10.37580/JSR.2022.2.12.112-127

Keywords:

SWEETs; Bidirectional transporter; Apoplasmic phloem loading; Pathogen susceptibility; Crop yield; CRISPR/Cas9

Abstract

Sugars will eventually be exported transporters (SWEETs) are recently discovered bidirectional uniporters that play a significant role in various physiological and developmental processes in plants including pollen nutrition, nectar secretion, seed filling, and combating abiotic stresses. SWEETs are also responsible for pathogen susceptibility in many plants. Although the structure and evolutionary relationships of various SWEETs have been revealed, insights into the regulatory mechanisms of SWEET expression remain the basis for developing improved varieties of crops. This review discusses many relevant updates on SWEET research in plants. We also examine how transcriptional activator-like effector nucleases (TALENs) and CRISPR/Cas9 genome editing tools derive pathogen-resistant plants for crop improvement.

Author Biographies

  • Prathima P Thirugnanasambandam, ICAR-Sugarcane Breeding Institute

    ICAR Sugarcane Breeding Institute, Coimbatore,Tamil Nadu, India

  • M Ram Vannish, ICAR Sugarcane Breeding Institute

    ICAR Sugarcane Breeding Institute, Coimbatore,Tamil Nadu, India

  • Swaliha B, ICAR Sugarcane Breeding Institute

    ICAR Sugarcane Breeding Institute, Coimbatore,Tamil Nadu, India

References

Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U, Bachem CWB. 2019. Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Current Biology 29(7):1178-1186.e6. doi:10.1016/ j.cub.2019.02.018.

An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao TT, Deng X, Xiao S, Bisseling T, Limpens E, et al. 2019. A Medicagotruncatula SWEET t ransporter implicated in arbuscule maintenance during arbuscularmycorrhizal symbiosis. New Phytologist 224(1):396–408. doi:10.1111/nph.15975.

Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22(11):3864–3876. doi:10.1105/ tpc.110.078964.

Asai Y, Kobayashi Y. 2016. Increased expression of the tomato SISWEET15 gene during grey mold infection and the possible involvement of the sugar efflux to apoplasm in the disease susceptibility.Journal of Plant Pathology and Microbiology 07(01). doi:10.4172/2157-7471.1000329.

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of arbuscularmycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Sciences 10. doi:10.3389/fpls.2019.01068.

Bezrutczyk M, Hartwig T, Horshman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D. 2018 Impaired phloem loading in genome-edited triple knock-out mutants of SWEET13 sucrose transporters. doi:10.1101/197921. https://doi.org/10.1101/197921.

Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N. 2020 . Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (Cicer arietinum L.). International Journal of Molecular Sciences Article.doi:10.3390/ ijms21051781. www.mdpi. com/ journal/ijms.

Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, et al. 2017. Targeted promoter editing for rice resistance to Xanthom onasoryzae pv.oryzae reveals differential activities for SWEET14- inducing TAL effectors. Plant Biotechnology Journal 15(3):306–317. doi:10.1111/pbi.12613.

Cao Y, Li S, Han Y, Meng D, Jiao C, Abdullah M, Li D, Jin Q, Lin Y, Cai Y. 2018. A new insight into the evolution and functional divergence of FRK genes in Pyrus bretschneideri. R Soc Open Sci. 5(7). doi:10.1098/rsos.171463.

Chandran D. 2015.Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance.IUBMB Life. 67(7):461–471. doi:10.1002/iub.1394.

Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, et al. 2013a. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23(8):697–702. doi: 10.1016/ J.CUB.2013.03.021.

Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, et al. 2013b. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23(8):697–702. doi:10.1016/J.CUB.2013.03.021.

Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant Journal 83(6):1046–1058. doi:10.1111/ tpj.12948.

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, et al. 2010. Sugar transporters for intercellular exchange and n u t r i t i o n o f p a t h o g e n s . N a t u r e 468(7323):527–532. doi:10.1038/nature09606.

Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the A r a b i d o p s i s e m b r y o . P l a n t C e l l 27(3):607–619. doi:10.1105/ tpc.114.134585.

Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB. 2012. Sucrose efflux mediated by SWEET proteins as a key s tep for phloem t ransport. Science 335(6065):207–11. doi:10.1126/science.1213351.

Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201 ( 4 ): 1150 – 1155 . doi:10.1111/nph.12445.

Durand M, Mainson D, BenoîtPorcheron ·, Maurousset · Laurence, Lemoine R, Pourtau N. 123AD. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose t r a n s p o r t e r s . P l a n t a 1 : 5 8 7 – 6 1 1 . d o i : 1 0 . 1 0 0 7 / s 0 0 4 2 5 - 0 1 7 - 2 80 7 - 4 . https://doi.org/10.1007/s00425-017-2807-4.

Eom J-S, Luo D, Atienza-Grande G, Yang J, Ji C, Luu V, Huguet-Tapia JC, Nian Char S, Liu B, Nguyen H, et al. 2019. Diagnostic kit for rice blight resistance. Nature Biotechnology doi:10.1038/s41587-019-0268-y. https:// doi.org/10.1038/s41587-019-0268-y.

Feng CY, Han JX, Han XX, Jiang J. 2015. Genome- wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573(2):261–272. doi:10.1016/j.gene.2015.07.055.

Feng L, Frommer WB. 2015. Structure and function of Semi SWEET and SWEET sugar transporters. Trends in Biochemical Sciences 4 0 ( 8 ) : 4 8 0 – 4 8 6 . d o i : 1 0 . 1 0 1 6 /j.tibs.2015.05.005.

Gamas P, NiebelFde C, Lescure N, Cullimore J. 1996. Use of a subtractive hybridization approach to identify new Medicago truncatula g e n e s i n d u c e d d u r i n g r o o t no d u l e development. Molecular Plant Microbe Interaction 9:233–242. doi: 10.1094/MPMI- 9-0233.

Gao Y, Zhang C, Han X, Wang ZY, Ma L, Yuan DP, Wu JN, Zhu XF, Liu JM, Li DP, et al. 2018. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology 19(9):2149–2161. doi:10.1111/mpp.12689.

Gautam T, Saripalli G, Gahlaut V, Kumar A, Sharma PK, Balyan HS, Gupta PK. 2019. Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.). Molecular Biology Reports 46 ( 2 ) : 2327 – 2353 . doi:10.1007/s11033-019-04691-0.

Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN. 2008. Ruptured pollen grain1, a member of the MtN3/ saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiology 147(2):852–863. doi:10.1104/ pp.108.118026.

Guo C, Li H, Xia X, Liu X, Yang L. 2018. Functional and evolution characterization of SWEET sugar transporters in Ananas comosus. Biochemical and Biophysical Research C o m m u n i c a t i o n 4 9 6 ( 2 ) : 4 0 7 – 4 1 4 . doi:10.1016/j.bbrc.2018.01.024.

Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E. 2014. SWEET17, a facilitative transporter,mediates fructose transport across the tonoplast of arabidopsis roots and leaves. Plant Physiology 164 ( 2 ) : 777 – 789 . doi:10.1104/pp.113.232751.

He Y, Chen R, Yang Y, Liang G, Zhang H, Deng X, Xi R. 2022 . Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during Camellia oleifera fruit development. International Journal of Molecular Sciences 23(2). doi:10.3390/ijms23020822.

Hu B, Wu H, Huang W, Song J, Zhou Y, Lin Y. 2019. Sweet gene family in Medicago truncatula:Genome-wide identification, expression and substrate specificity analysis. Plants 8(9).doi:10.3390/plants8090338.

Hu W, Hua X, Zhang Q, Wang J, Shen Q, Zhang X, Wang K, Yu Q, Lin YR, Ming R, et al. 2018. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics.BMC Plant Biology 18(1).doi: 10.1186/s12870-018-1495-y.

Hua X, Shen Q, Li Y, Zhou D, Zhang Z, Akbar S, Wang Z, Zhang J. 2022. Functional c h a r a c t e r i z a t i o n a n d a n a l y s i s o f transcriptional regulation of sugar transporter SWEET13c in sugarcane Saccharum spontaneum. BMC Plant Biology. 22(1).doi: 10.1186/s12870-022-03749-9.

Iftikhar J, Lyu M, Liu Z, Mehmood N, Munir N, Ahmed MAA, Batool W, Aslam MM, Yuan Y, Wu B. 2020. Sugar and hormone dynamics and the expression profiles of sut/suc and sweet sweet sugar transporters during flower development in Petunia axillaris. Plants 9(12):1–19. doi:10.3390/plants9121770.

Jeena GS, Kumar S, Shukla RK. 2019. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Molecular Biology 100(4–5):351–365. doi:10.1007/s11103-019-00872-4.

Jian H, Lu K, Yang B, Wang T, Zhang L, Zhang A, Wang J, Liu L, Qu C, Li J. 2016. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Frontiers in Plant Sciences 7 (September2016). doi:10.3389/fpls.2016.01464.

Jiang L, Song C, Zhu X, Yang J. 2021. SWEET transporters and the potential functions of these sequences in tea (Camellia sinensis). Frontiers in Genetics 12. doi:10.3389/fgene.2021. 655843.

Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications 7.doi:10.1038/ ncomms13245.

Klemens PAW, Patzke K, Deitmer J, Spinner L, le Hir R, Bellini C, Bedu M, Chardon F, Krapp A , E k k e h a r d N e u h a u s H . 2 0 1 3 . Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163(3):1338–1352. doi:10.1104/ pp.113.224972.

Ko H-Y, Ho L-H, Neuhaus HE, Guo W-J. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiology 187(4):2230–2245. doi:10.1093/plphys/ kiab290.

Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK. 2016. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiology 171(1):554–565. doi:10.1104/ pp.15.01910.

Li T, Liu B, Spalding MH, Weeks DP, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30(5):390–392. doi:10.1038/ nbt.2199.

Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen LQ, Sui X. 2021. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit d e v e l o p m e n t . P l a n t P h y s i o l o g y 186(1):640–654. doi:10.1093/plphys/ kiab046.

Li Y, Wang W, Feng Y, Tu M, Wittich PE, Bate NJ, Messing J. 2019. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes. Plant Biotechnology Journal 17(2):472–487. doi:10.1111/pbi.12991.

Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S. 2017. The plasma membrane-localized sucrose transporter ibsweet10 contributes to the resistance of sweet potato to Fusarium oxysporum. Frontiers in Plant Sciences. 8.

doi:10.3389/fpls.2017.00197.

Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET 9 . Nature 5 0 8 ( 7 4 9 7 ) : 5 4 6 – 5 4 9 . d o i : 1 0 . 1 0 3 8 /nature13082.

Liu HT, Lyu WY, Tian SH, Zou XH, Zhang LQ, Gao QH, Ni DA, Duan K. 2019. The SWEET family genes in strawberry: Identification and expression profiling during fruit development. South African Journal of Botany 125:176–187. doi:10.1016/j.sajb. 2019.07.002.

Liu X, Zhang Y, Yang C, Tian Z, Li J. 2016. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development OPEN. doi:10.1038/srep24563. www.nature.com/scientificreports.

Lu J, Sun M hong, MA Q jun, KANG H, LIU Y jing, H A O Y j i n , Y O U C x i a n g . 2 0 1 9 . MdSWEET17, a sugar transporter in apple, enhances drought tolerance in tomato. J o u r n a l of I n t eg r a t i v e A g r i cu l t u r e 18(9):2041–2051. doi:10.1016/S2095-3119(19)62695-X.

Ma H. 2005. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology56:393–434. doi:10.1146/annurev. arplant.55.031903.141717.

Mizuno H, Kasuga S, Kawahigashi H. 2016. The sorghum SWEET gene family: Stem sucrose a c c u m u l a t i o n a s re v e a l e d t h r o u g h transcriptome profiling. Biotechnology for Biofuels.9(1).doi:10.1186/s13068-016- 0546-6.

Muñoz Bodnar A, Bernal A, Szurek B, López CE. 2013. Tell me a tale of TALEs. Molecular B i o t e c h n o l o g y 5 3 ( 2 ) : 2 2 8 – 2 3 5 . doi:10.1007/s12033-012-9619-3.

Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li C, Nguyen H, Liu B, et al. 2019. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biiotechnology 37(11):1344–1350. doi:10.1038/s41587-019-0267-z.

Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47(12):1489–1493. doi:10.1038/ng.3422.

Sun MX, Huang XY, Yang J, Guan YF, Yang ZN. 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at t h e l a t e r e p r o d u c t i v e s t a g e . P l a n t Reproduction 26(2):83–91. doi:10.1007/ s00497-012-0208-1.

Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527(7577):259–263. doi:10.1038/nature15391.

Wang P, Wei P, Niu F, Liu X, Zhang H, Lyu M, Yuan Y, Wu B. 2019. Cloning and functional assessments of floral-expressed SWEET transporter genes from Jasminum sambac. International Journal of Molecular Sciences 20(16).doi:10.3390/ijms20164001.

Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, et al. 2020. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review 7(11):1776–1786.doi:10.1093/nsr/ nwaa110.

Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H. 2019. The soybean sugar transporter gmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiology 180(4):2133–2141.doi:10.1104/pp.19.00641.

Wei Y, Xiao D, Zhang C, Hou X. 2019. The Expanded SWEET gene family following whole genome triplication in Brassica rapa.doi:10.3390/genes10090722. http://www.cbs.dtu.dk/services/TMHMM/.

XIAO Q lin, LI Z, WANG Y yun, HOU X bin, WEI X mei, ZHAO X, HUANG L, GUO Y jun, L I U Z z h a i . 2 0 2 2 . G e n o m e - w i d e identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.). Journal of Integrative Agriculture21(10):2848–2864. doi:10.1016/ J.JIA.2022.07.034.

Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S, Perry K, Frommer WB, Feng L. 2014. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515(7527):448–452. doi:10.1038/nature13670.

Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, Liu L, Zhu B, et al. 2019. Engineering Broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE- binding elements of multiple susceptibility g e n e s i n r i c e . M o l e c u l a r P l a n t 12(11):1434–1446. doi:10.1016/J.MOLP.2019.08.006.

Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB. 2013. Functional role of oligomerization for bacterial and plant S W E E T s u g a r t r a n s p o r t e r f a m i l y. Proceedings of the National Academy of Sciences of the United States of America110(39). doi:10.1073/pnas.1311244110.

Yang B, Sugio A, White FF. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. www.affymetrix.comproducts arraysspecificrice.affx.

Yang B, White FF. 2004. Diverse Members of the AvrBs3/PthA Family of Type III effectors are major virulence determinants in bacterial blight disease of rice. Molecular Plant- Microbe Interactions 2004 Nov;17(11):1192- 200. doi: 10.1094/MPMI.2004.17.11.1192.

Yang J, Luo D, Yang B, Frommer WB, Eom JS. 2018. SWEET11 and 15 as key players in seed filling in rice. New Phytologist 218(2):604–615. doi:10.1111/nph.15004.

Ylstra B, Garrido D, Busscher J, Van Tunen AJ. Hexose transport in growing petunia pollen tubes and characterization of a pollen- specific, putative monosaccharide transporter 1 https://academic.oup.com/plphys/article/1 18/1/297/6085635.

Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B. 2011. Colonization of Rice Leaf Blades by an African Strain of Xanthomonas oryzae pv. oryzae Depends on a New TAL Effector That Induces the Rice Nodulin-3 Os11N3 Gene e- Xtra *. Mol Plant Microbe Interact. 24(9): 1102–1113.doi:10.1094/MPMI.

Yuan M, Wang S, Chu Z, Li X, Xu C. 2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22(9): 3164–3176.doi:10.1105/tpc. 110.078022.

Zhang X, Feng C, Wang M, Li T, Liu X, Jiang J. 2 0 2 1 . P l a s m a m e m b r a n e - l o c a l i z e d SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Horticulture Research 8(1).doi:10.1038/ s41438-021-00624-w.

Zhang Z, Zou L, Ren C, Ren F, Wang Y, Fan P, Li S, Liang Z. 2019. VvSWEET10 mediates sugar accumulation in grapes. Genes (Basel). 10(4).doi:10.3390/genes10040255.

Zhao W, Jung S, Schubert S. 2019. Transcription profile analysis identifies marker genes to distinguish salt shock and salt stress after stepwise acclimation in Arabidopsis thaliana and Zea mays. Plant Physiology and Biochemistry. 143:232–245. doi:10.1016/ J.PLAPHY.2019.09.001.

Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han Y. 2018. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation.Hortic Res. 5(1).doi:10.1038/ s41438-018-0024-3.

Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y. 2014. Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One.9(4). doi:10.1371/ journal.pone.0094210.

Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. 2022. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution and expression during hormone and abiotic stress response in maize. Genes (Basel). 13(10).doi:10.3390/genes13101682.

Downloads

Submitted

21-08-2023

Published

01-02-2024

How to Cite

Abdul Ameer, A., Perumal Thirugnanasambandam, P. P., V. P, R., M Ram Vannish, & Basheer, S. (2024). SWEET transporters in plants and their significance in Sugarcane. Journal of Sugarcane Research, 12(2), 112-127. https://doi.org/10.37580/JSR.2022.2.12.112-127
Citation