Journal of Cereal Research

14(1): 76-81

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Field screening and identification of stable resistance sources in wheat germplasm against loose smut disease caused by *Ustilago* segetum var. tritici

Sudheer Kumar*, Prem Lal Kashyap*, Ishwar Singh, Poonam Jasrotia and Gyanendra Pratap Singh

ICAR - Indian Institute of Wheat and Barley Research, Karnal - 132001

Article history:

Received: 31, Dec., 2021 Revised: 14, Mar., 2022 Accepted: 04, Apr., 2022

Citation:

Kumar S, Kashyap PL, Singh I, Jasrotia P and Singh GP. 2022. Field screening and identification of stable resistance sources in wheat germplasm against loose smut disease caused by *Ustilago segetum* var. *tritici. Journal of Cereal Research* 14(1): 76-81. https://doi.org/10.25174/2582-2675/2022/119668

*Corresponding author:

E-mail: sudheer.icar@gmail.com, sudheer.kumar@icar.gov.in, plkashyap@gmail.com

© Society for Advancement of Wheat and Barley Research

Abstract

Loose smut (LS) caused by Ustilago segetum var. tritici is an important disease of wheat (Triticum spp.) and accounts for 1-2% annual yield losses in India. The disease can be managed easily with the use of seed treatment with systematic fungicides, however, the application of these fungicides remained limited amongst farmers mainly due to their high price, limited knowledge about seed protectants as well as lack of any visible external symptoms on infected seeds. Additionally, seed dressing with protectants is hazardous to the environment and human health and thus not acceptable in organic wheat cultivation. The most affordable and environment friendly technique to protect wheat crop is to develop varieties that are resistant to loose smut disease. Therefore, research efforts have been made to screen one hundred and ninety-seven wheat genotypes obtained from gene bank (Germplasm resource unit, ICAR-Indian Institute of Wheat and Barley Research) under field conditions for LS disease using artificial inoculation technique. The results of the field trials for two consecutive years (2014-15 and 2015-2016) indicated that more than 13.74% genotypes (31) were found immune and 3.05 % (6) genotypes were highly resistant (HR). Only seventy seven genotypes (39.09%) showed resistance to loose smut and infection ranged from 0-5% under artificially inoculated conditions. There was forty-nine moderately susceptible genotype obtained from the experiment. Twenty-three genotypes (11.68%) were identified as susceptible (S). The results revealed that there are some promising LS resistance lines and could therefore be introduced to wheat breeders for further breeding as well as multi-locational trials for developing disease-resistant cultivars.

Keywords: Artificial inoculations, field screening, 'Go-go' method, loose smut, resistance breeding, wheat varieties

1. Introduction

Loose smut (LS) caused by *Ustilago segetum* var. *tritici* is one of the most important internally seed borne disease of wheat (*Triticum aestivum* L.). The disease is favored by moist and cool climate during anthesis (Wunderle *et al.*, 2012; Kashyap *et al.*, 2019). This fungus transforms the spike floral tissues to fungal teliospores, causing yield losses corresponding to the percent smutted spikes (Singh, 2018). The primary inoculum source of this fungal

pathogen resides in the embryo of the wheat seeds (Kassa et al., 2015) and documented to minimize 5–20 per cent profit even at an infection level of 1-2 % (Kashyap et al., 2019). In North Western parts of India, Joshi and colleagues (1980) recorded LS incidence up to 10%. Globally, 5–10% LS incidence has also been reported from Russia, New Zealand, and USA (Menzies et al., 2009; Kaur et al., 2014). Nielsen and Thomas (1996) documented

15–30% annual yield losses as a consequence of *U. segetum* var. *tritici* infection in wheat.

The infection process and disease cycle of *U. segetum* var. tritici on wheat has been elaborately described by several workers (Wilcoxon and Saari, 1996; Ram and Singh, 2004; Abrahim 2019). Dikaryotic spores of *U. segetum* var. *tritici* land on the wheat floret, germinate and penetrate the ovary through feathery stigma during anthesis (Shinohara, 1976). Kumar et al. (2018) mentioned that the mycelia of U. segetum var. tritici live within the embryo of infected seeds and move systemically through the growing point of the tillers without displaying any visible symptoms. The symptoms become visible only after that emergence of spikes from the boot and recognized by black or brown powdery spore masses or sori forming on the inflorescences (Gautam et al., 2020). It has been observed that the races that infect bread wheat are also reported pathogenic to other hosts such as Aegilops sp., Secale cereale and Triticosecale (a triticale cultivar) (Menzies et al., 2016). Three races (T1, T10 and T11) of Ustilago tritici were identified from the Punjab State of India (Rewal and Jhooty, 1985). Published literature indicated that U. segetum var. tritici infection in wheat can be effectively managed by following seed treatment with systemic fungicides like Carboxin, Tebuconazole, Carbendazim, and Thifluzamide (Goel et al., 2001; Sharma et al., 2001; Kashyap et al., 2018; Kashyap et al., 2022). Unfortunately, these chemical recommendations have not been properly adopted by farmers due to their high cost as well as lack of any visible symptoms on infected seeds (Singh et al., 2017). Therefore, an effective and sustainable means to combat LS disease is to develop disease-resistant cultivars (Thambugala et al., 2020). Further, it is important to mention here that India is bestowed with diverse agro-climatic conditions which make it rich in wheat germplasm adapted to various niches. The germplasm resource unit of ICAR-IIWBR, Karnal comprised of local landraces, trait specific genetic stocks including introgressions from wild relatives, exotic collections, released varieties, and improved germplasm. Keeping in view of aforementioned information the major objective of the present study is aimed for searching new resistance sources which confer resistance to LS disease. Therefore, efforts have been made to evaluate and identify the potential resistance source against loose smut disease under artificially inoculated field conditions.

2. Materials and Methods

2.1 Experimental site and plant materials

The experimental material consisted of 197 indigenous wheat germplasm accessions obtained from Germplasm Resource Unit (GRU), ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India. The lines were deposited in the GRU unit from different wheat programs of the country. For a comprehensive screening, these lines were evaluated for resistance against loose smut during 2014–2015 and 2015–2016 crop seasons at Experiment farm, ICAR-IIWBR, Karnal, India.

2.2 Experimental layout, inoculations and field screening procedure

The experiment was laid out in randomized block design with three replications. Each line was planted in a single row plot of one-meter length keeping 25 cm distance between rows. Artificial inoculations were done using smutted heads from the susceptible genotype (cv. Sonalika) which was inoculated in the previous year with LS teliospores at ICAR-IIWBR, Karnal. Five ears of each entry were inoculated at growth stage '59' of Zadoks' scale (Zadokset al., 1974) with LS teliospores using modified 'Go-go' method (Joshi et al., 1988) during both the rabi cropping seasons. The crop was raised as per recommended agronomic practices and seeds were sown without treatment. Briefly, the florets of the ear to be inoculated were clipped open with scissors at the early anthesis stage. The ear was then covered with a parchment paper bag. Inoculations were performed by opening the bag by cutting from top and dusting spores from smutted ear-heads from the infected genotype (cv. Sonalika). After inoculation the cut end of the bag was stapled and on maturity inoculated seeds were harvested.

2.3 Data recording and disease rating scale

The seeds obtained during previous year were planted during the next season and record on smutted and healthy ears was maintained on tiller basis after ear emergence. Any plant with one or more smutted ears (completely or partially smutted) was recorded as infected. The per cent loose-smut infection (LSI) was calculated by counting the diseased and healthy ears on tiller basis. The loose smut incidence (LSI) in each line was determined as follows:

LSI (%) = Number of smutted plants / Total number of plants x 100

Categorization of resistance response was determined on the basis of disease rating scale (0-6) mentioned in Table 1. The cut-off for resistance/susceptibility was based on Nielsen (1987), who categorized wheat lines with 0-10 % LSI as resistant and wheat lines with >10 % LSI as susceptible.

Table 1: Disease rating scale employed for determining the loose smutresistance response in wheat genotype under field condition

Scale	LSI (%)	Reaction	
0	0	Immune (I)	
1	0.01-<1.0	Highly resistant (HR)	
2	1.0-5.0	Resistant (R)	
3	5.1-10.0	Moderately resistant (MR)	
4	10.1-20.0	Moderately susceptible (MS)	
5	21.0-50.0	Susceptible (S)	
6	>50	Highly susceptible (HS)	

LSI =Loose smut incidence based on percent smutted heads in total counted plants

3. Results and Discussion

Loose smut (LS) caused by Ustilago segetum var. tritici is one of the important diseases of wheat worldwide (Kashyap et al., 2019; Kumar et al., 2022). Practically, there is no LS resistant wheat cultivar under cultivation. The development of resistant wheat cultivars ensures the stability of production, and also ensures quality, cost effectiveness and offers sanitary and epidemiological safety in the wheat field. Therefore, identification and characterization of genetically diverse sources possessing LS disease resistance and their deployment in breeding programmes is essential to achieve durable disease management. The current study is aimed at the identification of effective and potentially new sources of disease resistance against LS disease in 197 indigenous wheat accessions conserved in the germplasm resource unit (GRU) of ICAR-IIWBR, Karnal.

Field data of the disease reactions revealed a range of response levels of the tested wheat genotypes to LS disease during both the seasons (2014-15 and 2015-16). The perusal of the field data demonstrated that the inoculation with U. segetum var. tritici teliospores confirmed 13.74% genotypes as immune (0.0% LSI, N=31), while 11.68% genotypes as susceptible (>21% LSI, N=23) (Fig. 1 and Table 2). Based

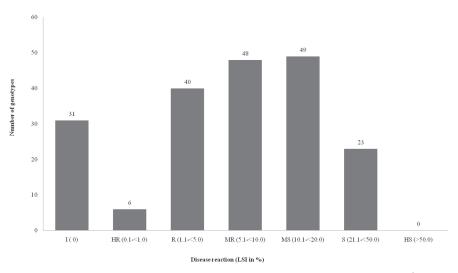

on this cut-off limit, there were 125 lines resistant and 72 susceptible to *U. segetum* var. tritici. Further, it has been noticed that 48 genotypes (24.37% genotypes) showed moderately resistant (MR) and 49 (24.87 %) reflected moderately susceptible (MS) reaction. Such studies have been done by different workers for identifying sources of resistance. For instance, Mishra et al. (1990) reported that out of 92 cultivars that were inoculated artificially through needle method against loose smut of wheat caused by U. segetum var. tritici, 15 cultivars were found resistant and 3 were found moderately resistant to loose smut of wheat. Sherif et al. (1991) evaluated 96 wheat entries along with 10 Egyptian wheat varieties to loose smut and reported 14 entries as highly resistant. Further, they also concluded that the Egyptian wheat cultivars e.g. Giza 155, Giza160 and Giza 162 showed resistant reaction (0-5%), while Sakha 61 and Sakha 92 displayed susceptible reaction against LS disease. Later on, Singh et al. (2002) evaluated a total of 931 advanced lines of wheat against LS disease under artificially inoculated conditions and found 92 LS resistance lines with 0-5% infection score. It is worth to mention that a high number of LS resistant lines (77 lines; 39.09% lines) were identified in present study in comparison to earlier reports (Singh et al., 2002; Sammour et al., 2015), which clearly validate the fact that the set of analyzed germplasm lines has sufficient level of resistanceagainst LS diseases. The results of present study corroborate with the findings of Kumar et al. (2019) who screened 247 wheat lines and reported 93 accessions (37.65% genotypes) displaying resistance against LS disease. Gothwal and Pathak (1983) also screened wheat genotypes or varieties using artificial inoculation with mixture of *U. tritici* isolates. However, they did not get any success in getting immune genotypes. Interestingly, in present study, we obtained 31 genotypes (IC177785, IC564138, IC443626, IC542107, IC539112, IC415868, IC530072, IC539286, IC177716, IC228213, IC341362, IC47034, IC529011, IC529090, IC529499, IC529354, IC542127, IC529931, IC542040, IC529908, IC530120, IC443628, IC47021, IC529408, IC539569, IC398307, IC17770, IC564092, IC542104, IC529712, and IC560465) completely resistant and free from any disease incidence. Overall, resistant accessions identified in the current study have enriched the existing gene pool for LS resistance in wheat and will serve as a potential source for resistance in future.

Table 2: Categorization of indigenous germplasm lines against loose smut resistance based on two year (2014-15 and 2015-16) evaluation

Reaction type	Genotypes /Lines	Genotype(s) in category (%)	Mean LSI range (%)
	IC177785, IC564138, IC443626, IC542107, IC539112, IC415868, IC530072,	15.74	0.00
	IC539286, IC177716, IC228213, IC341362, IC47034, IC529011, IC529090,		
	IC529499, IC529354, IC542127, IC529931, IC542040, IC529908, IC530120,		
	IC443628, IC47021, IC529408, IC539569, IC398307, IC17770, IC564092,		
	IC542104, IC529712, IC560465		
HR	IC539106, IC529733, IC415864, IC539171, IC524018, IC529854	3.05	0.01 - 0.95
	IC329538, IC309885, IC128153, IC398298, IC530025, IC529355, IC547575,	20.30	1.06-4.90
	IC559913, IC177711, IC240800, IC529692, IC543400, IC530005, IC560464,		
	IC543333, IC549356, IC445514, IC529357, IC529894, IC529360, IC549524,		
	IC443771, IC483032, IC317314, IC582733, IC296431, IC539296, IC539109,		
	IC529388, IC177776, IC281570, IC542078, IC393113, IC529484, IC574482,		
	IC585661, IC443650, IC529805, IC543411, IC529296		
MR	IC443760, IC445517, IC138587, IC445316, IC593162, IC529311, IC549359,	24.37	5.03-9.96
	IC539301, IC582716, IC539167, IC529331, IC539371, IC543344, IC177721,		
	IC549928, IC524292, IC528930, IC547558, IC539568, IC542005, IC593574,		
	IC547593, IC558801, IC443639, IC529292, IC138479, IC543331, IC560466,		
	IC564113A, IC524302, IC252652, IC547563, IC177722, IC527929, IC240796,		
	IC539353, IC310117, IC529429, IC549397, IC530109, IC128191, IC443674,		
	IC539534, IC128252, IC524303, IC529509, IC401933, IC529452		
	IC427183, IC549526, IC362213, IC443691, IC445490, IC539290, IC393883,	24.87	10.05-19.46
	IC539563, IC443736, IC443729, IC144920, IC529386, IC529886, IC553917,		
	IC393878, IC529234, IC567640, IC309868, IC116275, IC566544, IC522507,		
	IC539373, IC551389, IC530119, IC406519, IC541989, IC533416, IC564106,		
	IC443640, IC426648, IC561181, IC582713, IC547619, IC539469, IC585666,		
	IC574387, IC543345, IC547578, IC410038, IC529291, IC539473, IC128181,		
	IC559930, IC529086, IC547683, IC542077, IC328473, IC177714, IC290187		
	IC539346, IC426651, IC75242, IC406724, IC405232, IC369874, IC564141,	11.68	20.39-41.18
	IC393883, IC549399, IC393885, IC524298, IC443625, IC309847,		
	IC543349, IC546937, IC438390, IC443683, IC393119, IC529318, IC540910,		
	IC402050, IC145620, IC564126A		
HS	<u>-</u>	-	

LSI: Loose smut incidence; I: Immune; HR: Highly resistant; R: Resistant; MR: Moderately resistant; MS: Moderately susceptible; S: Susceptible; HS: Highly susceptible. Mean Infection score range (%) include the LSI % data of both the years.

Fig 1: Histogram of loose smut disease response based on pooled average response of two year (2014–2015 and 2015–2016) data among 197 wheat accession inoculated with *Ustilago segetum* var. *tritici* teliospores during under field conditions. I: Immune; HR: Highly resistant; R: Resistant; MR: Moderately resistant; MS: Moderately susceptible; S: Susceptible; HS: Highly susceptible; LSI= Loose smut incidence in per cent

4. Conclusion

The results of present study lead to identification of wheat accessions having some degree of immune, resistant, and moderately resistant reaction to LS disease. Phytopathological evaluation on an artificial infection, 37genotypes (IC177785, IC564138, IC443626, IC542107, IC539112, IC415868, IC530072, IC539286, IC177716, IC228213, IC341362, IC47034, IC529011, IC529090, IC529499, IC529354, IC542127, IC529931, IC542040, IC529908, IC530120, IC443628, IC47021, IC529408, IC539569, IC398307, IC17770, IC564092, IC542104, IC529712, IC560465, IC539106, IC529733, IC415864, IC539171, IC524018 and IC529854) showed HR type of reaction that can be exploited in breeding programs as donors over time and space to develop disease resistant cultivars against loose smut disease in wheat.

Acknowledgement

This work was supported by the funding received from Indian Council of Agricultural Research (ICAR) under the Institute Research projects 'Management of major diseases and insect pests of wheat in an agroecological approach under climate change (CRSCIIWBRSIL201500500186).

Contribution to this manuscript

All authors contributed to the article and approved the submitted version.

Ethical Compliance Statement

NA

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Abrahim A. 2019. Loose smut of wheat (*Ustilago tritici*) and its managements: A review article. *Journal of Biology, Agriculture and Healthcare* **9(8)**:25-33. https://doi.org/10.7176/JBAH
- Gautam AK, RK Verma, S Avasthi, Sushma, B Devadatha, S Thakur, PL Kashyap, IB Prasher, RBhadauria, M Niranjan and KR Ranadive. 2021. Smut fungi: a compendium of their diversity and distribution in India. MycoAsia 2021/01.http:// mycoasia.org/smut-fungi-a-compendium-of-theirdiversity-and-distribution-in-india/

- Goel LB, DP Singh, VC Sinha, A Singh, KP Singh, AN Tewari, MS Beniwal, SS Karwasra, SS Aujla and AS Grewal. 2001. Efficacy of Raxil (tebuconazole) for controlling the loose smut of wheat caused by Ustilago segetum var. tritici. Indian Phytopathology 54: 270-271.
- 4. Gothwal B and Pathak VN.1983. Reaction of wheat varieties cultures to *Ustilago tritici* in North-West plain zone of India. *Indian Phytopathology* **36**(2):336–338.
- Joshi LM, KD Srivastava and DV Singh. 1980.
 Wheat disease newsletter. *Indian Agricultural Research Institute* 13:112–113.
- Joshi LM, Singh DV and KD Srivastava. 1988.
 Manual of Wheat Diseases. Malhotra Publishing House, New Delhi. p. 75.
- Kashyap PL, P Jasrotia, S Kumar, DP Singh and GP Singh. 2018. Identification guide for major diseases and insect-pests of wheat. Technical bulletin 18, ICAR-Indian Institute of Wheat and Barley Research, Karnal, pp38.
- 8. Kashyap PL, S Kumar, R Tripathi, RS Kumar, P Jasrotia, DP Singh and GP Singh. 2019. Phylogeography and population structure analysis reveal diversity by gene flow and mutation in *Ustilago segetum* (Pers.) Roussel *tritici* causing loose smut of wheat. *Frontiers in Microbiology* **10**:1072. https://doi.org/10.3389/fmicb.2019.01072
- Kashyap PL, V Gupta, OP Gupta, R Sendhil, K Gopalareddy, P Jasrotia and GP Singh. 2022. New Horizons in Wheat and Barley Research: Crop Protection and Resource Management. Springer, Singapore, pp 637. https://doi.org/10.1007/978-981-16-4134-3
- Kassa MT, Menzies, JG Menzies and CA McCartney.
 2015. Mapping of a resistance gene to loose smut (*Ustilago tritici*) from the Canadian wheat breeding line BW278. *Molecular Breeding* 35:180. doi: 10.1007/s11032-015-0369-3
- KassaMulualem T, JG Menzies and CA McCartney.
 2014. Mapping of the loose smut resistance gene Ut6 in wheat (*Triticum aestivum* L.). *Molecular Breeding* 33: 569-576.
- Kaur G, I Sharma and RC Sharma. 2014. Characterization of *Ustilago segetum tritici* causing loose smut of wheat in northwestern India. *Canadian Journal of Plant Pathology* 36: 360–366. doi: 10.1080/07060661.2014.924559

- 13. Knox R and J Menzies. 2012. Resistance in wheat to loose smut. In: Sharma, I. (Ed.) Disease resistance in wheat. CAB International. pp. 160-189.
- 14. Kumar S, G Singroha, SCBhardwaj R Bala, MS Saharan, V Gupta, A Khan, S Mahapatra, M Sivasamy, V Rana, CN Mishra, O Prakash, A Verma, P, Sharma, I Sharma, R Chatrath and GP Singh. 2019 Multienvironmental evaluation of wheat (Triticum aestivum L.) germplasm identifies donors with multiple fungal disease resistance. Genetic Resources and Crop Evolution 66:797–808 (2019). https://doi.org/10.1007/s10722-019-00751-3
- 15. Kumar A, A Choudhary, H Kaur, SK Aggarwal and S Mehta. 2022. Smut and Bunt Diseases of Wheat: Biology, Identification, and Management. In: Kashyap PL, V Gupta, OP Gupta, R Sendhil, K Gopalareddy, P Jasrotia and GP Singh. (Eds), New Horizons in Wheat and Barley Research: Crop Protection and Resource Management. Springer, Singapore, pp 107–131. https://doi.org/10.1007/978-981-16-4134-3
- 16. Menzies JG, TK Turkington and RE Knox. 2009. Testing for resistance to smut diseases of barley, oats and wheat in western Canada. *Canadian Journal of Plant Pathology* 31: 265–279. https://doi.org/10.1080/070606660909507601
- 17. Mishra R, S Tiwari, and M Khare. 1990. Studies on loose smut of wheat. X. Testing of resistance and susceptibility of wheat varieties to *Ustilago tritici* (Pers.) Rostr. under artificial inoculation. *Indian Journal of Mycology and Plant Pathology* 20(2):171.
- 18. Nielsen J and P Thomas. 1996. Loose smut. in *Bunt* and *Smut Diseases of Wheat: Concepts and Methods of Disease Management*. Eds Wilcoxson RD and Saari EE Mexico City DF: CIMMYT, 33–47.
- Nielsen J. 1987. Races of *Ustilago tritici* and techniques for their study. *Canadian Journal of Plant Pathology* 9:91-105
- 20. Ram B and KP Singh.2004. Smuts of wheat: a review. *Indian Phytopathology* **57**:125–134.
- 21. Sammour RH, MM El-Shamy, AMA Mustafa and ESY El-Refaay.2015. Inheritance of resistance to loose Smut *Ustilago tritici* of Wheat. *Research & Reviews in BioSciences* **10**(4):137-146.
- 22. Sharma AK, DP Singh, J Kumar, A Singh, AN Tewari, KP Singh, SS Karwasra and AS Grewal. 2001. Efficacy of thifluzamide in the control of loose

- smut of wheat caused by *Ustilago segetum* var. *tritici*. *Indian Journal of Agricultural Sciences* **71**: 648-649.
- 23. Sherif S, EH Ghanem, I Shafik, EE Mustafa, MM andAbd El-Aleem. 1991. Integrated control of wheat loose smut in Egypt. *Assiut Journal of Agricultural Sciences* 22(1):153-163.
- 24. Singh DP, AK Sharma, J Kumar, LB Goel, SS Karwasra, MS Beniwal and AS Grewal. 2002. Resistant lines to loose smut (*Ustilago segetum* var. tritici) in wheats (*Triticum aestivum*), T. durum, T. dicoccum) and triticale. Indian Journal of Agricultural Science 72:308-310.
- 25. Singh DP, AK Sharma, SS Karwasra, SK Jain, SK Pant, I Sharma, R Bala, VL Majumdar and RK Bansal. 2017. Resistance in Indian wheat and triticale against loose smut caused by *Ustilago tritici. Indian Phytopathology* **70**(1):131-133.
- 26. Singh DP, AK Sharma, SS Karwasra, SK Pant, I Sharma and VL Majumdar. 2008. Nature of resistance in wheat and Triticale to loose smut. *Indian Phytopathology* **61**:528-529.
- 27. Singh DP. 2018. Management of Wheat and Barley Diseases (Waretown, NJ: Apple Academic Press), pp. 643.
- 28. Thambugala D, JG Menzies, RE Knox, HL Campbell and CA McCartney. 2020. Genetic analysis of loose smut (*Ustilago tritici*) resistance in Sonop spring wheat. *BMC Plant Biology* **20**(1):314. https://doi.org/10.1186/s12870-020-02525-x.
- 29. Wilcoxon RD and EE Saari. 1996. Bunt and Smut Diseases of Wheat: Concepts and Methods of Disease Management. Mexico: CIMMYT.
- 30. Wunderle J, A Leclerque, U Schaffrath, A Slusarenko and E Koch. 2012. Assessment of the loose smut fungi (*Ustilago nuda* and *U. tritici*) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. *European Journal of Plant Pathology* **133**(4): 865-875. https://doi.org/10.1007/s10658-012-0010-9.
- 31. Zadoks JC, TT Chang and CF Konzak. 1974. A decimal code for the growth stages of cereals. *Weed Research* 14:415-421.

