Journal of Cereal Research

14(1): 13-25

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Physiology of heat and drought tolerance in wheat: An overview

Manya Tyagi and Girish Chandra Pandey

Dept. of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India

Article history:

Received: 07, Jan., 2022 Revised: 20, Mar., 2022 Accepted: 15, Apr., 2022

Citation:

Tyagi M and Pandey GC. 2022. Physiology of heat and drought tolerance in wheat: An overview. *Journal of Cereal Research* 14(1): 13-25. http://doi.org/10.25174/2582-2675/2022/122868

*Corresponding author:

E-mail: girishchandrapandey@banasthali.in

© Society for Advancement of Wheat and Barley Research

1. Introduction

Wheat is a grass which comes under the family of Poaceae.

It is a prime crop as it is a major staple food across
Worldwide. Wheat sowing season in India runs from
October to December. Wheat is the important source
of carbohydrate (Shewry PR et al., 2015) and in human
food it is the major source of protein found in vegetables
and it is about 13% and it is comparatively higher than
other cereals (Annonymous, 2016). Although wheat had
been originated in South-Western Asia, but it has wide
adaptability due to which it can be grown under different
agro-climatic zone such as tropical zone, subtropical and

If it comes to wheat production India is the 2nd biggest producer of wheat with the overall area which comes

Abstract

Wheat crop often gets exposed to drought and high temperature during grain growth particularly in subtropical conditions. Physiology of wheat is adversely affected by heat stress and drought stress. Heat and drought tolerance are influenced by some of the physiological traits such as increased rates of photosynthesis, stay green, chlorophyll concentration, chlorophyll fluorescence, and so on. Under drought stress wheat yield is mostly decreased by half or less of the irrigated control. Drought stress (60% relative soil moisture content) has been found to decrease the grain yield by more reduction in the kernel weight than the grain. Hence, any efforts to improve grain yield of wheat under these stresses should consider insights into the mechanisms of grain development and also the physiological traits when plants experience terminal stress. For improvement of grain weight of wheat under abiotic stress conditions caused by drought and high temperature found that drought stress decreased the grain yield per spike by 16.2% in the tolerant cultivar and by 27.9% in sensitive cultivar. But under combined heat and drought stress, the same cultivar did not show high tolerance. High temperature significantly reduced the grain weight and number of grains in wheat. Some other studies have reported that post anthesis rise in ambient temperature resulted in reduction in individual grain weight. So, it can be concluded that for the sustainability of the agriculture heat stress and drought are the major barrier in the field.

Keywords: Heat stress, drought stress, physiological traits and wheat.

under the wheat cultivation lies near about 31.5 million hectares. We all know that in among all cereal crop's wheat is the second most important, so it is important to maintain and increase its productivity but there are several factors like biotic and abiotic which can affect productivity of wheat (Joshi *et al.*,2007; Sharma *et al.*,2016). Under all the factors especially abiotic factors creating stress and limiting wheat production is periodic heat stress or continuous stress and these are considered as a major hazard in wheat, especially in subtropical regions (Reynolds *et al.*, 2016). In world there are many regions in which drought act as another major abiotic stress which unfavorably affecting synthesis of wheat.

temperate zone.

Frequency of heat stress in wheat is increasing across the globe due to high temperature. The substantial effects of heat stress on grain setting duration and rate ultimately leads to reduction in grain yield. However, the timing, duration and intensity of heat stress determine its impact on grain yield. (Pandey *et al.*, 2019) At any stage of development stress because of heat can affect growth of wheat and future modelling scenarios forecast significantly hotter temperatures. (Easterling and Apps, 2005).

Globally, the average temperature generally increases by 0.3°C per decennium (Jones et al., 1998) and (Hossain et al., 2013) and According to the report released by Intergovernmental Panel on Climate Change (IPCC 2014), temperatures would rise by about 0.3 degree and 1 degree Celsius by 2025 and 2100, respectively. In tropical and subtropical region wheat yield can be reduced by 3% to 20% with rise of each degree in ambient temperatures (Lobell et al., 2008), (Mondal et al., 2013) & (Lal et al., 1998). HS has affected 36 million acres of land worldwide, with the majority of this land in South Asia (Reynolds et al., 2001). In India the total area of wheat which got affected by heat stress is 13.5 million hectares (Joshi et al.,2007). The crop season may be altered as a result of rising temperature, due to which the crop may mature early (Porter 2005; Gupta et al., 2013).

Drought is a long period of time with less or no water availability, like with no rain or unusual low levels of rain. On the other hand, we can define drought tolerance as the plant's capability to get the plant growth, to stay alive, and for proper reproduction with less water availability or under periodic water shortage situations (Turner, 1979). Tolerance of drought is a measurable characteristic which can be influenced by phenotype and genetics (McWilliam, 1989).

In majority of cultivated areas "drought is one of the most crucial variables affecting yield reduction". According to Trethowan and Pfeiffer study the area affected by drought is different for developing and developed countries, like in developing countries 50% area under wheat production got affected whereas in case of developed countries 70% of area under wheat production got affected by drought (Trethowan and Pfeiffer, 2000). There are different ways how plants respond to drought like in case of Cereal plants drought causes changes in morphological, physiological, and metabolic properties, as a result there are a variety

of characteristics linked to improved performance in water-stressed environments or improved survival in severely low water availability (Slafer *et al.*, 2005). It is noted that drought affect many things like plant growth, its production, membrane integrity, adjustment for osmosis, pigment content, water relations, and the photosynthetic activity (Praba *et al.*, 2009). Grain yield and yield components are complicated characteristics which are impacted by factors of environment and are differentiated by low heritability & strong genotype interactions in environment under the drought situations, making advancement difficult (Smith *et al.*, 1990).

Different researchers stated different effects of heat stress on plants like heat stress which can reduce the capacity of photosynthesis (Almeselmani et al., 2012) and (Ashraf and Harris, 2013). Some researcher said that heat stress can cause the change in water relations of the plant (Hasanuzzaman et al., 2012; 2013). Hormonal changes can be occurred by heat stress (Krasensky and Jonak, 2012). HS can lead to reduction of activities occurring metabolically (Farooq et al., 2011), and synthesis of reactive oxygen species (Wang et al., 2011; 2012; 2014; 2016), HS can cause increase in pollen mortality, promoting the production of ethylene in wheat and reduce the development of pollen tube (Oshino et al., 2011). Under terminal heat stress, many of the characteristics that contribute to heat tolerance are heritable, additive, and variable, indicating the potential for improvement of wheat (Tuberosa and Salvi, 2006).

Heat tolerance is one of the complicated phenomena which is governed by a number of the genes that regulate several biochemical and physiological traits. Molecular markers are the better way to analyze on the basis of genetic thermotolerance (Maestri et al., 2002). As there is difficulty in selection of phenotypes for the plants tolerant to heat and drought and in the general complexity of abiotic stress tolerance, as a beneficial strategy, marker assisted resistance had been proposed as to create the crop resistance of stress. MAS requires the recognition of markers used genetically and those who were linked with the Quantitative trait loci (QTLs) that alter total stress tolerance capacity of plant or some components which contribute individually. Analysis of QTL basically based upon the high-density molecular linkage maps, and it is a useful method for dissecting genetic foundation behind complex phenotypes into discrete components.

Regression analysis revealed significant association of differences in TGW between optimum and late sown of RILs with two markers, viz. Xpsp3094 and Xgwm282 with coefficients of determination (R2) values of 0.14 and 0.11, respectively. It could explain the variation in the phenotypes of RILs. The R2 values suggested that the Xpsp3094 and Xgwm282 accounted for 14% and 11% of the total phenotypic variation in heat tolerance in the RILs population, respectively (Pandey *et al.*, 2014). The highest mean number of alleles was detected in the B genome (2.6) followed by A genome (2.25) and D genome (2.1) (Sheoran *et al.*, 2015).

Field based study gives better opportunity to investigate terminal heat tolerance in wheat. Late sowing (LS) gives an opportunity to evaluate the genotypes for their adaptability to higher temperature as under late sowing the crop receives gradual increase in temperature right from early growth stage until maturity, which is different than sudden spurt in temperature coming as a shock to the normal timely sown growing crop (Pandey et al., 2019).

Here we will mainly study about the physiological traits of wheat at high temperatures and with less water availability at different stages and then we will try to find that how to exploit this problem to improve the yield and productivity of plant.

2. Heat stress and Drought associated physiological traits

Physiological traits are the physical traits of an individual, and in case of plants we can describe them as the hormones and other growth regulators which are produced by plants and function as signals in their tissues to convey a physiological response.

There are so many kinds of physiological traits linked with heat tolerance of wheat mentioned below: -

2.1. Leaf senescence

During leaf senescence some structural changes takes place in the chloroplast which include vacuolar collapse, cellular homeostasis, and loss of integrity in plasma membrane (Lim *et al.*, 2007; Khanna and Chopra, 2012). If plants are exposed to extreme heat stress throughout their maturation, leaf senescence is accelerated. (Haque et al., 2014). Stay green genotypes delays the expression of senescence-related genes so that it can preserve the photosynthesis (Lim *et al.*, 2007).

In their research Vijayalakshmi and her team find that while staying green is regarded as a stress-response mechanism and chlorosis act as an important aspect of planned senescence, where there were tradeoffs in between photosynthesis retained area and nitrogen remobilization of the developing grain (Vijayalakshmi et al., 2010). In mapping populations, QTLs for the relationship between staying green and yielding have been discovered (Kumar et al., 2010), (Vijayalakshmi et al., 2010). As chlorosis manifests itself differently in all above ground organs, it is quite difficult to regard this within a single organ, like a leaf. However, simple and integrated ways to assessing spectral reflectance remain green. In two large mapping populations under heat stress, the Normalized Difference Vegetation Index (NDVI) explains a notable association with yield, enabling it a reliable tool for screening at large scale and gene discovery activity (Lopes and Reynolds, 2012). While NDVI is linked to heat tolerance, it is a reliable metric of greenness that takes into account all chlorophyll. Wheat leaf senescence can be accelerated by inhibiting chlorophyll production under high temperatures (>34°C) (Asseng et al., 2013). Heat stress mainly impact photosynthesis, causing premature senescence of leaf, reduced leaf area growth, and eventually lower yield (Lukac M. et al., 2014), (Feng et al., 2014). Heat stress delaying can initiate senescence of leaf, grain yield can be improved by spraying potassium orthophosphate (KH2 PO4) on the leaves following anthesis (Dias and Lidon, 2010).

2.2. Fertility of spike

Sets of grain appears to be cautious and sensitive to carbohydrate availability even under somewhat ideal conditions (Fischer, 2011). Hot wheat-growing data settings demonstrate that number of grains is frequently lowered much than it would be predicted due to biomass decreases, resulting in a decrease of heat index under heat stress (Reynolds *et al.*, 2007). Grain reduction is caused by programmed cell death at high temperatures produced by ethylene levels (Hays *et al.*, 2007). When meiosis and abiotic stress occurs at the same time, the initial step of gamete formation may be harmed even more (Ji *et al.*, 2010). Wheat plants subjected to be at 30°C during 3-day period around anthesis had aberrant anthers in 80 percent of the florets, both physically and functionally. If we observe the growth rate of pollen tube,

HS can impact chemical content, its metabolism, shape, and pollens quantity (Hedhly et al., 2009). Carbohydrate metabolism has been associated to lower pollen viability in other cereals, such as sorghum under stress due heat stress (Jain et al., 2007), (Prasad and Djanaguiraman, 2011). It is evident that HS damage female reproductive organs, despite the fact that this has received less attention. When HS coincided with meiosis, abnormal ovary development occurs, as well as rapid stigma and ovule developed, which results in lower the growth of pollen tube and sets of seeds (Barnabas et al., 2008). In wheat for hot settings, grain number QTLs have been discovered, and most of these have been shown to match with the yield QTLs (Pinto RS et al., 2010). So, these interactions needed to be clarified and in wheat gene pools for spike fertility genetic diversity at extreme temperature has to be investigated.

2.3. Starch Synthesis

When assimilates are present, temperatures which lie between 30°C-40°C can inhibit accumulation of the starch in wheat grains about 30%, with early grain filling being the most significant stage (Stone and Nicolas, 1995). In starch accumulation, the enzymes involved are a promising target for improved climate adaptability. Enzymes like AGPase, starch synthase bounded to granule, soluble starch synthase, enzyme which can branch starch, enzyme which can debranched starch, and plastidial starch phosphorylase are the most important enzymes. Cereal endosperm has a distinct starch production pathway that necessitates the presence of (1) cytosolic AGPase (2) ADP-Glc transport (Geigenberger, 2011). In 2011 According to Liu and his colleague it was stated that heat-shock treatment for temperatures lie over 30°C can results in a notable decrease in the amount of starch in grains of wheat (Liu et al., 2011). At 40°C, roughly 97 percent of activity was off track because of small quantity of soluble starch synthase present, and as a result, starch accumulation and size of grains in wheat were decreased (Chauhan et al., 2011). Heat stress inhibits starch production in grains of wheat, while causing a considerable raise in number of total protein and soluble sugar (Asthir and Bhatia, 2014). At the seedling stage stress due to increased temperature will decreases soluble sugar content and the biomass (Wang etal., 2014).

2.4. Canopy Temperature (CT)

Temperature of canopy is closely linked to the formation under stress of drought & heat, and both the situations seems to share a same genetic base (Pinto RS *et al.*, 2010). Lopes and Reynolds stated in 2010 that Recent research suggests that during drought and heat stress, canopy temperature is linked to deeper roots (Lopes and Reynolds, 2010). While the cooler canopy is connected to genetic variance in stomatal conductance under heat, canopy temperature selection can aid the enhancement of heat tolerance (Reynolds *et al.*,1994; 2007).

2.5. Membrane thermostability

Membrane is regarded as an important location of the physiological harm caused by heat, despite the fact that resistance to high temperatures requires multiple complicated tolerance and avoidance processes (Blum, 1988) and membranes damage can be analyzed by calculating solute leakage from tissue. In 1998 it has been found that Thermostability of membranes is a heritable trait (Fokar et al., 1998). Heat shock will form denaturation in proteins and increases unsaturation of fatty acids which later impair water, ions, and migration of organic solute across the membranes, impeding cellular activity. "In plants swelling there are some common features of thylakoid membranes such as physical separation of the chlorophyll light harvesting complex II from the PSII core complex and this increase leakiness and disruption of PSII-mediated electron transport" (Ristic et al., 2008).

2.6. Chlorophyll fluorescence and Chlorophyll content

In field, phenotype after Canopy temperature and Chlorophyll content, the another most commonly utilized characteristics is Chlorophyll fluorescence (CFL). For selecting the heat and drought resistant wheat genotypes, the importance of chlorophyll fluorescence (CFL) in grain productivity under conditions of water stress has been advised. CFL is directly results in production, that is genotypes with larger yield will have high CFL value, implying that CFL may be used to screen for tolerant genotypes. In genotypes of wheat CFL can determine photosynthetic efficiency indirectly. For the characteristics of CFL, Chl and TGW analysis on RIL mapped populations was calculated by a cross of the genotypes of heat sensitivity and the the genotypes of heat tolerance which evident that 17 RILs out of 112 were exhibited and heat susceptibility index (HSI) for all the characteristics was less than 1. For heat and drought tolerance plant selection of wheat plants, the function of CFL &Chl in connection with grain production under

water stress has been suggested (Blum 1988, 1989) and (Krause and Weis, 1991). Quarrie and his team in 2005 said that in wheat near-isogenic lines (NILs), Chl present around flowering time was positively related with its yield (Quarrie et al.,2005). In 2008 Wang and team reported that maintaining a greater Chl level in wheat plant is an efficient way to boost yield and biomass (Wang et al.,2008)

2.7. Water relations

There are many factors which can influence the plant water relations such as the content of water, relative water content, rate of water loss, succulence index, excised leaf water retention, and transpiration rate residue. Relative water content (RWC) is the most important metric for dehydration tolerance and it measures status of plant water that reflects metabolic activity in tissues. For drought stress a drop in RWC has been seen as a response in wide range of plants (Allahverdiyev et al., 2015). Clarke and Thomas reported in 1982 that when we compare completely hydrated leaves to those which are under watering deficit, changes in excised leaf water loss may be used as to evaluate the relations of plant's leaf, and it's an indirect way to measure of Cuticular thickness and transpiration (John and Thomas, 1982). This characteristic represents the balance between rate of transpiration and water supply of leaf. For more drought resistance reduced excised leaf water loss genotypes are considered better as it is less impacted by water losses occurring via evapotranspiration and due to which it's able to retain water (Izanloo et al., 2008). Dehydration tolerance are linked to different antioxidants and these are activated as a response to heat stress, and this occur because of increase in transpiration and reduce in osmotic potential in the stressed leaves (Ahmad et al., 2010) Due to a raise in aquaporin activity heat stress enhances the cell membranes hydraulic conductivity and the plant tissues (Martinez et al., 2009) and to a larger level when there is less viscosity in the water (Cochardet al., 2007).

2.8. Osmotic Balance

Drought tolerance processes help the cells to control dehydration and to maintain integrity of membrane structure such as osmolyte accumulation which allowing them to withstand drought and dehydration in cells (Loutfy N *et al.*, 2012). Storage of organic solutes having low molecular weight may cause osmotic adjustment in drought-stricken plants. In order to maintain osmotic

balance, water uptake and water retention, plants will accumulate and create some suitable solutes like amino acids, sugars and polyols as in response to drought stress (Hussain H.A. *et al.*, 2018). Sugars, much more than proline, become a crucial alternative for water in acute dehydration which results in forming a shell of hydration around the proteins (Bowne *et al.*, 2012). Under drought stress, throughout the grain filling period the genotypes of wheat will collect more soluble carbohydrates than during the pre-anthesis stage (Farshadfar *et al.*, 2008). The ROS production under drought stress resulted in amino acids oxidation, which might rupture the protein structure. However, a substantial link was found between total proteins and wheat grain production under rain-fed circumstances (Farshadfar *et al.*, 2008).

2.9. Hormonal effect

There is various type of plant hormones but in 2007 according to Thompson Drought adaptation can be influenced by abscisic acid production in two ways: avoidance of dehydration and tolerance of dehydration (Thompson A.J et al., 2007) and later Lata C. and Prasad M. in 2011 said that in controlling the abiotic stimuli tolerance such as drought, salinity, cold, heat, and wounding in all the main role plays by abscisic acid (Lata and Prasad, 2011). Abscisic acid (ABA) has been recognized a chemical signal from root to shoot (Schachtman and Goodger, 2008), inhibiting leaf growth and triggering short-term responses such as stomatal closure. Before there will be any apparent changes in water or nutritional status of leaf, ABA is engaged in control of abiotic stress systemic response (Suzuki et al., 2013). Furthermore, in wheat under drought stress yield has a strong link with ABA which has been discovered as a promotor to operate the root development (Xu et al., 2013). There are several additional growth regulators such as auxin, cytokinin, gibberellins, brassinosteroids, jasmonic acid, ethylene, and other variables like nitrogen, pH are synthesized or catabolized as osmotic stress response (Lamaoui et al., 2018). According to previous research, ABA is produced in xylem tissues during droughts and subsequently alter grain filling by influencing the gene expression which is involved in metabolism of glucose and division of cell it will transferred to reproductive organs. Drought causes raise in accumulation of ABA content in leaves, stems, and root exudates but it also brings decrease in leaf cytokinin

levels (Yang J. *et al.*, 2004). The grain filling rate under mild drought was boosted by lower ethylene, also by the concentration of 1-aminocyclopropane-1-carboxylic acid and with the higher concentrations of ABA in growing grains of wheat. However, when there was a severe drought, the levels of ethylene and ABA were excessively high and this lowering the grain filling rate (Yang D.L *et al.*, 2007).

2.10. Oxidative Damage

2.10.1. Reactive Oxygen Species (ROS)

The plants which are heat and drought exposed usually results in ROS production which is very harmful such as singlet oxygen molecule, superoxide radical, hydrogen peroxide, and hydroxyl radical (OH), all of these are oxidative stress responsible (Marutani et al., 2012), (Suzuki et al., 2012). The presence of ROS will cause oxidation of the pigment present photosynthetically, oxidation of membrane lipids, oxidation of proteins and nucleic acids which results cell death and diminished the growth of plant and productivity (Hasanuzzaman M. et al., 2018). On the other side the negative impacts of drought stress are determined by the length, timing, and amount of the stress (Hasanuzzaman M. et al., 2018). Peroxidation of membrane and organelle, activation or inactivation of enzyme, and nucleic acid destruction are caused due to the amount of water stress and it is proportional to the amount of ROS produced (Outoukarte I. et al., 2019). The presence of malonic dialdehyde (MDA) has long been thought to be a good indicator of membrane degradation. According to a prior study, the degree of lipid peroxidation produced by ROS is reflected in membrane stability (Sharma P. et al., 2017). Drought stress tolerance in wheat plant was linked to low MDA levels (Zhang Y. et al., 2011). It is notable that the oxidation of polyunsaturated fatty acids enhanced by the lipoxygenase enzyme activity (LOX) and it is responsible to increase lipid peroxidation in stress situations (Sanchez-Rodriguez E.et al., 2010). Drought stressed plants accumulate LOX activities differently than non-stressed plants (Alam M. et al., 2013). Activity of raised LOX and oxidative stress were shown to have a comparable association (Sanchez-Rodriguez E. et al., 2010). More raised lipid peroxidation and Reactive oxygen species (ROS) weaken the cell activities in membrane and it results into the loss of membranes capacity to control the ion transport in and out of cells which commonly

employed as a tissue damage test. More metabolite or ion leakage indicates a more disfigured membrane caused due to drought sensitivity. According to Savicka M and Skute N in 2010 (Savicka M and Skute N, 2010).

2.11. Photosynthesis and Gaseous Exchange

Photosynthesis is a process which is essential for the growth of plant and also for the grain yield; So, for understanding the role of plant response based on physiology for both that is drought and heat is critical. In plants to determine the degree of photosynthesis which are growing under water stress the fundamental signal is variation in the concentration of photosynthetic pigment. Drought rate is inversely proportional to photosynthetic rate of cereals that means in cereals photosynthetic rate is reduced because of drought (Dawood et al., 2019). In 2015 Pandey V. and Shukla A. reported that Carbon dioxide diffusional limitations are occurring as stomata closes itself earlier as response to the drought induced turgor loss, the photosynthetic enzyme reduced its activity, biochemical components related to triose-phosphate formation, and decreased photochemical efficiency of photosystem II are the major factors limiting photosynthetic rate (Pandey V. and Shukla A., 2015).

Although if we compare the limitations of the photosynthesis than the limitations of drought induced via metabolic distortions are very complicated than limitations of stomata, which caused mostly by decreased production of photosynthetic pigments (Rama R. *et al.*, 2014). In response to drought the mesophyll conductance and stomatal conductance to CO2 will decrease (Centritto M *et al.*, 2009). The loss in photosynthesis caused by lower expansion of leaf surface area, impaired machinery of photosynthesis, pre-maturation which brings leaf senescence early, and concomitant decrease in the yield of wheat is a key impact of heat stress (Ashraf and Harris, 2013; Mathuret *al.*, 2014).

3. Breeding for heat and drought tolerance

Several types of traits mentioned above are some good topics for the research, whereas some of them have already been applies for in the breeding of heat tolerance. Such as the cooler temperature of canopy seems to have similar genetic basis under both the stress that is stress caused by heat and drought (Pinto RS *et al.*, 2010) and in both environments with yield these are strongly associated.

Lopes and Reynolds in 2010 said that Under drought canopy temperature is associated with roots present at deeper site (Lopes and Reynolds, 2010) and also in heat stress (Unpublished data of M.P. Reynolds). In the stomatal conductance which under heat, the cooler canopies will be associated with genetic variation in the stomatal conductance (Reynolds *et al.*, 1994) and (Reynolds *et al.*, 2007).

There are many ways to raise the assimilation capacity such as candidate's parent screening as to improve the light interception (LI) delayed senescence, photoprotective pigments and the wax for the improvement of RUE, Other approaches like Rubisco and its regulations photosynthesis of spike are another long-term target with potential high payoffs.

Yield gains are dependent on the crop's ability to create partition in the assimilates of the grain. As RUE and LI are adjusted, production improvements will become more dependent on the crop's capacity to partition assimilates for the grain. For reproductive growth adaption to HS improved knowledge includes plant growth regulators interactions (Hays DB et al., 2007). If genetic advancements in absorption ability are to be converted into the agronomic yield via prolonged expression of the heat index, a lot of work will be necessary. In this regard, capacity for the storage of WSC and the remobilization are the two main qualities that may help to preserve heat index by buffering the supply of assimilates against highly changing weather. MAS is recognized as a better technique because of the total complexity of tolerance in abiotic stress and the challenges in the selection of phenotypes. However, only a few attempts had been undertaken to uncover the genetic markers which were related to the heat tolerance in several plants, including wheat. As a result, we can say that the genetic components underpinning the heat tolerance and to discover the accurate molecular marker used in molecular breeding to increase wheat grain production.

Several forms of abiotic stress in crop plants can bring challenge, including high temperature, more irradiance, shortages of water are occurring and shortfalls of nutrients and all of these are common under normal growth conditions but may not be managed with regular agricultural operation. Marker identification and the identification of genes are linked to the development of

root and its structure would be much valuable for the breeding programmes utilizing molecular marker aided choices to improve root attributes.

4. Conclusion and Future prospects

The increasing global temperature also raise the frequency of heat stress and this ultimately leads to the less production of grain yield. We can minimize heat and drought stress effect as by developing the tolerant genotypes and agronomic strategies. In case of wheat physiological basis of heat tolerance assimilates partitioning is also essential. Drought stress activates ABA signaling which proceeds to the closure of stomata and then decreased the carbon dioxide influx and start regenerating ROS and create oxidative stress because of which damage of protein and lipids takes place and furthermore it leads to the cell death. To overcome from this antioxidant defense system is better approach to diminish oxidative stress and it's the most effective strategies to make drought tolerant wheat plant. By the use of functional genomic approaches, we can explore the molecular basis of mechanism of response and tolerance, which were used to garnering the higher yields on basis of sustainability so this is how we can make crop resistance against heat stress and drought. For future prospects, the area on which we can research includes the conventional breeding blended with new tools of biotechnology for identification and the introgression of gene used for heat tolerance and drought tolerant into the elite lines. Combination of ecophysiological research and recent genomics helps in understanding the genotypes and the interactions of environment and under stress some integrated system should be designed for wheat stability of yield.

Conflict of Interest: - The authors declare that there is no conflict of interest.

Author Contributions:- Manya Tyagi wrote the manuscript and Girish Chandra Pandey critically reviewed this manuscript.

5. Reference

- Anonymous (2016) European Community, Community Research and Development Information Service (CORDIS),2016
- 2. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic

- antioxidants in plants during abiotic stress. Crit Rev Biotechnology 30:161–175.
- 3. Almeselmani M, PS Deshmukh and V Chinnusamy. 2012. Effect of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (*Triticum aestivum* L.) varieties differing in their thermotolerance. Plant Stress 6:25-32.
- Alam M., Hasanuzzaman M., Nahar K., Fujita M. Exogenous salicylic acid ameliorates shortterm drought stress in mustard (*Brassica juncea* L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. *Aust. J. Crop Sci.* 2013;7:1053– 1063.
- 5. Allahverdiyev T.I. Effect of drought stress on some physiological parameters, yield, yield components of durum (*Triticum durum* desf.) and bread (*Triticum aestivum* L.) wheat genotypes. *Ekin J. Crop Breed. Genet.* 2015; 1:50–62.
- Amirjani M.R., Mahdiyeh M. Antioxidative and biochemical responses of wheat. J. Agric. Biol. Sci. 2013; 8:291–301
- Asseng S, R Royce and D Cammarano. 2013.
 Temperature routines in wheat, workshop modeling wheat response to high temperature. Proceedings, Vol. VIII, p. 128. CIMMYT, Mexico, DF (Mexico). Jun 19–21
- 8. Ashraf M and PJC Harris. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica 51:163-190.
- 9. Asthir B and S Bhatia. 2014. In vivo studies on artificial induction of thermo tolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress. Journal of Food Science and Technology 51:118-123.
- Blum A, L Shpiler, G Golan and J Mayer. 1989.
 Yield stability and canopy temperature of wheat genotypes under drought stress. Field Crop Research 22:289–296.
- Blum, A. 1988. Plant Breeding for Stress Environment. CRC Press, Inc., Boca Raton, Florida.
- 12. Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31: 11–38

- 13. Bowne J.B., Erwin T.A., Juttner J., Schnurbusch T., Langridge P., Bacic A., Roessner U., Alia, Saradhi P., Mohanty P., et al. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. *Mol. Plant.* 2012;5:418–429. doi: 10.1093/mp/ssr114.
- 14. Chauhan H, N Khurana, A Tyagi, J Khurana, and P Khurana. 2011. Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L) and their regulation at various stages of development. Plant Molecular Biology 75:35-51
- Clarke J.M., McCaig T.N. Evaluation of Techniques for Screening for Drought Resistance in Wheat1. *Crop* Sci. 1982; 22:503. doi: 10.2135/cropsci1982.0011183 X002200030015x.
- Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–133.
- 17. Dias AS and FC Lidon. 2010. Bread and durum wheat tolerance under heat stress: A synoptical Overview. Food Agriculture 22:412-436.
- Dawood M.F.A., Abeed A.H.A., Aldaby E.E.S.
 Titanium dioxide nanoparticles model growth kinetic traits of some wheat cultivars under different water regimes. *Indian J. Plant Physiol.* 2019; 24:129–140. doi: 10.1007/s40502-019-0437-5
- European Community, Community Research and Development Information (CORDIS) (24 February 2016). "Genetic markers signal increased crop productivity potential". https://apps.fas.usda.gov/ psdonline/circulars/production.pdf
- 20. Easterling DR, Apps M (2005) Assessing the consequences of climate change for food and forest resources: a view from the IPCC. Clim Change 70: 165–189
- 21. Farshadfar E., Ghasempour H., Vaezi H. Molecular aspects of drought tolerance in bread wheat (T. aestivum) *PJBS*. 2008; 11:118–122.
- 22. Fischer RA (2011) Wheat physiology: a review of recent developments. Crop Pasture Sci 62: 95–114

- 23. Feng B, P Liu, G Li, ST Dong, FH Wang, LA Kong and JW Zhang. 2014. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. The Journal of Agronomy and Crop 200:143-155
- Farooq M, H Bramley, JA Palta and KHM Siddique.
 Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30:491-507.
- 25. Fokar, M., H.T. Nguyen, and A. Blum. 1998. Heat tolerance in spring wheat. I. Genetic variability and heritability of cellular thermotolerance. Euphytica 104:1-8.
- 26. Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155: 1566–1577
- 27. Gupta NK, S Agarwal, VP Agarwal, NS Nathawat, S Gupta and G Singh. 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum 35:1837-1842.
- 28. Hays DB, JH Do, RE Mason, G Morgan and SA Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science 172:1113-1123.
- 29. Haque MS, KH Kjaer, E Rosenqvist, DK Sharma and CO Ottosen. 2014. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Journal Environmental and Experimental Botany 99:1–8.
- 30. Hasanuzzaman M, MA Hossain, JAT da Silva and M Fujita. 2012. Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer Berlin, pp 261–316
- 31. Hasanuzzaman M, K Naha, MM Alam, R Roychowdhury and M Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643-9684.

- Hasanuzzaman M., Nahar K., Anee T.I., Khan M.I.R., Fujita M. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in *Brassica napus* L. *South Afr. J. Bot.* 2018;115:50–57. doi: 10.1016/j.sajb.2017.12.006.
- 33. Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14: 30–36
- 34. Hossain A, MAZ Sarker, M Saifuzzaman, JA Teixeira da Silva, MV Lozovskaya and MM Akhter. 2013. Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. International Journal Plant Production 7:615-636
- Hussain H.A., Hussain S., Khaliq A., Ashraf U., Anjum S.A., Men S., Wang L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. *Front. Plant Sci.* 2018;9 doi: 10.3389/fpls.2018.00393.
- Izanloo A., Condon A.G., Langridge P., Tester M., Schnurbusch T. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. *J. Exp. Bot.* 2008;59:3327–3346.
- 37. IPCC (Intergovernmental Panel on Climate Change). 2014. Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
- 38. Jain M, PV Prasad, KJ Boote, AI Hartwell and PS Chourey. 2007. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67-79.
- 39. Ji X, B Shiran, J Wan, DC Lewis, CLD Jenkins, AG Condon, RA Richards and R Dolferus. 2010. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environment 33:926-942

- 40. Jones PD, KR Briffa, TP Barnett and SEB Tett. 1998. High-resolution paleoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control run temperatures. Holocene 8:477-483.
- 41. Joshi, A.K., B. Mishra, R. Chatrath, G.O. Ferrara, and R.P. Singh. (2007). Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica 157:431–446. doi:10.1007/s10681-007-9385-7
- 42. Khanna Chopra R. 2012. Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469-481.
- 43. Krause GH and E Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42:313-349.
- Krasensky J and C Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63:1593-1608.
- 45. Kumar U, AK Joshi, M Kumari, R Paliwal, S Kumar and Roder. 2010. Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the 'Chirya 3' X 'Sonalika' population. Euphytica. 174:437-445.
- 46. Lal M, Singh KK, Rathore LS, Srinivasan G, Saseendran SA (1998) Vulnerability of rice and wheat yields in NW India to future changes in climate. Agr Forest Meterol 89:101–114.
- Lata C., Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 2011;62:4731–4748.
- 48. Liu P, W Guo, Z Jiang, H Pu, C Feng, X Zhu, Y Peng, A Kuang and CR Little. 2011. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.) Journal of Agricultural Science 149:159-169
- Lukac M, G S Mathur, D Agrawal and A Jajoo.
 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology 137:116-126

- Lim PO, HJ Kim and HG Nam. 2007. Leaf senescence. Annual Review of Plant Biology 58:115-136.
- Lobell DB, Burke MB, Tebald C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610.
- 52. Lopes MS and MP Reynolds. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 37:147-156
- 53. Lopes MS and MP Reynolds. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany 63:3789–3798.
- 54. Loutfy N., El-Tayeb M.A., Hassanen A.M., Moustafa M.F.M., Sakuma Y., Inouhe M. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (*Triticum aestivum*) *J. Plant Res.* 2012;125:173–184.
- 55. Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. *Front. Chem.* 2018;6:26. doi: 10.3389/fchem.2018.00026.
- 56. Maestri E, N Klueva, C Perrotta, M Gulli, HT Nguyen and N Marmiroli. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48:667-681.
- 57. Marutani Y, Yamauchi YKY, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761.
- 58. Martinez-Ballesta MC, Lopez-Perez L, Muries B, Munoz-Azcarate O, Carvajal M (2009) Climate change and plant water balance: the role of aquaporins a review. In: Lichtfouse E (ed) Climate change, intercropping, Pest control and beneficial microorganisms. Springer, Netherlands, pp 71–89.
- Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J PhotochemPhotobiol B: Biol 137:116-126

- McWilliam J. 1989. The dimensions of drought.
 In: Baker F, ed. Drought resistance in cereals.
 Wallingford, UK: CAB International, 1–11.
- 61. Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukuru VSP, Kalappanavar IK, Mishra VK, Hussain M, Gautam NR, Uddin J, Barma NCD, Hakim A, Joshi AK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop Res 151:19–26
- 62. Oshino T, S Miura, S Kikuchi, K Hamada, K Yano, M Watanabe and A Higashitani. 2011. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environment 34:284-290.
- 63. Outoukarte I., El Keroumi A., Dihazi A., Naamani K. Use of morpho-physiological parameters and biochemical markers to select drought tolerant genotypes of durum wheat. *J. Plant Stress Phys.* 2019:1–7.
- 64. Pandey V., Shukla A. Acclimation and Tolerance Strategies of Rice under Drought Stress. *Rice Sci.* 2015; 22:147–161. doi: 10.1016/j.rsci.2015.04.001.
- 65. Pandey GC, G Mehta, P Sharma and V Sharma. 2019. Terminal heat tolerance in wheat: An overview. Journal of Cereal Research 11(1): 1-16 doi. org/10.25174/2249-4065/2019/79252
- 66. Pandey GC and Tiwari R 2019. Characterization of terminal heat tolerance in bread wheat (*Triticum aestivum* L.) using differences in agronomic traits as potential selection criteria. *Vegetos*, Vol.32, Issue 2, pp 200–208.
- 67. Pandey GC, HM Mamrutha, R Tiwari, S Sareen, S Bhatia, V Tiwari and I Sharma.2015. Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.). *Physiology and Molecular Biology of Plants*, 21(1): 93–99 DOI 10.1007/s12298-014-0267-x.
- 68. Pandey GC, Sareen S, Siwach P, Tiwari R 2014. Molecular characterization of heat tolerance in bread wheat (*Triticum aestivum* L.) using differences in thousand grain weights (dTGW) as a potential

- indirect selection criterion. Cereal Res Commun 42(1), 38–46.
- 69. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas J-J, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. *Theoretical and Applied Genetics* 121:1001-1021.
- Praba, ML, Cairns, J.E., Babu, R.C. and Lafitte, H.R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 195: 373-382.
- Prasad PVV and M Djanaguiraman. 2011. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology 38:993-1003
- 72. Porter JR. 2005. Rising temperatures are likely to reduce crop yields. Nature 436:174
- 73. Quarrie SA, A Steed, CCalestani, A Semikhodskii, C Lebreton, C Chinoy, N Steele, D Pljevljakusic, E Waterman, J Weyen, J Schondelmaier, DZ Habash, P Farmer, L Saker, DT Clarkson, A Abugalieva, M Yessimbekova, Y Turuspekov, S Abugalieva, R Tuberosa, MC Sanguineti, PA Hollington, R Aragues, A Royo and D Dodig. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics 110:865-880.
- 74. Rama R., Nagaraja R., Ragimasalawada M., Sabbavarapu M.M., Nadoor S., Patil J.V. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics. 2014;15:909.
- Reynolds MP, M Balota, MIB Delgado, J Amani and RA Fischer. 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Australian Journal of Plant Physiology 21:717-730.
- Reynolds MP, JI Ortiz-Monasterio and A Mc Nab. 2001. Application of physiology in wheat breeding. CIMMYT, El Batan, Mexico. http://www.

- cimmyt.org/ research/wheat/map/research_results/ wphysio/wphysio_ contents.pdf
- 77. Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47: S-172–S-189
- Reynolds, M.P., E. Quilligan, P.K. Aggarwal, K.C. Bansal, A.J. Cavalieri, S.C. Chapman, et al. 2016.
 An integrated approach to maintaining cereal productivity under climate change. Glob. Food Secur. 8:9–18. doi:10.1016/j.gfs.2016.02.002
- Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (*Triticum aestivum* L.) Ekologija 56:26–33.
- 80. Sanchez-Rodriguez E., Rubio-Wilhelmi M., Cervilla L.M., Blasco B., Rios J.J., Rosales M.A., Ruiz J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. *Plant Sci.* 2010;178:30–40. doi: 10.1016/j. plantsci.2009.10.001.
- 81. Schachtman D.P., Goodger J.Q. Chemical root to shoot signaling under drought. *Trends Plant sci.* 2. 0018;13:281–287. doi: 10.1016/j. tplants.2008.04.003.
- Slafer, G.A., Araus, J.L., Royo, C. and Del Moral, L.F.G. (2005). Promising eco-physiological traits for genetic improvement of cereals in Mediterranean environments. Ann. App. Biol. 146: 61-70
- 83. Sharma, D., R. Singh, J. Rane, V.K. Gupta, H.M. Mamrutha, and R. Tiwari. (2016). Mapping quantitative trait loci associated with grain filling duration and grain number under terminal heat stress in bread wheat (Triticum aestivum L.). Plant Breed. 135:538–545. doi:10.1111/pbr.12405
- 84. Sharma P., Sareen S., Saini M. Shefali Assessing genetic variation for heat stress tolerance in Indian bread wheat genotypes using morphophysiological traits and molecular markers. *Plant Genet. Resour.* 2017; 15:539–547. doi: 10.1017/S1479262116000241

- 85. Sheoran S, P Sharma, V Singh, S Pawar, D Sharma, N Jain, R Kumar, V Thakur, GC Pandey, R Malik, R Tiwari, V Tiwari, R K Gupta and I Sharma. 2015. Assessment of genetic diversity in elite wheat genotypes using simple sequence repeat and quality protein markers. Journal of Wheat Research 7(1):18-2
- Shewry PR, Hey SJ (2015). "Review: The contribution of wheat to human diet and health". Food and Energy Security.4(3): 178-202.doi: 10.1002/fes3.64.
 PMC 4998136.PMID 27610232.
- 87. Smith ME, Coffman WR, Baker TC (1990)
 Environmental effects on selection under high and low-input conditions. In: Kang MS (ed) Genotype-by-environment interaction and plant breeding. Louisiana State University, Baton Rouge, LA, USA, pp 261–272
- 88. Stone P, Nicolas M (1995) Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Funct Plant Biol 22: 927–934
- 89. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270. doi:10.1111/j.1365-3040.2011.02336.x
- Suzuki N., Miller G., Salazar C., Mondal H.A., Shulaev E., Cortes D.F., .Shuman J.L., Luo X., Shah J., Schlauch K., et al. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. *Plant Cell*. 2013;25:3553–3569.
- 91. Tuberosa R and S Salvi.2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science 11:405-412.
- 92. Turner NC. 1979. Drought resistance and adaptation to water deficits in crop plants. In: Mussell H, Staples CR, eds. Stress physiology in crop plants. New York: John Wiley & Sons, 343–372.
- 93. Thompson A.J., Andrews J., Mulholland B.J., McKee J.M.T., Hilton H.W., Black C.R., Taylor I.B. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. *Plant Physiol.* 2007;143:1905–1917.

- 94. Trethowan RM, Pfeiffer WH (2000) Challenges and future strategies in breeding wheat for adaptation to drought stressed environments: A CIMMYT wheat program perspective. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A strategic planning workshop held at CIMMYT El Batan, Mexico, 21–25 June 1999. CIMMYT, Mexico DF, pp 45–48
- 95. Vijayalakshmi K, A Fritz, G Paulsen, G Bai, S Pandravada and B Gill.2010. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding 26:163-175.
- 96. Wang X, J Cai, D Jiang, F Liu, T Dai and W Cao. 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology 168:585–593.
- 97. Wang X, J Cai, F Liu, M Jin, H Yu, D Jiang, B Wollenweber, T Dai and W Cao. 2012. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science 55:331-336.
- 98. Wang X, J Cai, F Liu, T Dai, W Cao, B Wollenweber and D Jiang. 2014. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry 74:185-192

- 99. Wang H, H Wang, H Shaoand and X Tang. 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science 7:67
- 100. Xu W., Jia L., Shi W., Liang J., Zhou F., Li Q., Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. *New Phytol.* 2013;197:139–150. doi: 10.1111/nph.12004.
- 101. Yang J., Zhang J., Wang Z., Xu G., Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. *Plant Physiol.* 2004;135:1621–1629. doi: 10.1104/pp.104.041038.
- 102. Yang D.L., Jing R.L., Chang X.P., Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (*Triticum aestivum* L.) stems. *Genetics*. 2007;176:571–584.
- 103. Zhang Y.-J., Yang J.-S., Guo S.-J., Meng J.-J., Zhang Y.-L., Wan S.-B., He Q.-W., Li X.-G. Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. *Plant Biol.* 2011;13:362–367. doi: 10.1111/j.1438-8677.2010.00365

