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Abstract

In recent years, considerable efforts have been made to understand 
the factors controlling grain weight in wheat. In addition to sink 
capacity, the supply of assimilates for developing grain determines 
its weight. The current photosynthesis of the flag leaf is the most 
important source of assimilation, and the onset and rate of senescence 
are important factors for determining grain yield. Hence stress 
induced leaf senescence can reduce the supply of assimilates for 
grains. Under such conditions, assimilate contributions of stored non 
structural carbohydrates in stem and photosynthesis of non foliar 
parts of the plant such as spike are crucial for grain development. 
Non structural carbohydrates in wheat stem have been estimated 
and efforts have been made to reveal the mechanisms of assimilate 
partitioning. The hormone levels and activities of enzymes involved 
in assimilate partitioning and carbohydrate metabolism in wheat 
stem and grains have been significantly correlated with grain filling 
in wheat. Remobilization efficiency of stem reserves is increased 
under heat or drought stress along with increase in the proteins 
associated with senescence and Reactive Oxygen Species handling in 
the tolerant cultivars. The heat and drought tolerant wheat cultivars 
have a higher Water Soluble Carbohydrates content in stem, higher 
mobilization efficiency, longer duration of grain filling and stronger 
sink activity. However, some of the key issues such as intra-spike 
assimilation distribution have not been sufficiently addressed. This 
review has been compiled for information related to assimilate supply 
to the developing wheat grain under stress conditions and also enlists 
opportunities to translate this knowledge into traits for improvement 
of climate resilience in wheat. 
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1. Introduction

Productivity of wheat cultivar is the function of grain 
weight and grain numbers per unit area irrespective of 
growth environments. While grain number is determined 
at early phases of plant growth, the grain weight is 
largely determined by ambient and edaphic conditions 
that prevail during grain development. The individual 
grain weight is an important trait for increasing the yield 
potential of wheat (Xie et al., 2015) and is generally 
reduced when plant experiences stress during grain filling 

(Fig. 1).The time period of grain filling and its rate has 
significant effect on final yield (Motzo et al. 2004; Sadras 
and Egli, 2008). Grain filling duration is between 362 to 
400 growing degree days (GDD) and the rate of grain 
filling ranges from 0.12 to 0.22 mg GDD−1 depending 
upon the environment and genotype (Xiaoli et al., 
2018). Miralles and slafer (1995) stated that rate of grain 
filling varies at different positions in the spike resulting 
in differences in grain weight. Carpel weight is directly 
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related to final grain weight in case of central spikelets 
(Hasan et al., 2011).Wheat breeding has created substantial 
reduction in nitrogen and phosphorus levels in grain as a 
result of biomass dilution (Ortiz-Monasterio et al., 1997). 
Genetic variation has been observed for micronutrient 
concentration in grains (Calderini and Ortiz-Monasterio, 
2003). Grain nutrient concentration tends to get diluted at 
the cost of improvement in weight. However grain position 
in the spike has been correlated to nitrogen concentration 
(Simmons and Moss, 1978). Within the spikelets, the distal 
lighter grains had low N content than the heavier proximal 
grains on central and basal spikelets (Herzog and Stamp, 
1983). This suggests that nutrient content of the grains is 
affected by grain position in spike. Therefore, nutrient 
partitioning within spike and dilution effect both need to 
be considered in subsequent breeding programs for yield 
improvement. Previous efforts have focused on higher 
grain number per square meter than enhancement in grain 
size. The distal grain setting in spikelets has contributed to 
increase in the grain number (Calderini and Slafer, 1999). 
However, the selection for additional grains in spikelets is 
compromising the nutritional quality of grains (Calderini 
and Ortiz-Monasterio, 2003). 

Wheat crop often gets exposed to drought and high 
temperature during grain growth particularly in subtropical 
conditions (Rane et al., 2007). Under drought stress wheat 
yield is mostly decreased by 50% or less of the irrigated 
control (Yu et al., 2014). A mild terminal drought stress 
(60% relative soil moisture content) has been found to 
decrease the grain yield by more reduction in the kernel 
weight than the grain number (Rasheed et al., 2014, Zhang 
et al., 2014). Hence, any efforts to improve grain yield 
of wheat under these stresses should consider insights 
into the mechanisms of grain development and also the 
supply of assimilates for developing grains particularly 
when plants experience stress. As depicted in Fig 1, the 
major causes of decrease in grain weight can be damage 
to the leaves which serve as main source of assimilate, 
impaired metabolism and anatomical defects in assimilate 
supplying parts of the plant. The conceptual illustration 
in the figure emphasizes that a series of events that occur 
mainly contributes to reduction in overall grain weight 
as well as intra-spike discrimination in distribution of 
assimilates while the sink size and its variation within 
the spike is largely governed by genetic make of the 
genotypes. Both the sink capacity and the sources capacity 

thus determine the grain weight while any of the events in 
assimilate supply to grain can be an opportunity point for 
improving the resilience of grain development process to 
stresses like drought and high temperature. The following 
sections explore such opportunities for improvement of 
grain weight of wheat under abiotic stress conditions 
caused by drought and high ambient temperature. Del 
Pozo et. al. (2016) found that drought stress decreased 
the grain yield per spike by 16.2% in the tolerant cultivar 
and by 27.9% in sensitive cultivar. But under combined 
heat and drought stress, the same cultivar did not show 
high tolerance. High temperature significantly reduced 
the grain weight and number of grains in wheat (Su et 
al. 2011). It has been reported that during grain filling 
with every 1°C rise in temperature above 18°C, there is  
3% - 5% reduction in single grain weight (Hu et al. 2016). 
Several other studies have reported that postanthesis rise 
in ambient temperature resulted in 9 to 15% reduction in 
individual grain weight. The cumulative effects of high 
temperature expressed as heat sum °C×h, the reduction 
in grain weight equated to 0.03% to 0.06% per °C∙h 
(>32°C) (Ling et al., 2013). Studies have demonstrated 
that short periods of high temperature (near 40°C) during 
grain filling result in  progressive reduction in sensitivity. 
The stress applied at 15, 30 and 40 DAA caused average 
reduction in individual grain weight by 15, 9, and 1% , 
respectively (Chang et al., 2015; Wang et al., 2012). A day 
of high temperature (40/21oC day/night) during grain 
filling decreased the individual grain weight by 10–30% 
compared with a control (21/16oC day/night) (Campbell 
et al. 1999; Groos et al. 2003). Mahrookashani et al. (2017) 
observed that the individual grain weight was decreased 
by 13%–27% under drought stress and by 43%–83% under 
combined heat and drought stress. Heat stress significantly 
decreased grain number by 14%–28%, grain yield by 
16%–25% and straw yield by 15%–25%. Also, the response 
of cultivars were similar for heat but different for drought 
and combined heat and drought treatments.

2. Contribution of leaves to grain filling in wheat

Flag leaf photosynthesis in wheat contributes about 
30–50% of the assimilates for grain filling (Sylvester-
Bradley, 1990) and initiation of grain filling coincides 
with the onset of senescence. There are characteristic 
changes in the anatomy of a leaf under stress conditions 
which can be considered as a significant manifestation 
of the regulation of photosynthesis at the morphological 
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Fig. 1 Genotype (G) x environment (E) interaction and genetic 
factors responsible for reduction in grain weight

level. It follows that moderate water limitation during 
vegetative phase will decrease growth of leaf thus 
decreasing photosynthesis. As drought intensifies and leaf 
water potential reach -1.5 MPa, closing of stomata occurs 
and further decreases photosynthesis (Acevedo et al. 1991; 
Kobata et al., 1992; Palta et al., 1994). As CO2 in the leaf 
decreases, electron transport is inhibited. Photoinhibition 
causes damage to the photosynthetic system of leaf (Long 
et al., 1994). Maintenance of the plant’s water status and 
open stomata is therefore important not only for cooling 
but also for maintaining a high conductance for CO2, 
which keeps photo-synthetic dark reactions going and 
electron transport functioning (Loomis and Amthor, 
1996). Enhanced chlorophyll fluorescence is observed 
when light harvesting exceeds the capacity of the dark 
reactions; consequently, fluorescence measurements are 
now used widely for detection of stress effects on crops 
(Seaton and Walker, 1990).

Maximum loss of grain yield occurs when the wheat plants 
are exposed to water scarcity at flowering and grain filling 
stages as a consequence of substantial decline in the rate 
of photosynthesis and hence assimilate supply for grains. 
This is the outcome of constrained metabolic performance 
(eg. degradation of chloroplasts and closure of stomata 
(Pinheiro et al. 2000). Plant leaf gas exchange has been 
studied and a decrease of 64% in net photosynthesis has 
been reported under severe stress (relative soil water 
content, RSWC<40%), whereas under mild stress (40 %< 
RSWC<55%) the decrease is only 28% (Yan et al. 2016).

Heat stress breaks down chlorophyll, impedes 
photosynthesis rate and induces leaf senescence thereby 
affecting grain weight and quality. High temperature 

during grain filling has been reported to reveal significant 
increase in level of proteins involved in photosynthesis 
in tolerant genotypes implying their critical role in 
tolerance (Wang et al., 2015). Heat-shock proteins were 
reported to be induced in the leaves by drought (Wang et 
al., 2003), cold (Sabehat et al., 1998) and heat (Lee et al., 
2007) repairing degraded proteins. The proteins related 
to photosynthesis significantly increased by heat stress, 
presumably to protect the photosynthetic machinery from 
heat (Law and Crafts-Bradner, 2001). The proteins related 
to reactive oxygen species scavenging counteract the 
damage due to heat stress. The defense processes require 
energy which is produced by increased level of energy 
metabolism related proteins (Yan et al., 2006).

The relationship between grain yield and rate of 
photosynthesis is not straightforward for a number of 
reasons. Firstly, yield differences in wheat are more often 
associated with harvest index than with differences in 
radiation-use efficiency (Calderini et al., 1995). Where yields 
are primarily limited by assimilate supply, an association 
between photosynthetic capacity and performance 
cannot necessarily be expected. The possibility for 
genetic variation in the photosynthetic metabolism to 
environment should not be ruled out. Wheat like other 
crops fixes carbon through photosynthesis and releases 
the assimilated carbon through respiration, primarily night 
respiration, which determines the crop carbon balance. 
Once gross carbon fixation rate has been simulated, net 
carbon fixation can be calculated by estimating the cost 
of growth, maintenance, and photorespiration (Loomis 
and Amthor, 1996).

3. Contribution of spike photosynthesis to grain 
filling in wheat

Spike morphological traits are often unused as selection 
criteria in wheat breeding (Wang et al., 2016). However, 
the physiology of spikes is yet to be explored for 
improvement of genetic gain in productivity of wheat. 
Spike photosynthesis has a direct effect on grain yield 
(Tambussi et al., 2007; Xiao et al., 2011). Depending on 
genotype and treatment, the spike can contribute 10%–
59% of total grain weight (Li et al., 2017; Araus et al., 1993). 
The grain photosynthesis is able to account for 33-42% of 
this photosynthesis (Evans and Rawson, 1970). In another 
study, shading the ear decreased grain weight by 59% and 
genetic variation was observed for this parameter (Araus 
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et al., 1993). A C4 photosynthetic pathway is present in 
the developing wheat grain that is absent in the leaves. 
The concept of the photosynthetic area above the flag leaf 
node in wheat as an important determinant of grain yield 
has existed for many years (Simpson et al. ,1968; Hsu and 
Walton, 1971); however, the role of spike photosynthesis 
has been omitted from analyses of the areas of specific 
photosynthetic modules with respect to their influence on 
grain yield. A correlation between spike weight and other 
morphological traits of spike have been reported (Maydup 
et al., 2007). Earlier it was proposed that the use of gigas 
spike types can boost potential grain number (Gaju et 
al., 2009) which can be a trait for increasing assimilation 
capacity of canopy of spikes. Parry et al., (2011) stated that 
the spike canopy photosynthesis proportion may be used 
as a trait in wheat breeding programs.

4. Contribution of stem reserves to grain filling

An increase in assimilate availability around anthesis 
is able to improve the distal grain weight [Roder et al., 
2008]. Under harsh environments such as heat stress and 
water deficit, stem reserves as water soluble carbohydrates 
support grain development and hence productivity of 
wheat (Ehdaie et al., 2008; Gupta et al., 2011; Yang et al. 
2000). Translocation of stem reserves contribute 20 to 40% 
weight of the grain in favourable condition (Saint Pierre 
et al., 2010) and this can be up to 70% under stressed 
conditions during grain filling (Plaut et al., 2004; Rebetzke 
et al., 2008). Van Herwaarden et al. (1998) showed that 
under dry conditions in the field, the apparent contribution 
of stored assimilates could be more than 75% of grain yield 
as compared with 37–39% under high rainfall conditions. 
Ehdaie and Waines (1996) have reported that in wheat 
exposed to drought, almost 50 % of the grain yield was 
estimated to derivate from re-translocated assimilates 
stored prior to anthesis. According to some studies stem 
reserves accounted for 64% and 81% of total grain C and 
N, respectively under stress (Dreccer et al., 2009, Plaut et 
al., 2004, Van Riet et al., 2008).

A reduction in plant water status and photosynthesis 
caused by drought stress induces the conversion of 
stored reserves into soluble (transportable) sugars and 
mobilization of sugars into grains (Blum et al., 1994; Palta 
and Fillery 1995;Yang et al., 2001a, Plaut et al., 2004). 
This dehydration tolerance strategy is sustained even 
under severe chemical dessication of the plant (Blum et 

al., 1983; Hossain et al., 1990). The phloem translocation 
was unaffected until late in the stress period, whereas 
other processes, such as photosynthesisetc, were strongly 
inhibited (Farre et al., 2016). The temperature range of 
1 to 50°C had no effect on the movement within the 
stem (Gebbing and Schnyder 1999). Because of this 
relative insensitivity, there is continuing translocation 
of assimilates, which could be a key ability for stress 
tolerance. Defoliation experiment and stem water soluble 
carbohydrate content of three high yielding local cultivars 
revealed that under water stress a significantly higher grain 
weight was retained by one cultivar (Lok1) due to higher 
stem reserve remobilization as compared to other two 
cultivars (Kumar et al., 2017).The genetic variability with 
respect to intra-spike variation in grain size can be one 
of the opportunity to improve grain weight per spike and 
hence to improve the productivity of wheat.

Wardlaw (1974) observed that the assimilate loading from 
leaves was maximum at 20-30°C; however there was an 
abrupt decline above 30°C. The conclusion was that the 
effect of high temperature on biomass partitioning in 
wheat was indirectly related to the abnormal behavior of 
source and sink along with the reduced photosynthesis 
rate. In a recent study by Ram K et al., (2018) genotypes 
with faster reserve mobilization showed maximum grain 
yield per meter square under unfavorable conditions 
and stipulated that stem reserve mobilization is best 
physiological strategy for selection of tolerant and high 
yielding genotypes for drought and high temperature 
conditions. Further, anatomical features which determine 
the ease of translocation of assimilates through phloem can 
offer additional opportunities for identification of relevant 
traits for improving performance of wheat under drought 
and high temperatures.

4.1. Traits related to stem reserve mobilization under stress 
conditions

Different traits have been associated with improved stem 
reserve remobilization (Fig. 2). Sufficient carbohydrate 
storage before grain filling is a major condition for 
stem reserves for grain filling. This may be associated 
to the traits that promote high yield potential, before 
anthesis. The stem reserve carbohydrates are termed as 
non-structural carbohydrates (NSCs) or water soluble 
carbohydrates (WSCs). NSCs include glucose, fructose, 
sucrose and fructan. Fructans are main components 
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of NSCs in wheat stems (Rouska et al., 2006;  Joudi et 
al., 2012) and constitute up to 85% of total NSCs at the 
maximum accumulation stage (Goggin et al. 2004), while 
sucrose accounts for only 10% (Cruz-Aguado et al. 2000). 
In a study by (Dreccer et al. 2009) the individual grain 
weight, from the average pool and the contribution of 
WSC to yield was significantly greater in the high vs. 
low WSC lines. Therefore, a higher proportion of final 
average individual grain weight in high WSC crops was 
dependent on the pool of stored stem carbohydrates, 
11.5% vs. 8.2% in low WSC lines.The drought tolerant 
cultivars have higher stem NSC than sensitive cultivars 
under both control and stress condition (Gupta et al. 2011). 
High WSC lines had a lower grain number per gram of 
spike weight or spike N at anthesis. This can be attributed 
to compensatory mechanisms between the grain number 
and grain weight. Nevertheless, it is worth investigating as 
to whether this could explain the differences in the spike 

carbohydrate than those in peduncles. The WSC content 
in the lower internodes had highly significant correlations 
with thousand grain weight (TGW) at anthesis stage under 
non-stressed conditions and at the middle of grain filling 
period under water deficit. Thus, the length of lower 
internodes should be sufficient to store enough stem NSC 
to provide assimilates during the grain filling (Ehdaie et 
al., 2006a). At 21 DAA (days after anthesis), mobilization 
of photosynthate starts from the upper part of stem (such 
as peduncle and penultimate internode), but it starts 
earlier at 10 DAA from the lower part of stem in wheat 
(Ehdaie et al., 2008). Borrel et al., (1993)concluded that 
under irrigated conditions, plant height and mobilization 
of stem reserves are positively correlated. In a study by 
Saint Peirre et. al. (Gupta et al., 2011), stem solidness of 
different genotypes had a positive correlation with NSC 
per stem and grain yield. Blum (1998) stated that the 
ability to store carbohydrate in stem is determined by stem 
specific weight and stem length. Ehdaie et al., (2006) also 
reported that dry matter mobilized under well-watered 
and drought conditions correlated significantly and 
positively with maximum weight of internodes but there 
was no correlation between stem length and stem reserve 
mobilization in their study (Ehdaie et al .,2008). Earlier, 
Shakiba (1996) observed a negative correlation between 
specific weight of peduncle and penultimate internode and 
WSC content at anthesis under control and drought stress. 
According to Wang et al., (2012) under heat stress, the 
mobilization efficiency increases, partially compensating 
for reduced stem carbohydrates content. Zamani et al., 
(2014) observed that WSC remobilization increased by 
60% on average under heat stress and different genotypes 
showed variation for WSC remobilization. The cultivars 
differ not only in the amount of mobilized assimilates but 
also in efficiency of mobilization in different internodes 
of the main stem (Ehdaie et al., 2006b).

4.2. Techniques to estimate stem reserve contribution

Different methods have been applied to determine the 
apparent contribution of stem reserves in grain yield.There 
is a strong positive correlation between stem dry matter 
and stem NSC content, therefore post-anthesis changes in 
stem dry weight in wheat is used as an effective indirect 
method to estimate the stem reserve remobilization to 
grain (Ehdaie et al., 2008).To reveal genotypic differences 
in the absence of photosynthesis Nicolas and Turner (1993) 
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Fig. 2. Scope for improved stem reserve remobilization 
under high temperature and drought.

structure, such as larger rachis, for larger or faster delivery 
of sugars to the grains.

The accumulation of NSCs in stem begins at internode 
elongation from jointing to grain filling stage, but the total 
quantity depends on genotype and environment (Del pozo 
et al., 2016; Dreccer et al., 2009). NSC accumulation and 
remobilization varies in different internodes (Wardlaw et 
al. 1994; Shakiba et al. 1996). About 45% of the maximum 
mass of the stem is present in peduncle and penultimate 
internode and 55% is present in the lower internodes 
(Borrell et al., 1993). The maximum accumulation of NSCs 
occurs between the peduncle and penultimate internode 
(Dreccer et al., 2009; Zhang et al., 2015) but (Li et al., 2015) 
found that the lower internodes had higher water-soluble 
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used a leaf spray of KI on wheat under post-anthesis stress. 
Other methods such as, inhibiting current photosynthesis 
during grain filling by defoliation (Fokar et al., 1998), 
labeling methods (Schnyder, 1992) or applying darkness 
(Yang et al., 2002) have also been used.

4.3. Association of stem reserves with other processes

Tahir et al., (2005) observed that heat stress significantly 
reduced the nitrogen remobilization efficiency of 
genotypes, however WSC remobilization efficiency 
increased and significant differences were observed among 
genotypes. Nitrogen remobilization efficiency under all 
conditions significantly correlated with grain yield, grain 
weight and grain filling duration. Palta et al., (1994) found 
that the remobilization of nitrogen was increased under 
water deficit; therefore, the grain N accumulation was not 
affected despite the reduction in N uptake post-anthesis. 
However, nitrogen mobilization depends on genotype and 
environmental conditions (Barraclough et al., 2010) They 
also observed that the NSC remobilization efficiency was 
positively correlated with grain weight and harvest index.

The rate of chlorophyll loss from flag leaf under heat 
stress positively correlated with nitrogen and NSC 
remobilization efficiencies suggesting a link between 
remobilization efficiency and senescence. Initiation of 
whole-plant senescence is a requirement for remobilization 
of stem water-soluble carbohydrates to grain in wheat as 
demonstrated by extensive studies (Yang et al., 2006). 
Early senescence induced by controlled soil drying could 
increase the rate of grain filling and improve kernel weight 
by improving remobilization of assimilates to grains. 
High temperature decreases the chlorophyll content in 
the leaves and accelerates senescence (Fokar et al., 1998). 
The link between accelerated leaf senescence and loss of 
chlorophyll from the leaves and the promotion of NSC 
remobilization from the stem is not clear. An increase 
in proteins related to stem senescence and reserve 
remobilization lead to higher stem reserve remobilization 
efficiency. Rapid leaf senescence may be an indication 
of reserve mobilization to the grain under stress (Assaf 
et al. 2014). Carbohydrate and nitrogen metabolism is 
involved in balancing stem reserve mobilization and non-
senescence, but the exact mechanisms are unknown. In 
addition, the predominance of proteins associated with 
ROS handling has been observed in order to sustain 
stem reserve remobilization under drought condition 

(Bazargani et al. 2011). Tillers contribute to final grain yield 
under high temperature conditions but the utilization of 
stem reserves in tillers as compared to the main stem is not 
known. Srivastava et al., (2017) observed that defoliation 
treatment hindered the capacity of the plants to remobilize 
their entire stem reserves to developing grains suggesting 
that grain filling might be source limited.

4.4. Enzymes associated with stem reserve mobilization

The enzymes involved in the stem reserve accumulation 
and mobilization are given in the table 1. Fructan is 
synthesized by four fructosyltransferase (FT) enzymes 
(Lammens et al., 2012; Cimini et al., 2015). The 
mobilization of stored reserves requires fructan hydrolysis, 
which is catalyzed by fructanexohydrolase (FEH) enzymes 
(Xue et al., 2008). Three enzymes take part in sucrose 
metabolism in the wheat stem:--Sucrose phosphate 
synthase, sucrose synthase (SS) and soluble acid invertase 
.Wardlaw and Willenbrink (2000) observed that under 
water stress, an early fall in fructancontent is coincident 
with a rise in fructanexohydrolase and acid invertase in 
the internodes. In case of rice and wheat, ADP-glucose 
pyrophosphorylase (AGPP) and SS activity in superior 
grains was higher than that of inferior grains (Yang et al., 
2001a, Jiang et al., 2003). The enhanced SS activity in 
the grains of drought stressed plants of tolerant cultivar 
as compared to those of sensitive one increased the sink 
strength and attributed towards faster remobilization 
of assimilates to the grains. Sucrose synthase activity is 
therefore regarded as biological marker of sink strength 
(Xu et al., 2019).

4.5. Role of plant hormones in assimilate translocation

The hormone levels in grains have been significantly 
correlated with grain filling of wheat. Abscisic acid 
(ABA) and cytokinins are involved in regulation of 
seed development (Davies et al., 1987). ABA has been 
assumed to be important in regulation of the transport 
of reserves to the developing seeds or fruits (Tietz et al. 
1981; Eewens et al., 1975). Many studies have reported 
a correlation between the ABA content and the growth 
rate of fruits or seeds (Schussler et al., 1991; Wang et al., 
1987; Ross et al., 1990; Kato et al., 1993; Yang et al., 1999). 
Plant senescence is delayed by a high level of cytokinins 
(Buchanan-Wollaston, 1997; Nooden et al., 1997), whereas 
a high ABA concentration accelerates senescence 
and therefore control the time available for nutrient 
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Table 1. Enzymes involved in the stem carbohydrate reserve metabolism.

SNo Enzyme Function

1 1-SST (sucrose:sucrose 1-fructos-
yltransferase)

Fructan biosynthesis: catalyzes the production of 1-ketose from sucrose 

2 1-FFT (fructan:fructan 1-fructosyl-
transferase)

Fructan biosynthesis: sucrose alpha-glucosidase activity, transferase activ-
ity 

3 6-SFT (sucrose:fructan 6-fructos-
yltransferase)

Fructan biosynthesis: sucrose 1F-fructosyltransferase activity

4 6G-FFT (fructan:fructan 6G-fruc-
tosyltransferase)

Fructan biosynthesis: sucrose alpha-glucosidase activity, transferase activ-
ity

5 1-fructan exohydrolase (1-FEH) Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan, 
with β(2,1) [Xue et al. 2008]

6 6-fructan exohydrolase (6-FEH) Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan, 
with β(2,6) linkages[De Coninck et al. 2005; Van den Ende et al. 2004; 
Van den Ende et al. 2006]

7 6&1-FEH Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan, 
with β(2,6) and  β(2,1) linkages [Davies et al. 1987]

8 Sucrose phosphate synthase Catalyzes sucrose synthesis and influences the movement of assimilates 
from the source to the developing grains [Pinheiro et al 2005].

9 Sucrose synthase (SS) Catalyzes a reversible conversion of sucrose into fructose and uridine 
diphosphate glucose [Gonzalez et al. 1998] attributed towards faster remo-
bilization of assimilates to the grains [37]

10 Soluble acid invertase Hydrolyzes sucrose into glucose and fructose [Thitisaksakul et al. 2012]

mobilization (Nooden, 1998; Madhu et al., 1999; Tadas et 
al., 1999). However, there are contradictory reports about 
the involvement of ABA in regulating both senescence 
and assimilate mobilization (Brown et al. 1991; Schussler 
et al. 1991; De Brujn and Vreugdenhil 1992; Sharp et al. 
2002). Yang et al. (2003) observed that under water stress 
ABA was positively and significantly correlated with stem 
reserve remobilization and grain filling rate but zeatin 
(Z) + zeatin riboside (ZR) concentrations in the stems 
and leaves was reduced. Exogenous ABA increased the 
chlorophyll loss, enhanced the remobilization of prestored 
carbon from the stem to the endosperm, and increased 
grain weight (Yang et al. 2001b). An increase in ABA and 
reduction in cytokinin levels induces early senescence 
under drought in wheat and rice which leads to higher and 
faster stem NSC remobilization to grains and increases 
grain filling rate, but shortens the grain filling period 
(Yang et al. 2003; Yang et al. 2001). Exogenous kinetin 
reduced remobilization of carbohydrate reserves (Yang et 
al. 2003). The hormone gibberellin is likely to be involved 
in induction of reserve mobilization under stress (Yang et 
al. 2001b). Superior grains have a higher level of ethylene 

(ETH) than inferior grains of wheat (Yang et al. 2006a). A 
study found that plastic covered ridge and furrow planting 
significantly affected the Z +ZR and ETH levels in grains, 
and that promoted the grain filling of inferior grain of 
wheat (Liu et al. 2013a). Liang et. al. (2017) observed that 
high pre-anthesis NSC reserves led to an increase in Z + 
ZR content and decrease in ETH evolution rate in the 
inferior grain, which enhanced the sink strength and grain 
filling rate of the inferior grain of wheat.

4.6. Genetic improvement of stem reserve mobilization

Plaut et. al. (2004) found that under water deficit condition, 
rate of grain filling is more in the tolerant than in sensitive 
wheat cultivar. The favorable WSC alleles haveincreased 
from 1.13 in the pre-1960 to 4.41 in the post-2000 in wheat. 
This suggests that stem reserves contribution to grain yield 
has been indirectly taken into consideration. QTL studies 
showed that many genes control WSC accumulation and 
are important for grain size and stability (Rebetzke et al., 
2008). Li et. al., (2015) identified 22 favourable alleles for 
stem water-soluble carbohydrates, out of which five loci 
individually contributed to significantly higher TGW. The 
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gene expression analysis indicated that 1-FEH w3 was 
likely the main gene involved in the total 1-FEH enzyme 
activity.  High rate of fructan degradation was positively 
correlated to 1-FEH w3 gene, therefore, to a higher stem 
WSC remobilization (Zang et al. 2015).  The 1-FEH 
w3 Westonia allele contributes to high grain weight in 
drought stress during grain filling. A marker generated in 
the promoter region of 1-FEH w3 is associated with high 
stem fructan remobilization capacity (Nicolas et al. 1993).
Among the five sucrose transporter genes (SUTs) reported 
in wheat (Aoki et al. 2004; Deol et al. 2013; Mukherjee et 
al. 2015; Ahmed et al. 2018), the high gene expression of 
TaSUT1 in grain and the correlation with the grain filling 
demonstrated the crucial role for TaSUT1 in sucrose 
reloading to grain and high yield. Significant differences 
in TaSUT1 gene expression between treatments and 
varieties indicate the genotypic variations towards two 
different soil moisture levels.

5. Conclusion

Improving photosynthesis is an approach which targets 
increasing yield potential, but it will also be necessary to 
reduce the yield gap between favourable and unfavourable. 

environments in order to provide resilience to abiotic 

stresses such as drought and high temperatures. While 

stem reserve mobilization has been extensively studied, 

spike photosynthetic contribution under stress conditions 

needs to be explored. It is evident that the stem reserve 

mobilization is an alternative strategy adopted by plants to 

compensate for the reduced capacity of leaf photosynthesis 

during stress. It is important to note that genetic variation 

exist for this trait which needs to be explored for wheat 

improvement. Components of stem reserve supply for 

grain development can offer opportunity to identify 

relevant traits to ensure grain yield stability across the 

target environments. In addition, it is essential to focus 

on genetic variation in contribution of current spike 

contribution to developing grains specifically with focus 

on intraspike assimilate distribution which needs attention.
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