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1. Introduction

Abstract

In recent years, considerable efforts have been made to understand
the factors controlling grain weight in wheat. In addition to sink
capacity, the supply of assimilates for developing grain determines
its weight. The current photosynthesis of the flag leaf is the most
important source of assimilation, and the onset and rate of senescence
are important factors for determining grain yield. Hence stress
induced leaf senescence can reduce the supply of assimilates for
grains. Under such conditions, assimilate contributions of stored non
structural carbohydrates in stem and photosynthesis of non foliar
parts of the plant such as spike are crucial for grain development.
Non structural carbohydrates in wheat stem have been estimated
and efforts have been made to reveal the mechanisms of assimilate
partitioning. The hormone levels and activities of enzymes involved
in assimilate partitioning and carbohydrate metabolism in wheat
stem and grains have been significantly correlated with grain filling
in wheat. Remobilization efficiency of stem reserves is increased
under heat or drought stress along with increase in the proteins
associated with senescence and Reactive Oxygen Species handling in
the tolerant cultivars. The heat and drought tolerant wheat cultivars
have a higher Water Soluble Carbohydrates content in stem, higher
mobilization efficiency, longer duration of grain filling and stronger
sink activity. However, some of the key issues such as intra-spike
assimilation distribution have not been sufficiently addressed. This
review has been compiled for information related to assimilate supply
to the developing wheat grain under stress conditions and also enlists
opportunities to translate this knowledge into traits for improvement
of climate resilience in wheat.

Keywords: Grain weight, assimilate, photosynthesis, stem reserves,
intra-spike assimilation

Productivity of wheat cultivar is the function of grain
weight and grain numbers per unit area irrespective of
growth environments. While grain number is determined
at early phases of plant growth, the grain weight is
largely determined by ambient and edaphic conditions
that prevail during grain development. The individual
grain weight is an important trait for increasing the yield
potential of wheat (Xie et al., 2015) and is generally

reduced when plant experiences stress during grain filling

(Fig. 1).The time period of grain filling and its rate has
significant effect on final yield (Motzo et al. 2004; Sadras
and Egli, 2008). Grain filling duration is between 362 to
400 growing degree days (GDD) and the rate of grain
filling ranges from 0.12 to 0.22 mg GDD™' depending
upon the environment and genotype (Xiaoli et al.,
2018). Miralles and slafer (1995) stated that rate of grain
filling varies at different positions in the spike resulting

in differences in grain weight. Carpel weight is directly
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related to final grain weight in case of central spikelets
(Hasan et al., 2011).Wheat breeding has created substantial
reduction in nitrogen and phosphorus levels in grain as a
result of biomass dilution (Ortiz-Monasterio et al., 1997).
Genetic variation has been observed for micronutrient
concentration in grains (Calderini and Ortiz-Monasterio,
2003). Grain nutrient concentration tends to get diluted at
the cost of improvement in weight. However grain position
in the spike has been correlated to nitrogen concentration
(Simmons and Moss, 1978). Within the spikelets, the distal
lighter grains had low N content than the heavier proximal
grains on central and basal spikelets (Herzog and Stamp,
1983). This suggests that nutrient content of the grains is
affected by grain position in spike. Therefore, nutrient
partitioning within spike and dilution effect both need to
be considered in subsequent breeding programs for yield
improvement. Previous efforts have focused on higher
grain number per square meter than enhancement in grain
size. The distal grain setting in spikelets has contributed to
increase in the grain number (Calderini and Slafer, 1999).
However, the selection for additional grains in spikelets is
compromising the nutritional quality of grains (Calderini
and Ortiz-Monasterio, 2003).

Wheat crop often gets exposed to drought and high
temperature during grain growth particularly in subtropical
conditions (Rane ¢t al., 2007). Under drought stress wheat
yield is mostly decreased by 50% or less of the irrigated
control (Yu et al., 2014). A mild terminal drought stress
(60% relative soil moisture content) has been found to
decrease the grain yield by more reduction in the kernel
weight than the grain number (Rasheed ez al., 2014, Zhang
et al., 2014). Hence, any efforts to improve grain yield
of wheat under these stresses should consider insights
into the mechanisms of grain development and also the
supply of assimilates for developing grains particularly
when plants experience stress. As depicted in Fig 1, the
major causes of decrease in grain weight can be damage
to the leaves which serve as main source of assimilate,
impaired metabolism and anatomical defects in assimilate
supplying parts of the plant. The conceptual illustration
in the figure emphasizes that a series of events that occur
mainly contributes to reduction in overall grain weight
as well as intra-spike discrimination in distribution of
assimilates while the sink size and its variation within
the spike is largely governed by genetic make of the
genotypes. Both the sink capacity and the sources capacity
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thus determine the grain weight while any of the events in
assimilate supply to grain can be an opportunity point for
improving the resilience of grain development process to
stresses like drought and high temperature. The following
sections explore such opportunities for improvement of
grain weight of wheat under abiotic stress conditions
caused by drought and high ambient temperature. Del
Pozo et. al. (2016) found that drought stress decreased
the grain yield per spike by 16.2% in the tolerant cultivar
and by 27.9% in sensitive cultivar. But under combined
heat and drought stress, the same cultivar did not show
high tolerance. High temperature significantly reduced
the grain weight and number of grains in wheat (Su e
al. 2011). It has been reported that during grain filling
with every 1°C rise in temperature above 18°C, there is
3% - 5% reduction in single grain weight (Hu et a/ 2016).
Several other studies have reported that postanthesis rise
in ambient temperature resulted in 9 to 15% reduction in
individual grain weight. The cumulative effects of high
temperature expressed as heat sum °Cxh, the reduction
in grain weight equated to 0.03% to 0.06% per °C h
(>32°C) (Ling et al., 2013). Studies have demonstrated
that short periods of high temperature (near 40°C) during
grain filling result in progressive reduction in sensitivity.
The stress applied at 15, 30 and 40 DAA caused average
reduction in individual grain weight by 15, 9, and 1% ,
respectively (Chang et al.,, 2015; Wang et al., 2012). A day
of high temperature (40/21°C day/night) during grain
filling decreased the individual grain weight by 10-30%
compared with a control (21/16°C day/night) (Campbell
et al. 1999; Groos et al. 2003). Mahrookashani ez al. (2017)
observed that the individual grain weight was decreased
by 13%-27% under drought stress and by 43%-83% under
combined heat and drought stress. Heat stress significantly
decreased grain number by 14%-28%, grain yield by
16%-25% and straw yield by 15%-25%. Also, the response
of cultivars were similar for heat but different for drought

and combined heat and drought treatments.
2. Contribution of leaves to grain filling in wheat

Flag leaf photosynthesis in wheat contributes about
30-50% of the assimilates for grain filling (Sylvester-
Bradley, 1990) and initiation of grain filling coincides
with the onset of senescence. There are characteristic
changes in the anatomy of a leaf under stress conditions
which can be considered as a significant manifestation

of the regulation of photosynthesis at the morphological
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Fig. 1 Genotype (G) x environment (E) interaction and genetic
factors responsible for reduction in grain weight

level. It follows that moderate water limitation during
vegetative phase will decrease growth of leaf thus
decreasing photosynthesis. As drought intensifies and leaf
water potential reach -1.5 MPa, closing of stomata occurs
and further decreases photosynthesis (Acevedo et al. 1991,
Kobata et al., 1992; Palta et al., 1994). As CO, in the leaf
decreases, electron transport is inhibited. Photoinhibition
causes damage to the photosynthetic system of leaf (Long
et al., 1994). Maintenance of the plant’s water status and
open stomata is therefore important not only for cooling
but also for maintaining a high conductance for CO,,
which keeps photo-synthetic dark reactions going and
electron transport functioning (Loomis and Amthor,
1996). Enhanced chlorophyll fluorescence is observed
when light harvesting exceeds the capacity of the dark
reactions; consequently, fluorescence measurements are
now used widely for detection of stress effects on crops
(Seaton and Walker, 1990).

Maximum loss of grain yield occurs when the wheat plants
are exposed to water scarcity at flowering and grain filling
stages as a consequence of substantial decline in the rate
of photosynthesis and hence assimilate supply for grains.
This is the outcome of constrained metabolic performance
(eg. degradation of chloroplasts and closure of stomata
(Pinheiro et al. 2000). Plant leaf gas exchange has been
studied and a decrease of 64% in net photosynthesis has
been reported under severe stress (relative soil water
content, RSWC<40%), whereas under mild stress (40 %<
RSWC<55%) the decrease is only 28% (Yan et al. 2016).

Heat stress breaks down chlorophyll, impedes
photosynthesis rate and induces leaf senescence thereby

affecting grain weight and quality. High temperature

during grain filling has been reported to reveal significant
increase in level of proteins involved in photosynthesis
in tolerant genotypes implying their critical role in
tolerance (Wang et al., 2015). Heat-shock proteins were
reported to be induced in the leaves by drought (Wang et
al., 2003), cold (Sabehat ¢t al., 1998) and heat (Lee et al.,
2007) repairing degraded proteins. The proteins related
to photosynthesis significantly increased by heat stress,
presumably to protect the photosynthetic machinery from
heat (Law and Crafts-Bradner, 2001). The proteins related
to reactive oxygen species scavenging counteract the
damage due to heat stress. The defense processes require
energy which is produced by increased level of energy

metabolism related proteins (Yan ez al., 2006).

The relationship between grain yield and rate of
photosynthesis is not straightforward for a number of
reasons. Firstly, yield differences in wheat are more often
associated with harvest index than with differences in
radiation-use efficiency (Calderini ez al., 1995). Where yields
are primarily limited by assimilate supply, an association
between photosynthetic capacity and performance
cannot necessarily be expected. The possibility for
genetic variation in the photosynthetic metabolism to
environment should not be ruled out. Wheat like other
crops fixes carbon through photosynthesis and releases
the assimilated carbon through respiration, primarily night
respiration, which determines the crop carbon balance.
Once gross carbon fixation rate has been simulated, net
carbon fixation can be calculated by estimating the cost
of growth, maintenance, and photorespiration (Loomis
and Amthor, 1996).

3. Contribution of spike photosynthesis to grain
filling in wheat

Spike morphological traits are often unused as selection
criteria in wheat breeding (Wang et al., 2016). However,
the physiology of spikes is yet to be explored for
improvement of genetic gain in productivity of wheat.
Spike photosynthesis has a direct effect on grain yield
(Tambussi et al., 2007; Xiao et al., 2011). Depending on
genotype and treatment, the spike can contribute 10%-—
59% of total grain weight (Li et al., 2017; Araus ez al., 1993).
The grain photosynthesis is able to account for 33-42% of
this photosynthesis (Evans and Rawson, 1970). In another
study, shading the ear decreased grain weight by 59% and

genetic variation was observed for this parameter (Araus
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et al., 1993). A C4 photosynthetic pathway is present in
the developing wheat grain that is absent in the leaves.
The concept of the photosynthetic area above the flag leaf
node in wheat as an important determinant of grain yield
has existed for many years (Simpson ez al. ,1968; Hsu and
Walton, 1971); however, the role of spike photosynthesis
has been omitted from analyses of the areas of specific
photosynthetic modules with respect to their influence on
grain yield. A correlation between spike weight and other
morphological traits of spike have been reported (Maydup
et al., 2007). Earlier it was proposed that the use of gigas
spike types can boost potential grain number (Gaju et
al., 2009) which can be a trait for increasing assimilation
capacity of canopy of spikes. Parry et al., (2011) stated that
the spike canopy photosynthesis proportion may be used
as a trait in wheat breeding programs.

4. Contribution of stem reserves to grain filling

An increase in assimilate availability around anthesis
is able to improve the distal grain weight [Roder ez al.,
2008]. Under harsh environments such as heat stress and
water deficit, stem reserves as water soluble carbohydrates
support grain development and hence productivity of
wheat (Ehdaie et al., 2008; Gupta et al., 2011; Yang et al.
2000). Translocation of stem reserves contribute 20 to 40%
weight of the grain in favourable condition (Saint Pierre
et al., 2010) and this can be up to 70% under stressed
conditions during grain filling (Plaut et a/., 2004; Rebetzke
et al., 2008). Van Herwaarden et al. (1998) showed that
under dry conditions in the field, the apparent contribution
of stored assimilates could be more than 75% of grain yield
as compared with 37-39% under high rainfall conditions.
Ehdaie and Waines (1996) have reported that in wheat
exposed to drought, almost 50 % of the grain yield was
estimated to derivate from re-translocated assimilates
stored prior to anthesis. According to some studies stem
reserves accounted for 64% and 81% of total grain C and
N, respectively under stress (Dreccer ¢t al., 2009, Plaut et
al., 2004, Van Riet et al., 2008).

A reduction in plant water status and photosynthesis
caused by drought stress induces the conversion of
stored reserves into soluble (transportable) sugars and
mobilization of sugars into grains (Blum ez al,, 1994; Palta
and Fillery 1995;Yang et al., 2001a, Plaut et al., 2004).
This dehydration tolerance strategy is sustained even

under severe chemical dessication of the plant (Blum et
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al., 1983; Hossain et al., 1990). The phloem translocation
was unaffected until late in the stress period, whereas
other processes, such as photosynthesisetc, were strongly
inhibited (Farre et al, 2016). The temperature range of
1 to 50°C had no effect on the movement within the
stem (Gebbing and Schnyder 1999). Because of this
relative insensitivity, there is continuing translocation
of assimilates, which could be a key ability for stress
tolerance. Defoliation experiment and stem water soluble
carbohydrate content of three high yielding local cultivars
revealed that under water stress a significantly higher grain
weight was retained by one cultivar (Lok1) due to higher
stem reserve remobilization as compared to other two
cultivars (Kumar et al., 2017).The genetic variability with
respect to intra-spike variation in grain size can be one
of the opportunity to improve grain weight per spike and

hence to improve the productivity of wheat.

Wardlaw (1974) observed that the assimilate loading from
leaves was maximum at 20-30°C; however there was an
abrupt decline above 30°C. The conclusion was that the
effect of high temperature on biomass partitioning in
wheat was indirectly related to the abnormal behavior of
source and sink along with the reduced photosynthesis
rate. In a recent study by Ram K et al., (2018) genotypes
with faster reserve mobilization showed maximum grain
yield per meter square under unfavorable conditions
and stipulated that stem reserve mobilization is best
physiological strategy for selection of tolerant and high
yielding genotypes for drought and high temperature
conditions. Further, anatomical features which determine
the ease of translocation of assimilates through phloem can
offer additional opportunities for identification of relevant
traits for improving performance of wheat under drought

and high temperatures.

4.1. Traits related to stem reserve mobilization under stress
conditions

Different traits have been associated with improved stem
reserve remobilization (Fig. 2). Sufficient carbohydrate
storage before grain filling is a major condition for
stem reserves for grain filling. This may be associated
to the traits that promote high yield potential, before
anthesis. The stem reserve carbohydrates are termed as
non-structural carbohydrates (NSCs) or water soluble
carbohydrates (WSCs). NSCs include glucose, fructose,

sucrose and fructan. Fructans are main components
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of NSCs in wheat stems (Rouska et al., 2006; Joudi et
al., 2012) and constitute up to 85% of total NSCs at the
maximum accumulation stage (Goggin ¢t al. 2004), while
sucrose accounts for only 10% (Cruz-Aguado et al. 2000).
In a study by (Dreccer et al. 2009) the individual grain
weight, from the average pool and the contribution of
WSC to yield was significantly greater in the high vs.
low WSC lines. Therefore, a higher proportion of final
average individual grain weight in high WSC crops was
dependent on the pool of stored stem carbohydrates,
11.5% vs. 8.2% in low WSC lines.The drought tolerant
cultivars have higher stem NSC than sensitive cultivars
under both control and stress condition (Gupta ez al. 2011).
High WSC lines had a lower grain number per gram of
spike weight or spike N at anthesis. This can be attributed
to compensatory mechanisms between the grain number
and grain weight. Nevertheless, it is worth investigating as

to whether this could explain the differences in the spike

More pre anthesis
tem car

ansportation
T car
More pre anthesis | Improved | Better Anatomy
esi boli Phloem

| High temperature and Drought |

Fig. 2. Scope for improved stem reserve remobilization
under high temperature and drought.

structure, such as larger rachis, for larger or faster delivery

of sugars to the grains.
|

The accumulation of NSCs in stem begins at internode
elongation from jointing to grain filling stage, but the total
quantity depends on genotype and environment (Del pozo
et al., 2016; Dreccer et al., 2009). NSC accumulation and
remobilization varies in different internodes (Wardlaw et
al. 1994; Shakiba ez al. 1996). About 45% of the maximum
mass of the stem is present in peduncle and penultimate
internode and 55% is present in the lower internodes
(Borrell et al., 1993). The maximum accumulation of NSCs
occurs between the peduncle and penultimate internode
(Dreccer ¢t al., 2009; Zhang et al., 2015) but (Li et al., 2015)

found that the lower internodes had higher water-soluble

carbohydrate than those in peduncles. The WSC content
in the lower internodes had highly significant correlations
with thousand grain weight (TGW) at anthesis stage under
non-stressed conditions and at the middle of grain filling
period under water deficit. Thus, the length of lower
internodes should be sufficient to store enough stem NSC
to provide assimilates during the grain filling (Ehdaie et
al., 2006a). At 21 DAA (days after anthesis), mobilization
of photosynthate starts from the upper part of stem (such
as peduncle and penultimate internode), but it starts
earlier at 10 DAA from the lower part of stem in wheat
(Ehdaie et al., 2008). Borrel et al., (1993)concluded that
under irrigated conditions, plant height and mobilization
of stem reserves are positively correlated. In a study by
Saint Peirre et. al. (Gupta et al., 2011), stem solidness of
different genotypes had a positive correlation with NSC
per stem and grain yield. Blum (1998) stated that the
ability to store carbohydrate in stem is determined by stem
specific weight and stem length. Ehdaie ez al., (2006) also
reported that dry matter mobilized under well-watered
and drought conditions correlated significantly and
positively with maximum weight of internodes but there
was no correlation between stem length and stem reserve
mobilization in their study (Ehdaie ez a/ .,2008). Earlier,
Shakiba (1996) observed a negative correlation between
specific weight of peduncle and penultimate internode and
WSC content at anthesis under control and drought stress.
According to Wang et al., (2012) under heat stress, the
mobilization efficiency increases, partially compensating
for reduced stem carbohydrates content. Zamani et al.,
(2014) observed that WSC remobilization increased by
60% on average under heat stress and different genotypes
showed variation for WSC remobilization. The cultivars
differ not only in the amount of mobilized assimilates but
also in efficiency of mobilization in different internodes
of the main stem (Ehdaie ez al., 2006b).

4.2. Techniques to estimate stem reserve contribution

Different methods have been applied to determine the
apparent contribution of stem reserves in grain yield. There
is a strong positive correlation between stem dry matter
and stem NSC content, therefore post-anthesis changes in
stem dry weight in wheat is used as an effective indirect
method to estimate the stem reserve remobilization to
grain (Ehdaie ez al., 2008).To reveal genotypic differences
in the absence of photosynthesis Nicolas and Turner (1993)
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used a leaf spray of KI on wheat under post-anthesis stress.
Other methods such as, inhibiting current photosynthesis
during grain filling by defoliation (Fokar et al., 1998),
labeling methods (Schnyder, 1992) or applying darkness
(Yang et al., 2002) have also been used.

4.3. Association of stem reserves with other processes

Tahir et al., (2005) observed that heat stress significantly
reduced the nitrogen remobilization efficiency of
genotypes, however WSC remobilization efficiency
increased and significant differences were observed among
genotypes. Nitrogen remobilization efficiency under all
conditions significantly correlated with grain yield, grain
weight and grain filling duration. Palta ez al., (1994) found
that the remobilization of nitrogen was increased under
water deficit; therefore, the grain N accumulation was not
affected despite the reduction in N uptake post-anthesis.
However, nitrogen mobilization depends on genotype and
environmental conditions (Barraclough et al., 2010) They
also observed that the NSC remobilization efficiency was

positively correlated with grain weight and harvest index.

The rate of chlorophyll loss from flag leaf under heat
stress positively correlated with nitrogen and NSC
remobilization efficiencies suggesting a link between
remobilization efficiency and senescence. Initiation of
whole-plant senescence is a requirement for remobilization
of stem water-soluble carbohydrates to grain in wheat as
demonstrated by extensive studies (Yang et al., 2006).
Early senescence induced by controlled soil drying could
increase the rate of grain filling and improve kernel weight
by improving remobilization of assimilates to grains.
High temperature decreases the chlorophyll content in
the leaves and accelerates senescence (Fokar et al., 1998).
The link between accelerated leaf senescence and loss of
chlorophyll from the leaves and the promotion of NSC
remobilization from the stem is not clear. An increase
in proteins related to stem senescence and reserve
remobilization lead to higher stem reserve remobilization
efficiency. Rapid leaf senescence may be an indication
of reserve mobilization to the grain under stress (Assaf
et al. 2014). Carbohydrate and nitrogen metabolism is
involved in balancing stem reserve mobilization and non-
senescence, but the exact mechanisms are unknown. In
addition, the predominance of proteins associated with
ROS handling has been observed in order to sustain

stem reserve remobilization under drought condition
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(Bazargani et al. 2011). Tillers contribute to final grain yield
under high temperature conditions but the utilization of
stem reserves in tillers as compared to the main stem is not
known. Srivastava et al., (2017) observed that defoliation
treatment hindered the capacity of the plants to remobilize
their entire stem reserves to developing grains suggesting

that grain filling might be source limited.
4.4. Enzymes associated with stem reserve mobilization

The enzymes involved in the stem reserve accumulation
and mobilization are given in the table 1. Fructan is
synthesized by four fructosyltransferase (FT) enzymes
(Lammens et al., 2012; Cimini et al., 2015). The
mobilization of stored reserves requires fructan hydrolysis,
which is catalyzed by fructanexohydrolase (FEH) enzymes
(Xue et al, 2008). Three enzymes take part in sucrose
metabolism in the wheat stem:--Sucrose phosphate
synthase, sucrose synthase (SS) and soluble acid invertase
.Wardlaw and Willenbrink (2000) observed that under
water stress, an early fall in fructancontent is coincident
with a rise in fructanexohydrolase and acid invertase in
the internodes. In case of rice and wheat, ADP-glucose
pyrophosphorylase (AGPP) and SS activity in superior
grains was higher than that of inferior grains (Yang ¢t al.,
2001a, Jiang et al., 2003). The enhanced SS activity in
the grains of drought stressed plants of tolerant cultivar
as compared to those of sensitive one increased the sink
strength and attributed towards faster remobilization
of assimilates to the grains. Sucrose synthase activity is
therefore regarded as biological marker of sink strength
(Xu et al., 2019).

4.5. Role of plant hormones in assimilate translocation

The hormone levels in grains have been significantly
correlated with grain filling of wheat. Abscisic acid
(ABA) and cytokinins are involved in regulation of
seed development (Davies et al., 1987). ABA has been
assumed to be important in regulation of the transport
of reserves to the developing seeds or fruits (Tietz et al.
1981; Eewens et al., 1975). Many studies have reported
a correlation between the ABA content and the growth
rate of fruits or seeds (Schussler ez al., 1991; Wang et al.,
1987; Ross et al., 1990; Kato et al., 1993; Yang et al., 1999).
Plant senescence is delayed by a high level of cytokinins
(Buchanan-Wollaston, 1997; Nooden et al., 1997), whereas
a high ABA concentration accelerates senescence

and therefore control the time available for nutrient
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Table 1. Enzymes involved in the stem carbohydrate reserve metabolism.

SNo Enzyme Function
1 1-SST (sucrose:sucrose 1-fructos-  Fructan biosynthesis: catalyzes the production of 1-ketose from sucrose
yltransferase)
2 1-FFT (fructan:fructan 1-fructosyl- Fructan biosynthesis: sucrose alpha-glucosidase activity, transferase activ-
transferase) ity
3 6-SFT (sucrose:fructan 6-fructos-  Fructan biosynthesis: sucrose 1F-fructosyltransferase activity
yltransferase)
4 6G-FFT (fructan:fructan 6G-fruc-  Fructan biosynthesis: sucrose alpha-glucosidase activity, transferase activ-
tosyltransferase) ity
5 1-fructan exohydrolase (1-FEH) Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan,
with (2,1) [Xue et al. 2008]
6 6-fructan exohydrolase (6-FEH) Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan,
with (2,6) linkages[De Coninck et al. 2005; Van den Ende et al. 2004;
Van den Ende et al. 2006]
7 6&1-FEH Fructan hydrolysis: catalyze the reaction of depolymerisation of fructan,
with (2,6) and (2,1) linkages [Davies et al. 1987]
8 Sucrose phosphate synthase Catalyzes sucrose synthesis and influences the movement of assimilates
from the source to the developing grains [Pinheiro et al 2005].
9 Sucrose synthase (SS) Catalyzes a reversible conversion of sucrose into fructose and uridine
diphosphate glucose [Gonzalez et al. 1998] attributed towards faster remo-
bilization of assimilates to the grains [37]
10 Soluble acid invertase Hydrolyzes sucrose into glucose and fructose [Thitisaksakul et al. 2012]

mobilization (Nooden, 1998; Madhu et al., 1999; Tadas et
al., 1999). However, there are contradictory reports about
the involvement of ABA in regulating both senescence
and assimilate mobilization (Brown et al. 1991; Schussler
et al. 1991; De Brujn and Vreugdenhil 1992; Sharp et al.
2002). Yang et al. (2003) observed that under water stress
ABA was positively and significantly correlated with stem
reserve remobilization and grain filling rate but zeatin
(Z) + zeatin riboside (ZR) concentrations in the stems
and leaves was reduced. Exogenous ABA increased the
chlorophyll loss, enhanced the remobilization of prestored
carbon from the stem to the endosperm, and increased
grain weight (Yang ez al. 2001b). An increase in ABA and
reduction in cytokinin levels induces early senescence
under drought in wheat and rice which leads to higher and
faster stem NSC remobilization to grains and increases
grain filling rate, but shortens the grain filling period
(Yang et al. 2003; Yang et al. 2001). Exogenous kinetin
reduced remobilization of carbohydrate reserves (Yang et
al.2003). The hormone gibberellin is likely to be involved
in induction of reserve mobilization under stress (Yang e/

al.2001Db). Superior grains have a higher level of ethylene

(ETH) than inferior grains of wheat (Yang et al. 2006a). A
study found that plastic covered ridge and furrow planting
significantly affected the Z +ZR and ETH levels in grains,
and that promoted the grain filling of inferior grain of
wheat (Liu ez al. 2013a). Liang et. al. (2017) observed that
high pre-anthesis NSC reserves led to an increase in Z +
ZR content and decrease in ETH evolution rate in the
inferior grain, which enhanced the sink strength and grain

filling rate of the inferior grain of wheat.
4.6. Genetic improvement of stem reserve mobilization

Plaut et. al. (2004) found that under water deficit condition,
rate of grain filling is more in the tolerant than in sensitive
wheat cultivar. The favorable WSC alleles haveincreased
from 1.13 in the pre-1960 to 4.41 in the post-2000 in wheat.
This suggests that stem reserves contribution to grain yield
has been indirectly taken into consideration. QTL studies
showed that many genes control WSC accumulation and
are important for grain size and stability (Rebetzke et al.,
2008). Li et. al., (2015) identified 22 favourable alleles for
stem water-soluble carbohydrates, out of which five loci
individually contributed to significantly higher TGW. The
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gene expression analysis indicated that 1-FEH w3 was
likely the main gene involved in the total 1-FEH enzyme
activity. High rate of fructan degradation was positively
correlated to 1-FEH w3 gene, therefore, to a higher stem
WSC remobilization (Zang et al. 2015). The 1-FEH
w3 Westonia allele contributes to high grain weight in
drought stress during grain filling. A marker generated in
the promoter region of 1-FEH w3 is associated with high
stem fructan remobilization capacity (Nicolas et al. 1993).
Among the five sucrose transporter genes (SUTS) reported
in wheat (Aoki ez al. 2004; Deol et al. 2013; Mukherjee et
al. 2015; Ahmed ez al. 2018), the high gene expression of
TaSUT1 in grain and the correlation with the grain filling
demonstrated the crucial role for TaSUT1 in sucrose
reloading to grain and high yield. Significant differences
in TaSUT1 gene expression between treatments and
varieties indicate the genotypic variations towards two

different soil moisture levels.
5. Conclusion

Improving photosynthesis is an approach which targets
increasing yield potential, but it will also be necessary to

reduce the yield gap between favourable and unfavourable.
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