Journal of Cereal Research

Volume 14 (Spl - 1): 17-41

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Abiotic stress tolerance in wheat with emphasis on drought

Arzoo Ahad¹, Manal Arshad¹, Namrah Ahmad¹, Mahnoor Ilyas¹, Tuba Sharf Batool¹, Mahnoor Ejaz¹, Alvina Gul^{1*} and Munir Ozturk^{2*}

¹Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan

Article history:

Received: 04 Jan., 2022 Revised: 05 July, 2022 Accepted: 14 Aug., 2022

Citation:

Ahad A, M Arshad, A Namrah, I Mahnoor, TS Batool, M Ejaz, A Gul and M Ozturk. 2022. Abiotic stress tolerance in wheat with emphasis on drought. *Journal of Cereal Research* 14 (Spl-1): 17-41. http://doi.org/10.25174/2582-2675/2022/126890

*Corresponding author:

E-mail: alvina_gul@asab.nust.edu.pk, munirozturk@gmail.com

© Society for Advancement of Wheat and Barley Research

Abstract

Environmental change presents a significant hazard to most tropical and subtropical crops across the world. Drought stress is among the negative repercussions of environmental modification that affects agricultural development and output. It has a significant influence on the vegetative and propagative phases of plants. Considering the current and prospective nutrition demands of a growing populace, it is critical to target crop production in drought-prone rainfed areas. Crops respond to drought stress in various manners, including structural, physio-chemical, and molecular responses. Drought tolerance encompasses processes that operate at several geographical and temporal dimensions, ranging from immediate stomatal closure to crop production management. There are multiple genes in wheat that are responsible for drought resistance and generate various enzymes and proteins under drought conditions. This review focusses the current advances in wheat physio-chemical, and molecular adaptation to drought tolerance. The experimental data revealed that drought stress negatively impacts multiple physiological processes that occur in wheat plants during their various growth phases, including germination, vegetative growth, reproductive development, and maturity. Therefore, studying the drought-induced damage in wheat plants, as well as strategies for boosting drought tolerance, is critical for increasing wheat output. Furthermore, molecular genetics and breeding strategies for developing drought tolerance in wheat to boost yield and quality are discussed.

Keywords: Drought stress, Drought adaptations, Wheat, Breeding, Food security.

1. Introduction

Drought is becoming a foremost threat to plant production being a yield-limiting factor. The growth, physiology, and reproduction of plants are negatively impacted during extreme drought conditions, causing substantial failure in crop yields. Water being an ultimate element of plant life, constitutes almost 90% of the plant's weight. It is becoming a continuous challenge to agronomists and plant breeders. By 2025, around 1.8 billion population will suffer water scarcity and 65% will confront low water

availability. Resilience to water pressure is a perplexing threshold wherein harvests can be influenced by numerous quality factors (Nezhadahmadi *et al.*, 2013). Plants have diverse systems for overcoming drought stress that can be categorized into four portions including drought avoidance, drought tolerance, drought escape, and drought recovery. The two principle means for plant drought resistance are drought avoidance and drought tolerance, which are among the four constituents of dehydration resistance

²Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkiye

(Fang and Xiong 2015). Root density, sustainable use of freshwater resources by flora, and modifications in plant lifestyle to harness rainfall are all factors in drought avoidance. Drought resilience refers to a plant's propensity to partially dry and rehydrate while the rain continues to fall (Nezhadahmadi et al., 2013). Drought escape relates to the process of reconfiguring the life cycle, to avoid an correspondence between the developing period and local periodic drought (Shanmugavadivel et al., 2019). Plant ends its life cycle by the advent of drought stress and forms viable drought-resistant seeds. The seeds later germinate when they encounter enough amount of water in the environment (Fang and Xiong 2015). Farmers prefer genotypes with brief life cycles that end their growing period before the commencement of seasonal drought stress or generally require minimal moisture (Kumar et al., 2019). Drought recovery refers to a plant's ability to restore vigor and productivity after being subjected to extreme water shortage, which causes significant decrease in turgor pressure and leaf dehydration (Shanmugavadivel et al., 2019).

Drought can have an impact on gene expression and detecting genes under this condition is critical for studying their responses (Nezhadahmadi et al., 2013). Several drought-induced genes have already been recognized (Ingram and Bartels 1996). The contribution of genes can be differentiated by their expression to increased resistance rates between cultivars (Nezhadahmadi et al., 2013). Dehydration being multidisciplinary stress can also trigger pollen incompatibility, grain mortality, abscisic acid (ABA) deposition in spikes of drought-prone wheat cultivars, and ABA biosynthesis genes in the anthers (Ji et al., 2010). Plants have established such processes to withstand stress conditions. They can be influenced by drought stress in terms of antioxidant production, protein modifications, osmoregulation, hormonal composition, root outgrowth, stomatal movement, cuticle thickness, photosynthesis, and photosynthetic pigments, reduced transpiration, and growth arrest, in addition to some osmotic adjustments in their organ systems. (Lawlor and Cornic 2002, Nezhadahmadi et al., 2013, Szegletes et al., 2000, Yordanov et al., 2000, Zhu 2002).

Water deficit flora can be broadly categorized into three types including hydrophytes (suitable to high moisture content), mesophytes (semi-arid and subhumid geographical zone), and xerophytes (arid zones). Mesophytes are an important model for researching drought. Plants exhibit several intricate pathways for drought tolerance at various developmental phases, and at each developmental phase, a sequence of events such as photosynthesis, production of various macromolecules, stomatal movement, and cell osmotic control occur. Furthermore, natural drought stress is dynamically erratic. As a result, assessing drought resistance is challenging (Fang and Xiong 2015). Plants growing under extreme habitats (Xerophytes) exhibits particular adaptations to deal with long periods of dry weather conditions. The perennials avoid drought conditions either by having a long root system that digs deep into the soil to acquire low water table (e.g., Prosovis sp.) or having considerable water storage capacity that they gather during the brief rainy season (e.g., Sciguaro) Simultaneously, they reduce transpirational loss by shutting their stomata during the day time and lowering surface area by replacing leaves with spines (Srivastava 2002).

Wheat is the earliest cultivated staple cereal crop fulfilling most of the carbohydrates, proteins, and energy demands of mankind. It is utilized by 1/3rd of the human population to meet their nutritional needs. With a yearly output of 735 million tonnes, it is the most significant cereal after rice and ahead of maize (Ihsan et al., 2016). Fluctuating climate is expected to affect various biotic as well as abiotic stresses on wheat (Prasad et al., 2021). The constantly rising temperature of the planet has resulting in water depletion thus limiting the agricultural yield of the crops (Khare et al., 2022). Drought has a very negligible influence on the incidence of kernel filling in wheat, but it does reduce the period between fermentation and maturity, resulting in lowering the dry weight at maturity (Wardlaw and Willenbrink 2000). Wheat has a higher water-use efficiency under drought circumstances than properly irrigated plants. This is due to stomatal closure, which lowers the transpiration rate (Monclus et al., 2006). The cell membrane of wheat cells becomes more stable when they are subjected to water stress. This is because it is a strategy for increasing drought resilience (Blum and Ebercon 1981). Hardening, or physiological adaptation to dryness, is a key consequence of drought that has recently gained greater attention. The importance of osmotic adjustment in such adaptations cannot be overstated (Begg and Turner 1976). In this study, we have focused on morpho-

physiological features related to the processes enabling drought resistance in crop plants, and then we concisely highlight the achievements in the characterization of the genes for drought response in plants. Furthermore, we also discussed the effect of drought on photosynthesis, leaf senescence, respiration, antioxidant defense system, as well as cell membrane stability.

2. Risks associated with drought

Plants face various environmental stresses which cause yield reduction resulting in an increased threat to food security. Adverse environmental conditions resulting from abiotic stresses can result in the lowering of yield from 50% to even 70% (Francini and Sebastiani 2019). The average global temperature will rise 1.4 to 5.8 by the turn of 19th century. One of the major factors affected by the increase in temperature is water deficiency resulting in serious water crises like drought (Assad et al., 2004). Under heat and water shortage conditions, the plant's nutrients absorption capacity and photosynthetic efficiency are reduced. These risk factors not only shorten the growth time but also diminish the size of the leaf, tiller, and spikes at different phases of tillering, booting, anthesis, heading, and grain filling (Ihsan et al., 2016). Plant genetic constitution, morpho-physiological system of growth, expression patterns, activity of photosynthetic machinery, and environmental exposures are all factors that can influence plant responses to drought stress (Mohammadi 2018, Nezhadahmadi et al., 2013). Droughts happen due to a variety of factors, most of which impair the environment's hydrologic cycle. One of these factors is a substantial reduction in rainfall, which may contribute to a reduced

water content in the ground, and lakes. When the water demand is inadequate to meet domestic requirements, a water stress period is unavoidable (Lockwood 1986). Summing up the entire list of problems may be beyond the scope of this review; hence, the attention has been focused on a few prominent dangers; nevertheless, the list is not exhaustive:

- Plants become dehydrated when droughts persist for an extended period. Symptoms include halted development, sudden leaf, and fruit loss, and eventually wilting. Drought conditions harm pastures and harvest yields (Fig 1).
- Food shortages may develop in addition to water shortages. In the worst-case situation, hunger may result after a lengthy period of drought.
- Not only does wind cause soil erosion, but also can flood under dry conditions.
- 4. Another severe effect of protracted droughts may be sinking, which is extremely perilous for the entire area.
- 5. If a certain location is repeatedly subjected to drought circumstances, it may cause irreversible harm to the ground, from which it will be unable to recuperate.
- 6. Desertification is based on drought circumstances.
- 7. Drought causes environmental modifications such as a lack of biodiversity, modifications in migration patterns, rise in soil erosion, and poor air quality (Cook *et al.*, 2007, Namias 1983, Schubert *et al.*, 2004, Trenberth and Branstator 1992).

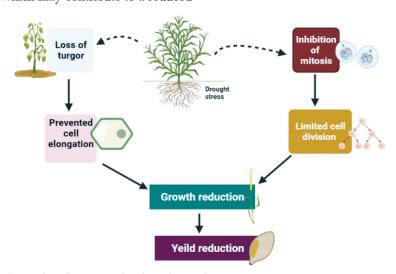


Figure 1: Mechanism of growth reduction under drought conditions.

3. Morphological, and physio-chemical deviation of wheat under drought conditions

Drought tolerance has two basic effects on the plants: physiological impacts which have impacts that are later visible to the naked eye and molecular impacts including changes in biochemical responses and enzymatic activity. Physiological stresses have an adverse impact on photosynthesis, transpiration, stomatal functioning, plant enzymes, and many more pathways which get disturbed. The biochemical stresses impact osmotic adjustment, osmolyte biosynthesis, plant homeostasis, ion transport, and many more balances are disturbed

(Hasegawa *et al.*, 2000). Upon the arrival of favorable conditions after the desiccation period, plants show two types of responses including rapid recovery response in which the plant quickly recovers its normal physiological and biochemical responses. The other response is the slow recovery in which the plant may take hours to come back to normal physiological and biochemical activity or it may have some permanent damage and not be able to develop normally even after the onset of favorable moisture conditions. (Kollist *et al.*, 2019). Fig 2 illustrates the diverse structural and biochemical responses of a plant during water shortage.

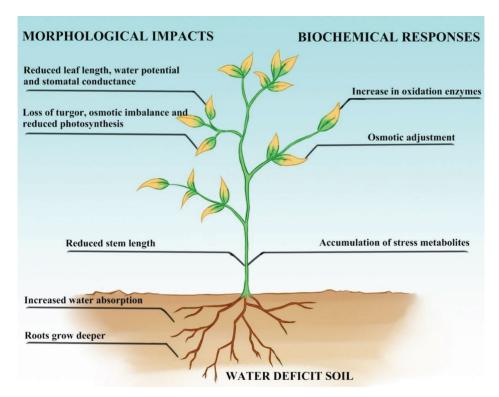


Figure 2: Structural and biological responses of plants due to water deficit.

3.1 Water deficit and leaf senescence

Drought increases foliar senescence and reduces the plant canopy size as well (Aliche *et al.*, 2018). Leaf senescence is one of the constraints which are used to judge the level of drought stress a wheat plant is facing (Miloud and Ali 2020). The first phase of drought impacts the leaf's color and shape. The leaves start to wilt and then dry along with the degradation of chlorophyll resulting in loss of the original plant color usually leading to a darker brown shade. As the cellular mechanisms are water-dependent, loss of water results in slowing down and ultimate halt

in the biochemical processes. Chlorophyll molecules degrade and the leaves lose their green color which was provided by chlorophyll which depleted because of drought stress (Fig 2). The loss or degradation of chlorophyll molecules inside a plant is known as chlorosis which is a big indicator of drought stress. As days go by, the heat of the sun dries out the soil and the plants ultimately die out due to prolonged drought stress. The loss of leaves has a deleterious impact on the plant's overall functions and in the case of wheat, the flag leaves are very important as they provide for 30 to 40% of the energy assimilates (sugar) during the developmental stage of the

wheat grains. (Farooq *et al.*, 2014) The loss of flag leaves is one of the main indicators for drought stresses faced by wheat plants which not only leads to lower yields but can also cause ultimate death of the entire wheat plant due to prolonged absence of water (Yang *et al.*, 2006).

3.2 Water deficit and yield loss

During drought stress, plants usually halt their productive growth and focus only on the vegetative parts which are essential for the survival of the plant. This results in floral senescence and the flowers meaning no fruits and loss in yield. If a drought hits at the fruiting stage, then fruit senescence occurs resulting in premature fruit dropping, fruit spoilage, and shrinking in fruit size (da Silva *et al.*, 2013)</style> 2013. The wheat plant confronts the most detrimental impacts of drought stress during its flowering and grain-filling stages like any other plant. Loss of

flowers and shrivelled grains result in significant yield loss (Shamsi K et al., 2010). Wheat has shown extreme sensitivity towards drought pressure during the postanthesis period as well. Wheat plants facing mild drought at the post-anthesis stage reduce the yield between 1 to 30% depending upon the tolerance of the wheat cultivar against drought stress. However, a protracted moderate drought during the blooming and grain filling periods reduces the yield from 58 to 92%. This shows that the complete absence of water may cause the death of the entire plant, but mild droughts can significantly reduce the yields. Mild droughts are also economically devastating because the realization hits at the end when yield is obtained that all the effort to grow wheat was wasted because of a prolonged mild drought (Zhang et al., 2018). Fig 3 illustrates how different parts of a wheat plant are affected by drought stress.

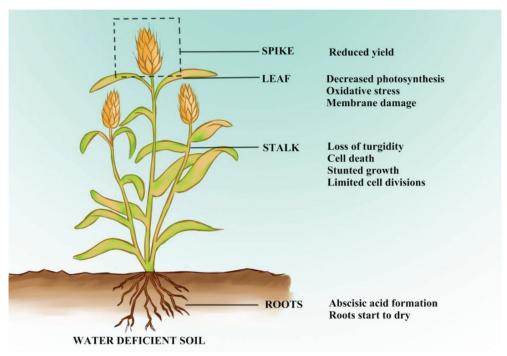


Figure 3: Impact of water deficiency on different parts of a wheat plant.

3.3 Water deficit and photosynthetic response

Photosynthesis is the driving force of plants which forms sugars that are utilized by plants as food sources and storage purposes. Photosynthesis occurs normally in plants having all the vitals including CO_2 , water, and sunlight. However, taking out water disturbs the entire photosynthetic pathway, and an extremely complex response is received from plants undergoing water stress. The response is also related to the type of plant, the

intensity of drought, and time period. Normally plants recover their normal physiological and biochemical activities upon the availability of water after drought, but some plants do not recover when the stress exceeds their capacity to tolerate the stress (Siddique *et al.*, 1999). The most important enzyme in photosynthesis is RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) which gets affected and as a result photosynthetic activity declines (Perdomo *et al.*, 2017). Drought has many negative

impacts on the photosynthetic pathway but some of them are common for all plants including stomatal leaf-gas exchange, photosynthetic enzymes, and readily available forms of energy production. The main points are discussed as follows:

3.3.1 Influence on stomatal oscillations

The first response against drought stress is stomatal closure to prevent further loss of water. However, this response is only feasible until the plant can actively maintain turgor pressure which is lost in the case of a prolonged water deficit environment. Moreover, the closure of stomata also stops the gaseous exchange which is extremely important for obtaining CO₂ and releasing O₂ into the environment for the process of photosynthesis (Brodribb and Holbrook 2003). In case of stomatal closure, there are more electrons available for the generation of ROS (Reactive Oxygen Species) which help in maintaining the normal growth of plants and helping them get by the drought period (Huang et al., 2019). The water volume of soil also helps in regulating the stomatal movement because when the water content in the soil surrounding the roots depletes, roots start to dry out and it results in the production of abscisic acid. The stomata respond to abscisic acid signals even when the leaf water content is sufficient. This aids the plant in maintaining turgor pressure despite the soil has dried out of water content (Brodribb and Holbrook 2003). When water depletes from soil and roots start to dry out, the pH of the soil decreases, and it results in the deposition of abscisic acid and a diminution in the stomatal activity. On the other hand upsurge in the production of cytokinin in the xylem stimulates stomatal opening along with affecting the stomatal sensitivity towards abscisic acid. (Wilkinson and Davies 2002) When gaseous exchange stops, CO2 is unable to be carried out by the plant culminating in carbon dioxide deprivation effects including severe inhibition of photosynthesis, respiration, chlorophyll production, and starch buildup (Banerjee et al., 2019). The stomatal functioning is regulated by several internal and external factors, but it is evident that drought stress alters the normal functionality of the stomata.

3.3.2 Influence on photosynthetic enzymes

One of the most deleterious effects of drought is the slow down and ultimate inactivation of the enzyme RuBisCO. Rubisco enzyme plays a key role in photosynthesis by fixing CO₂ which is the first step of the photosynthesis process. Since carbon dioxide fixation is the first major step, the entire photosynthesis process halts due to the unavailability of CO_2 (Perdomo *et al.*, 2017) Moreover, the reduction in water content also creates a viscous environment that increases the protein-protein interactions resulting in collisions of toxic substances with the Rubisco enzyme and its ultimate degradation. The degradation can be due to enzymes that digest Rubisco or part of it rendering it useless or toxic substances that alter the normal functioning of the enzyme (Parry *et al.*, 2002) Plants undergoing stress also show that Rubisco acts more as an oxygenase than a reductase during water deficit conditions. Drought stress also limits the regeneration ability of Rubisco resulting in further decline of the photosynthesis process (Demirevska *et al.*, 2009).

3.3.3 Influence on ATP synthesis

PMF (Proton Motive Force) is responsible for CO₂ fixation by harnessing the energy from light and have significant function in the feedback mechanism regulation of PSII (Photosystem II) antenna. Prolonged droughts harm the balance between these two roles played by the PMF. A study on balance between carbon fixation and feedback mechanism regulation roles showed that a nearly 34% increase in electron influx was observed in the PSI (Photosystem I) cyclic electron flow. However, a 5-fold reduction in the conductivity of protons was also noted across the thylakoid membrane showing that drought stress had an undesirable impact on PMF in plants. (Kohzuma et al., 2009) The reduced conductivity of the protons also impacts the ATP synthase which functions by transfer of proton through the ATP synthase and converting ADP to ATP with the addition of Pi. When this process halts, ATP synthesis is also reduced and the plant starts to lose readily available ATPs for cellular activities (Golding and Johnson 2003).

3.4 Water deficit and oxidative damage

Oxidative damage occurs due to ROS including singlet oxygen, hydroxyl and superoxide anion radicals. ROS interact with nucleic acids, proteins, lipids, and membranes causing oxidative harm to their structures. ROS are formed by enzymatic and non-enzymatic pathways; though, the two pathways are regulated by the flow of oxygen under water deficit conditions. ROS formed by the enzymatic process is generate from the mitochondrial ETC (Electron Transport Chain) and the ROS formed by

the non-enzymatic process result from electron reduction by oxygen when there is a high level of oxygen available. (Alvarez *et al.*, 1998) ROS species damage the plant DNA, enzymes, phospholipid bilayer, and several important plant structures. ROS are formed in plants naturally as well and are indicative of plant aging, however, the rapid increase in ROS levels results in wilting, growth stunting, leaf senescence, halt of photosynthesis, and premature death of the plant.

3.5 Water deficit and antioxidant defense system

Antioxidants are the components that help prevent oxidative damage to the plant organelles and important structures for plant sustainability. The defense against oxidation is called an antioxidant defense strategy which involves both enzymatic and non-enzymatic components. Enzymes include catalases, peroxidases, superoxide dismutases, glutathione reductases, and ascorbic peroxidases. On the other hand, the non-enzymatic antioxidant defense scheme includes cysteine, ascorbic acid (Vitamin C), and reduced glutathiones for defense. Several components including antioxidant enzymes, water or lipid-soluble scavenging molecules help the oxidative damage creating components. Apart from ROS, lipid peroxyl radicals also increase oxidative damage to plants. Antioxidants help scavenge the ROS directly or with the help of other antioxidant components. Antioxidants are also sensors playing a key role in sensing the cellular oxidation-reduction (redox) status of the plant. They help keep a balanced plant redox status which also keeps the pH of the plant in check. (Hernández et al., 2012) Several plant pigments are excellent antioxidants keeping the redox status of the plant in check. A study done on plant pigments with antioxidant abilities showed 13 different pigments harnessing the ability to scavenge oxidative damage creating components. (Boo et al., 2011).

3.6 Water deficit and cell membrane stability (CMS)

Cell membrane stability (CMS) is a measure of drought conditions faced by a plant. The drought tolerance of wheat starts to decrease as the plant ages and the leaves are no longer able to bear the stress (Blum and Ebercon 1981). PEG (Poly Ethylene Glycol) has been used to measure the stability of plant cell membrane which is indicative of the stability of the structure and impacts due to drought stress. (Premachandra and Shimada 1988, Premachandra and Shimada 1987) Some markers including wmc9,

wmc596, wmc603, and barc108 have been identified in a study related to wheat drought tolerance and consequent cell membrane stability. They are weak yet significantly associated with the cell membrane stability of the wheat plant. (Ciuc and Petcu 2009) A investigation on 50 diverse genotypes of wheat revealed that CMS was also dependent upon the type of wheat cultivar and those promising wheat cultivars should be used for future breeding. CMS has been found to be greatly influenced by drought and heat stress especially at the young seedling stage and anthesis stage which are both the most vulnerable states for wheat during drought stress. Therefore, germplasm isolation of resistant varieties can be promising for future drought-resistant cultivars of wheat. (Rehman *et al.*, 2016).

3.7 Compatible solutes and osmotic modification

Osmotic adjustment is a drought tolerance mechanism that allows the accumulation of solute under drought stress resulting in osmotic potential lowering. (Nio et al., 2018) When water is deficient, it is important to provide water to the most important parts of the plant either through changes in the cell wall elasticity or osmotic adjustments. The adjustment of available water is important to drive physiological functions in the plant without which it cannot survive. (Hsiao et al., 1976) Osmotic adjustment helps in conferring drought tolerance by accumulating abscisic acid resulting from a signal from roots that start to dry out resulting in the ultimate induction of dehydrins that prevent drought stress-related physiological damage. (Boyer et al., 2008) One of the most notable functions of osmotic adjustment involves maintenance of the turgor pressure in the stomata to help them remain closed preventing water loss. (Zivcak et al., 2016) However, this is only helpful in cases where drought stress is not for a long time, or the plant has an internal reserve of water that can be utilized for a long duration. (Chen and Jiang 2010) In wheat, the process of osmotic adjustment helps the translocation of pre-anthesis partitioning of carbohydrates in the grain filling stage. The turgor pressure maintained by osmotic adjustment helps the plant to sustain a greater rate of photosynthesis and ultimately a higher growth rate from the higher rate of photosynthesis. (Serraj et al., 2002) There are certain organic compounds, like proline, which help the plant have a more stable and protected cell membrane. The proline content can be measured using spectrophotometry and research-based analysis

of the proline contents of different wheat genotypes revealed that a substantial contrast exists between different genotypes in terms of osmotic adjustments. Genotypes either showed high or low osmotic adjustments which showed a correlation with stomatal closure. The genotypes which show more osmotic adjustments were also showing delayed stomatal closure resulting in the continuation of the process of photosynthesis. The process of photosynthesis continues which is beneficial for wheat as the plant continued to grow and showed greater yield in terms of grain filling and overall quality. (Živčák *et al.*, 2009).

4. Selection of traits for drought tolerance in wheat

4.1 Physiological trait selection for drought tolerance in wheat

Increased availability to moisture with a proactive root system and water conservation to guarantee that it will not drain out when the crop longevity is finished seem to be the two main strategies for boosting production in water shortages areas (El Sabagh et al., 2019). The second method, unlike the first, is crucial in situations where deep water is unavailable or when the subsoil is poisonous to the root system owing to toxic metals, salts, or other factors. Although transpiration efficiency (TE) is likely desired among both circumstances, it is more so in the latter. Despite the difficulty of measuring TE precisely on the ground, carbon isotope discrimination (CID) can be employed as a substitute. CID is holistic and genotypic; however, it is costly to quantify because it necessitates mass spectrometry (Juliana et al., 2019). Interestingly, roots' exposure to subsurface water may be monitored in the field at maximum throughput by estimating canopy temperature (CT). Research findings on mapping populations revealed genetic factors basis, and recent work not just validated the representation of profound roots in rows with "cool canopy" quantitative trait loci (QTL), but even demonstrated that the same lines represented cooler canopies under hot, irrigated conditions and had been aligned with a greater root mass throughout all depth profiles in the field (Chapman et al., 2018). Although differences in height and phenology can skew CT measurements, these parameters are well controlled in such experiments, and the root data corroborated the CT measurement while also indicating

a greater root: shoot ratio, least during drought (Langridge and Reynolds 2021).

4.2 Drought tolerance in wheat through genomic selection (GS)

GS is a method of evaluating the influence of loci throughout the complete genomic sequence to compute a genomic estimated breeding value (GEBV) which may be utilized to forecast the phenotype of lines predicated on their genetic makeup (Juliana et al., 2019). The quantity and variety of the population utilized to train the model to calculate breeding standards, as well as intensity of the molecular markers utilized in genotyping lines, affect the predictability of the results. Genomic selection in wheat breeding is a relatively new concept, with early ideas reaching back just around ten years. Moreover, currently, it has been frequently exploited in wheat breeding projects (Juliana et al., 2018). Although, GS is essentially a breeding approach, and few papers are documenting its use. An overview of how it may be used to boost yield. The use of GS to improve wheat's temperature and drought tolerance, that has yielded promising outcomes, especially when coupled with latest high-throughput phenotyping approaches (Juliana et al., 2019). There have been reports of yield estimating precision of 0.56 and 0.62 in drought and extreme temperature respectively. These findings imply that integrating GS with better phenotyping in order to increase wheat endurance might yield considerable benefits (Langridge and Reynolds 2021).

5. Plants adaptations to drought

Drought stress harms the plant water relations resulting in significant damage from delayed physiological functions. The plant develops a variety of structural, biological, and physiological responses to coping with stress (Beck *et al.*, 2007, Chaves and Oliveira 2004). The following are some of the plant's defense mechanisms in the event of a water shortage:

5.1 Drought escape

Drought escape is a phenomenon that occurs when the life cycle (vegetative and reproductive phases) of a plant is shortened. The plant reproduces using this strategy before the water supply in the environment becomes inadequate (Araus *et al.*, 2002). Varieties have an efficient approach for minimizing yield loss during drought by maturing

early, therefore, developing short life cycles (Kumar and Abbo 2001).

5.2 Drought avoidance

Drought avoidance entails controlling transpiration through stomata and maintaining water absorption through massive radicle growth. Root characteristics like biomass and depth are key drought avoidance features that contribute to ultimate productivity during water scarcity (Turner *et al.*, 2001). The use of a deep root system makes it easier to extract water from great depths (Kavar *et al.*, 2008).

5.3 Phenotypic flexibility

Phenotypic flexibility refers to the limitation of area and number of leaves to reduce water use efficiency. A shortage of water significantly impedes plant growth. Plant drought tolerance is highly reliant on roots and shoots (Schuppler *et al.*, 1998). Leaf pubescence (hairs) is a feature that protects the leaf from extreme temperatures by reducing transpiration (Sandquist and Ehleringer 2003). Drought stress stimulates trichomes to develop on both upper and lower sides of wheat leaves, but they have minimal effect on boundary layer resistance (Nerd and Neumann 2004).

5.4 Osmotic adjustment

Osmotic adjustment is the process by which the osmotic potential of a plant cell is dropped due to accumulation of solutes (Kramer and Boyer 1995). During dehydration, osmotic adjustment, in conjunction with cell wall elasticity, modulates turgor (Blum 2017). In the earlier reports, osmotic potential of plants was decreased to higher degree along with the decreased water potential of leaves and growing media but its reason is unknown as if it was caused by high concentration of organic solutes or due to the change in adaptation of cellular environment according to the development of plant (Turner 2018).

6. Molecular approaches of drought tolerance in wheat

When drought conditions prevail, several physiological and metabolic systems are triggered in plants in order to persist, grow, and produce. Inheritance's pattern of drought tolerance is intricate, and the accompanying characteristics are multifaceted and controlled by various genes, enabling the development of drought resilient varieties more challenging. Plants being motile have multiple mechanisms to recognize and adapt to different environmental situations. The interpreted signal is transduced, resulting in the activation of underlying genes that code for proteins conferring resistance under drought (Gupta *et al.*, 2017) (Fig 4). Researchers have recently been able to uncover certain genes associated with drought resistant wheat because of advance laboratory methods and computational biology tools (Budak *et al.*, 2013).

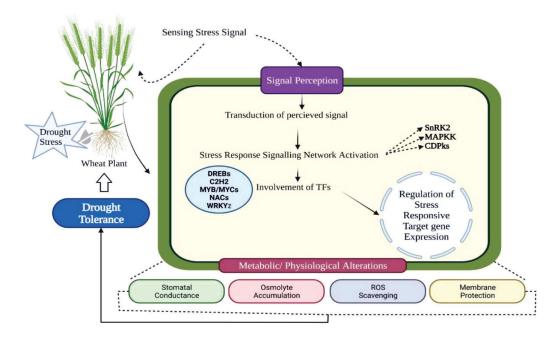


Figure 4: Series of steps involved in drought tolerance.

6.1 Molecular marker-assisted practices

Abiotic stresses are the potential source of food insecurity in ecosphere, owing to the high populace and poverty in developing nations. Innovative methods such as screening of existing germplasm, breeding new crop cultivars, exogenous practices of osmoprotactants, and the establishment of genetically modified organisms must be developed to resolve the needs. Various molecular methods are being explored to improve plant resistance to abiotic stresses. Water stress tolerance is a quantitative polygenic characteristic. QTLs are made up of the genes that function to determine the phenotype (physical properties) of quantitatively acquired characteristics. Crop changes can be identified via QTL mapping (Nezhadahmadi *et al.*, 2013).

6.1.1. Development of transgenic cultivars

Drought resistance genes may be found in a variety of plants. Drought resistance genes may be found in a variety of plants. These genes may be inserted into wheat using rDNA technology to induce drought resistance. To confer drought tolerance, the HAV1 gene is inserted into wheat from barley. DREB is another transcription factors (TF) family determined to have function in the regulation of numerous genes that participate in developing drought tolerance (Nezhadahmadi *et al.*, 2013). Moreover, NAC TFs are intriguing candidates for drought-tolerant breeding. When *TaSNAC8-6A* was significantly expressed in *Arabidopsis* and *Triticum*, drought endurance of transgenic varieties improved substantially (Mao *et al.*, 2020).

6.1.2. Molecular breeding (MB)

Exploiting molecular techniques in plant breeding is known as molecular breeding. Single genes influence several traits such as blooming time of flower, osmotic stability, and plant height, implying that these genes may have critical function in drought adaptation. In wheat genome, there is just one OR gene on the short arm of the 7A chromosome (Morgan and Tan 1996). Thus, breeding of OR gene can enhance plant production under water stress circumstances (Morgan 2000). Exploring collections in drought-tolerant locations may result in the identification of novel drought-tolerant genotypes (Morsy $et\ al., 2021$).

6.1.3. Molecular assisted selection (MAS)

In MAS, a marker is being utilized for the indirect selection of candidate genes for the trait of interest. Marker-assisted selection has been considered because it facilitates the selection and breeding of drought-tolerant cultivars by enabling the identification of quantitative gene markers. If the markers are near a gene's stress-related region, the producer will be more efficient (Haque *et al.*, 2021).

6.1.4. Molecular assisted backcrossing

The most basic type of MAS is molecular mediated backcrossing, which attempts to introduce a significant gene from a less desirable source into a breeding line. Because of the complex stress-associated dehydration gene, comprehensive evaluation of drought-linked OTLs or genes is indispensable. To discover drought-related genes, molecular markers are used for gene mapping. Plants can adapt to water deficit conditions by modulating the gene encoding particular protein expression. Among the highly expressed proteins during dehydration are vacuolar acid invertase (VIN), glutathione S-transferase (GSTs), late embryogenesis abundant proteins, and dehydrin (Anderson and Davis 2004, Close 1996, Pnueli et al., 2002, Trouverie et al., 2003). Techniques such as omics investigations and QTL mapping are being used to uncover stress-sensitive molecular markers. These molecular markers are exploited to screen wheat genetic constitution for water stress (Budak et al., 2013).

6.1.4.1. Marker-Assisted Breeding

Drought-induced genes are currently being identified using genetic markers. This technique is based on the employment of DNA markers to identify quantitative trait loci that are responsible for drought-tolerant (Ashraf 2010). The integration of Amplified Fragment Length Polymorphism (AFLPs) and microsatellites have contributed to the mapping of flag leaf senescence in both regular and water deficit situations. On the wheat chromosome, QTL concomitant with enhanced performance under water stress situations has been identified. To label the QTLs for water stress in wheat DNA markers such as ALFP, SSR, and RFLPs are used (Verma et al., 2004).

6.1.4.2. Omics Investigation

The study of metabolome, genome, proteome of an organism is known as omics. In the instance of drought,

the omics method assists in the detection of drought-linked genes. The evaluation of drought response mediated by differential deposition of drought-related ingredients prompted the use of genetic sequence datasets. Droughtinduced transcripts and proteins have also been reported in hexaploid (bread) and tetraploid (durum) wheat with variable drought sensitivity in these omics studies (Kumar and Abbo 2001). Proteomic reports of tetraploid wheat embryos have been developed as a result of the embryos' ability to germinate under severe desiccation conditions (Irar et al., 2010). The metabolomics reports indicated that the genotype resistant to water scarcity had a greater accumulation of tricarboxylic acid (TCA) cycle products and drought-related metabolites such as glycine, glucose, aspartate, proline, and trehalose. The combination of metabolomic and transcriptome data revealed that drought adaptation comprises optimal modulation and signal transduction pathways that influence the effectiveness of cell homeostasis, carbon metabolism, and bio-energetic activities.

6.1.4.3. QTL Mapping

QTLs are the sites where certain genes affect the phenotype of quantitatively inherited traits. Polygenes can be used to investigate a crop's genetic variability (Ashraf et al., 2008). QTLs are the sites where certain genes affect the phenotype of quantitatively inherited traits. Polygenes can be used to explore genetic diversity in crops (Ashraf et al., 2008). Water deficit is a polyploidy characteristic with challenging quantitative properties. Productivity QTLs in tetraploid wheat have been detected using linkage mapping. Drought tolerant QTLs in wheat were identified utilizing production parameters in a desiccated condition (Maccaferri et al., 2008). Drought and crop productivity are two complicated traits comprising genotype, and phenotype and environment (Bennett et al., 2012). Furthermore, various yield-related QTLs have been identified using RAC875/Kukri doubled haploid lines of T. aestivum that have been proven to mature across a wide range of environmental circumstances. A multi-environmental study provides a foundation for precise mapping along with cloning of the genes associated with a yield-associated QTL (Bonneau et al., 2013). Recent research, as well as advancements in DNA sequencing technology and established techniques for associating linkage studies with omics investigations have

suggested that the information collected from these types of experiments will eventually come for actual drought-resistant wheat breeding projects (Fleury *et al.*, 2010, Habash *et al.*, 2009)

6.2. Transcription factors regulated under drought in wheat

6.2.1. C₂H₂ zinc finger proteins (ZFPs)

ZFP is grouped into subclasses depending on the arrangement of Cysteine (Cys) and Histidine (His) such as C2H2-type, C2HC, C3H, C4, C3HC4, C6, and C8. Amongst them, C₂H₂ ZFPs genes make ~0.7 percent of the Arabidopsis thaliana genome, 0.8 percent of the yeast genome, and 3 percent of the mammalian and dipteran genome. The first C2H2 type ZFP gene, EPF1 was discovered from petunia. It encodes a protein with 2 C₂H₂ ZF motifs (Han et al., 2020). Many C2H2 type ZFP genes have been investigated and cloned in A. thaliana, Glycine max, Oryza sativa, and Triticum aestivum (Gao et al., 2011, Hong et al., 2016, Sun et al., 2012, Zhang et al., 2014). In C2H2-type ZFPs, Zn+2 forms an independent protein region by binding to the conserved amino acid residues. C2H2 ZFP contain 25-30 conserved protein sequence: C-X2~4-C-X3-P-X5-L-X2-H-X3-H. Two sets of His at the C-terminal of alpha-helix and two Cys at the beta-strand link with Zn⁺² to appear like a tetrahedral structure. Zn ⁺² at the center ensures the stability and maintenance of the helical structure. In plants, mostly C2H2 ZF proteins contain a highly conserved zinc finger domain (QALGGH) and such proteins are regarded as Q-type ZF proteins. C2H2-type proteins lacking QALGGH conserved motif are regarded as C-type ZF proteins. Evidence has revealed that ZF proteins have a crucial role in development, growth, and abiotic conditions (Han et al., 2020). Under drought and water scarcity, plants activate the upregulation of dry mass by sending signals from roots to aerial parts (Tardieu 1996).

6.3. Role of TaZFP under drought

TaZFP15: This gene has a significant function under drought. It sends the signals from the root to the aerial plant part and triggers the accumulation of starch in the foliage (JasonKam et.al 2008).

TaZFP22, TaZFP34, and TaZFP46: These genes show high expression pattern in roots and drought stimulated C_9H_9 ZF transcriptional repressors (Chang *et al.*, 2016).

TaZFP24: *TaZFP24* is responsible for growth and development and is repressed under drought. Thus, plants need favorable conditions to store food and energy to survive in stressed environments (Ali *et al.*, 2020).

TaZFP33: This gene is upregulated under water scarcity in the embryo and aleurone layer of the endosperm tissue within the duration of grain ripening to guard the cells from the DHN (dehydrin) gene (Ali *et al.*, 2020).

TaZFP34: This gene is upregulated under dehydration, heat, salt, and chilling stresses. In wheat, increased expression of this gene maintains the radicle to shoot ratio by improving the root growth while reducing the shoot growth (Chang *et al.*, 2016).

TaZFP42: Investigations revealed that *TaZFP42* take part in fabrication of biological reserves in the kernel and accretion of polysaccharides (starch) (Ali *et al.*, 2020).

6.3.1. bZIP

The basic leucine zipper is responsible for governing numerous growth-related and physiological functions along with synchronizing stress responses. So far, 13 bZIP homologs groups have been discovered in angiosperms (Ying et al., 2012). These TFs contain 40 to 80 amino acids rich bZIP domain (Wang et al., 2021). This domain is composed of a leucine zipper motif that is important in TF dimerization and a 16 amino acid long basic region that regulates the transcription factor's pecularity to its target DNA. The basic region of bZIP is about 18 amino acids long followed by the N-x7-R/K-x9 motif (Gai et al., 2020). It is rich in basic amino acids (arginine, lysine) (Nieva et al., 2000). The leucine zipper region of bZIP consists of α-helices having amphipathic nature. This region is stabilized through heptad repeats of hydrophobic amino acids (Nieva et al., 2000). The hinge is the protein sequence that links the basic region to the leucine zipper. bZIP TFs often attach to genome sequences with an ACTG core. Plant bZIP encoding proteins are said to bind to A, C, and G-box sequences, although interactions with non-palindromic sequences have also been studied (Na et al., 2021, Rahaie et al., 2013)</style> 2021, Rahaie<style face="italic"> et al.,</style> 2013. bZIP TF modulates the expression of drought triggered genes and their cumulative impact causes changes such as root growth maintenance, leaf development inhibition, higher concentration of chaperones, and stomatal closure (Hamanishi and Campbell 2011).

ABF4 is mostly manifested in vegetative tissues and is stimulated under drought as well as abscisic acid (ABA) levels. It regulates the expression of , *CHS*, *ICK1*, *ABI1*, *RAB18*, *SKOR*, *ADH1*, *KAT2*, and *RD29B* genes. When there is a lack of water, *ABF4* and *ABF3* enhance the plant survival rate and stomatal closure. In the vegetative tissues, *ABF2* is reported to regulate ABA and drought-inducible genes. This TF also regulates *LEA* genes, which are responsible for alleviating desiccation mostly through chaperone activities (Wang *et al.*, 2003). Moreover, the *Wlip19* gene has enhanced the expression under low water and high ABA levels.

Gene expression studies in wheat indicated that TabZIP expression changed under high temperature, salt, and water shortage, indicating that bZIP might have a prominent role in stress alleviation processes. Arabidopsis plant expressing *TabZIP* disclosed high tolerance to salt, drought, ROS, and heat stress (Agarwal et al., 2019). Furthermore, overexpression of TabZIP60 in A. thaliana boosted tolerance to dehydration, salt, and cold stressors, as well as improved plant response to ABA in seedling development. In addition, TabZIP60 was noticed to be capable of binding ABA-responsive cis-elements found in the promoters of numerous known ABA-responsive genes. Further investigations discovered that overexpression of TabZIP60 activate several stress-responsive genes as well as alterations in various physiological parameters (Zhang et al., 2015). Similarly, TabZIP8-7A was discovered to interact with TaFDL2-1A in the nuclear region, and elevated expression of TabZIP8-7A in Arabidopsis executed higher drought tolerance and ABA sensitivity (Wang et al., 2021).

6.3.2. WRKY

WRKY TFs have a diversified function in plant defense and developmental processes. These TFs are distinguished by their DNA binding domain, that comprises of an distinct WRKY sequence at their N-terminus. They also have a zinc finger as a characteristic at their C-terminus. WRKY TF have a fundamental role in drought signaling by interacting with MAPK cascade, Histone de-acetylases, Calmodulin, 14-3-3 proteins, and resistance proteins to up or down-regulate certain genes. WRKY TFs can be antagonistic to Salicylic acid (SA), Jasmonic acid (JA), Ethylene, as well as control through indole-3-acetic acid and cytokinin (Agarwal *et al.*, 2011, Antoni *et al.*, 2011, Eulgem *et al.*, 2000). Under drought, many WRKY TFs,

including WRKY1, WRKY72, WRKY77, WRKY11, and WRKY45, appear to have been activated by the Abscisic acid pathway, resulting in the synthesis of Galactinol through the stimulation of the Gols1 gene (Qiu and Yu 2009, Rushton et al., 2012). TaWRKY2 has previously been demonstrated to have an important function in drought stress resistance. Notably, the current study showed that TaWRKY2 overexpression boosted biomass under drought stress. Transgenic wheat had longer panicles and high number of grains/spike under drought stress than wildtype, showing that these agricultural traits resulted in higher yield. Similarly, TaWRKY2 and TaWRKY19 have recently reported to provide drought resistance in recombinant plants (Gao et al., 2018). 48 drought-sensitive WRKY genes were identified in wheat. TaWRKY46 overexpression in wheat increased drought stress tolerance. Furthermore, TaWRKY46 overexpressing plants had higher survival rates, levels of soluble sugar, proline, and superoxide dismutase (SOD), as well as enhanced catalase (CAT) and peroxidase (POD) activity, but lower levels of MDA and H₂O₂. These findings showed that *TaWRKY46* regulates osmotic balance and ROS scavenging serving as a positive factor during drought stress (Yang et al., 2021).

6.3.3. NAC

NAC TFs are members of most diverse transcription factor identified specifically in plants. The NAC is made up of NAM, ATAF, and CUC genes: The NAM stands for no apical meristem, ATAF stands for Arabidopsis transcription activation factor, and CUC stands for cup-shaped cotyledon. The NAC protein has an N and C-terminal. The C-terminus possessing protein binding activities work as a transcriptional activator or repressor (Hu et al., 2006). The N-terminus, on the other hand, is a conserved region that comprises the DNA-binding domains, which have around ~150-160 amino acids and are further catagorized into 5 sub-domains (Ooka et al., 2003). The NAC domain is responsible for DNA binding, and dimer formation with other NAC proteins (Ali et al., 2020).. TaNAC4 and TaNAC8 were discovered to be wheat TFs that act as transcription activators and are implicated in biotic as well as abiotic stress factors (Bian et al., 2021, Wang et al., 2021). TaNAC2 overexpression enhanced tolerance to dehydration, salinity, and low temperature (Wang et al., 2021). TaNAC69 is shown to be up regulated by drought and is involved in root cellular

activities. Overexpression of this transcription factor gene family showed improved drought resistance and water consumption efficiency (Mathew *et al.*, 2020).

6.3.4. ERF

Ethylene Responsive Factors (ERF) family TF act as key regulators of the ethylene-dependent genes concerned with stress tolerance. They play a role in biotic stress and guide particular plant responses to ethylene signals (Zhang et al., 2021). The ERF domain, which comprises of 40-70 highly conserved amino acid sequences, provides ERF with an affinity for the GCC box located within the promoter region of ethylene-sensitive genes (Xie et al., 2019, Yamaguchi-Shinozaki and Shinozaki 2005). In addition to the GCC box, the ERF proteins interact with the DRE/CRT motif which is known as the cisacting element in response to water deficit and cold stress (Yamaguchi-Shinozaki and Shinozaki 2005). The C-terminal putative phosphorylation site (TPDITIS) was shown to be a phosphorylation substrate for TaMAPK1 protein kinase in protein interaction studies. The MAPK cascade participates in both environmental and nonenvironmental stress (Frismantiene et al., 2018, Muñoz 2018). The drought-induced cDNA library approach was utilized to isolate the ERF gene in *T. aestivum* in prior work. *TaERF1* found on the 7A chromosome of *the TaERF* gene is thought to code for a 355-amino-acid protein. Another TF gene, TaERF3 is an intriguing engineering target in targeted attempts to promote abiotic stress tolerance in wheat and other crops because it positively affects wheat adaptation responses to salt and drought conditions via stress-related gene activation (Ali et al., 2020).

6.3.5. DREB

Dehydration-responsive element-binding factors (DREB) is a large class of transcription factor encoding proteins that bind to dehydration responsive element (DRE) present in the promoter sequence of abiotic stress-responsive genes with two subclasses i.e., DREB2 leads to desiccation induced drought and DREB1/CBF resulting in cold-induced drought (Khan 2011, Sakuma *et al.*, 2002, Sazegari and Niazi 2012). DREB binding to a particular region of the target gene, known as the CRT/DRE sequence, is quite specific which is composed of the C-repeat sequence, with 5 base pair conserved sequence (Hu *et al.*, 2020). Abscisic acid (ABA) is synthesized under dehydration and enhance the promoter activity of wheat DREB genes *viz.*, *TaDREB2*

thus exogenous ABA is responsible for generating critical signaling routes for water deficit tolerance via DREB proteins, such as suppressing seed germination, inhibiting stomatal opening for limited transpiration, and enhancing senescence (Kobayashi *et al.*, 2008). So far, DREB genes have been divided into 6 subfamilies with 210 *T. aestivum* DREB protein-encoding genes whereas elevated expression of the *TaDREB3-AI* gene improved drought tolerance (Niu *et al.*, 2020).

6.3.6. MYB

MYB superfamily was initially found in avian myeloblastosis virus whereas ZmMYBC1 gene was the first plant-specific MYB identified and isolated in Zea mays having a regulating role in anthocyanin biosynthesis (Paz-Ares et al., 1987, Salih et al., 2016). MYB domain is made up of three imperfect repeats of fifty-two amino acids residue in each domain which makes a helix-turn-helix-conformation that twists itself in the major groove of the DNA to be targeted (Jin and Martin 1999). TaMYB31 gene encoding TF participates in conferring enhanced drought tolerance in A. thaliana when ectopically expressed as a transgene (Zhao et al., 2018). Differentially expressed genes (DEGs) of wheat were identified with RNA-seq technology and R2R3-MYB TFs were classified in 15 subclasses containing 411 genes, among them 28 TFs were suppressed under the effect of silicon treatment (Hao et al., 2021).

6.4 Priming induced tolerance in wheat

Wheat is an extensively cultivated crop in the entire world and is essential for human nutrition. However, it is cultivated in hot, dry climates, resulting in poorer yields in certain seasons (Langridge and Reynolds 2021). Plants are disposed to a numerous abiotic stresses, thus is imperative to scrutinize plant response, when subjected to drought and other stresses, either simultaneously or sequentially (Han *et al.*, 2019). Various investigations have shown that when drought and heat are coupled, the impact is more acute rather than solely drought stress application (Hussain *et al.*, 2019). Plants are pre-disposed to slight levels of drought stress at their juvenile stage and the stages of primary growth to enhance tolerance levels at later developmental or growth stages with drastic stress events (Avramova 2019).

6.4.1. SO, induced drought priming in wheat

Another prevalent cause restricting plant growth and production is drought stress. Sulphur dioxide (SO_2) has been shown to boost plants by protecting them from stressful conditions (Corpas and Palma 2020). The impact of SO_2 on the molecular mechanisms and physiological functions of wheat plants at early developmental and growth phases to drought stress was investigated (Li *et al.*, 2021). Under abiotic stresses e.g., drought, pre-treatment of wheat seedlings with 10 mg/m3 SO_2 improved the chances of survival and relative water content (RWC), showing that pre-disposition to an adequate dose of SO_2 might improve plant tolerance towards drought. A recent study found that pre-treatment of foxtail millet seedlings with SO_2 protected these plants against drought stress damage (Han *et al.*, 2019).

For a long time, SO₂ was considered to be a prevalent air contaminant with deleterious impacts on the crop (Liu et al., 2017). SO₂ toxicity is primarily caused by oxidative stress, which is regulated by an increase in ROS production, comparable to drought stress. Low concentrations of SO₀ were shown to stimulate transcriptome reprogramming in grape berries, which is linked to oxidative signaling, indicating that SO, indeed has a physiologically metabolic role under defensive processes (Xue and Yi 2018). These reactions were linked to the increased proline buildup produced by SO₂ pre-treatment in drought-stricken wheat seedlings. Whilst, in drought-treated wheat seedlings, SO₂ pre-treatment elevated the functions of superoxide dismutase (SOD) and peroxidase (POD) (Corpas and Palma 2020). However, these treatments had significantly lowered the concentration of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), implying that mitigate drought-induced oxidative injury can be mitigated through SO₂ by bolstering antioxidant processes and pathways in wheat plants (Li et al., 2021). Gene expression analyses of transcription factor NAC, MYB, and ERF in wheat after SO₂ pre-treatment lowered the expression of TaNAC69. Whereas the expression of TaERF1 and TaMYB30 altered a little and remained at elevated amounts in wheat seedlings in drought stress tolerance (Baillo et al., 2019) (Table 1). Interestingly, SO₂ pre-treatment caused a crucial enhancement in hydrogen sulfide (H_oS) build-up upon exposing juvenile wheat plants to desiccation (Ausma and De Kok 2019). The activities of antioxidant enzymes

and TF genes expression were reduced when H2S was scrounged by spraying Hypotaurine (HT), whereas the concentration of $\rm H_2O_2$ and MDA enhanced to the level of drought treatment solely, implying a central role in the regulation of SO2-induced $\rm H_9S$ in plant tolerance to

drought stress (Corpas and Palma 2020). Overall, this research found that SO_2 increased drought endurance in wheat seedlings via H_2S signaling, indicating a novel method for culminating drought tolerance in wheat crops (Li *et al.*, 2021).

Table 1. Physiological Alterations upon pretreatment of wheat plants with chemicals to develop drought tolerance

Abiotic Stress	Pretreatment of wheat seedlings	Metabolic Alterations	Stress Response Genes		Physiological	References
			Up- Regulation	Down- Regulation	- Alterations	
Drought Stress	SO_2	Increased: SOD, POD, Proline Decreased: H_2O_2 , MDA, soluble sugar	TaERF1, TaMYB30,	TaNAC69	Increased survival rate Relative Water Content	(Li et al., 2021)
	PEG	ABA Biosynthesis NO biosynthesis H2O2 biosynthesis	P5CS BADH	PDH	Osmolyte accumulation (Proline, glycine betaine)	(Wang et al., 2021)
	Jasmonic Acid and	increased: anti-oxidant enzyme activity	APX, CAT, POD, SOD	LOX	Osmo-protectant accumulation, Total water content	(Wang et al., 2021)
	Kinetin	Decreased: anti-oxidant enzyme activity		LOX	Chlorophyll content stability	(Wang <i>et al.</i> , 2021)
Betaine A Proline D		ate synthetase (P5CS) ogenase (BADH) DH)				
	de Dismutase (SC	OD)				

6.4.2. NO-induced drought priming in wheat

Utilizing different concentration of polyethylene glycol (Nitrogen Reductase) enable the plant for NR-dependent NO generation, which is linked to drought stress endurance in wheat. NO2 is reduced to NO via the reduction of nitrate (NO₃) to NO₂ by NR and (Nitrogen Oxide Synthase) NOS that facilitates drought priming as well (Tejada-Jimenez et al., 2019). The nitric oxide (NO) scavenger boosted activity of nitric oxide synthase, and the fact that the NOS inhibitor reduced NO synthesis in maize seedlings under drought-stress suggests that NOS is responsible for most of NO generation under water shortages. Drought priming increased NO content in an experiment, while scavengers and NO inhibitors application inhibited the rise in NO caused by drought priming (Wang et al., 2021). During priming events, the concentrations of NO, in forager or inhibitors for treatments with NO were greater than those with similar treatments in non-primed crop

plants under dehydration conditions. Grain filling stage, however implies that scouring of NO might restrict NO generation in primed wheat plants (Wang et al., 2019). Plants' swift production and accumulation of osmolytes seem thought to be an adaptation strategy to cope with dehydration conditions. Drought augmented the levels of endogenous NO and proline in leaves of Oryza sativa, according to research. Exogenously administered NO reduced osmotic stress in wheat and rice under drought stress, by increasing osmolyte accumulation and reducing oxidative damage (Farooq et al., 2017). During this grain filling stage, higher sucrose content was reported in plants primed under dehydration conditions in comparison with non-primed plants. Osmolyte accumulation in higher contents is validated by drought priming application on wheat plants when NO biosynthesis was induced under ABA-dependent pathways causing drought tolerance in plants (Avramova 2019). Primed plants with inhibited NO activity depicted low sugar contents than their

corresponding non-primed plants. This links the crucial role of NO in osmolyte accumulation for inducing drought tolerance and their involvement in drought priming (Wang *et al.*, 2021).

6.4.3. H₂O₂ induced drought priming in wheat

Second messengers such as NO and hydrogen peroxide (H_oO_o) are actively engaged in phytohormone signalling along a wide spectrum of biological reactions to abiotic factors (Tejada-Jimenez et al., 2019). Decreased stomatal conductance in maize was induced by a substantial rise in O₂ and H₂O₂ contents, along with abscisic acid (ABA) levels in leaves under dehydration conditions. H₂O₂ is being demonstrated to increase wheat drought tolerance by acting as a secondary messenger for the JA-induced antioxidant defense (Wang et al., 2021). Drought priming at an initial stage of development caused stress tolerance against drought in future growth stages, while HoOo mediates the abscisic acid (ABA) involvement in drought priming, therefore boosting wheats' drought endurance capacity. NO generation is triggered by H₂O₂, according to several streams of research (Wang et al., 2019). The elimination of NO did not influence H₂O₂ production, however, the elimination of H₂O₂ caused suppression in NO concentration. These studies reveal that H₂O₂ was involved in NO generation during drought priming. Primed plants might considerably reduce the level of H₂O₂ amid dehydration conditions during grain filling to minimize injuries to cellular compartmentation induced by excessive H₂O₂ accumulation (Table 3.2.) (Wang et al., 2021).

6.4.4. Jasmonic acid and kinetin

Foliar application of jasmonic acid (JA) or kinetin (K) effectively imparted drought tolerance to susceptible cultivars, enabling them to endure brutal environments before their development and function similarly to tolerant cultivars. Application of phytohormones caused an unambiguous switch from downregulation to overexpression. This affected all drought resistance characteristics via a reconfiguration of photo-assimilates to vegetative parts, boosting development, improving the aggregation of certain osmoregulatory chemicals, strengthening tissue vigor, and regulating antioxidant enzymatic activity. It also included structural modification achieved by restoring the shoot/root ratio (Abeed *et al.*, 2021).

Conclusion

This paper focuses evidence-based knowledge on the deleterious impacts of water inadequacy on wheat productivity during the last few decades. Drought directly affects the physiology of wheat, resulting in lower grain output. This research also emphasizes the significance of the selection environment in the development of productive, resilient wheat varieties for drought-prone areas. Besides this, the indirect choice of physiological features contributing to harvest index has enormous potential for optimizing the efficacy for optimizing the efficacy of drought resilience breeding is also discussed. Moreover, a multidisciplinary physio-morphological approach, as indicated in this study, is a highly promising way ahead for enabling the breeding of wheat for drought conditions. To attain this aim, a concerted effort is required to develop optimize platforms for phenotypic selection, as outlined in the preceding sections, in conjunction with biological, marker-assisted, and genomic selection.

Compliance with ethical standards

NA

Conflict of interest

Authors declares there is no conflict of interest

Author contributions

AA: Conceptualization, Data curation, Writing & updating the manuscript for publication, MA and NA: Writing, MI: Conceptualization, Writing, TSB: Conceptualization, Writing, ME: Conceptualization, AG: Conceptualization, Supervision, and Validation. All the listed authors read and approved the manuscript.

References

- Abeed AHA, MA Eissa, DA Abdel-Wahab. 2021. Effect of Exogenously Applied Jasmonic Acid and Kinetin on Drought Tolerance of Wheat Cultivars Based on Morpho-Physiological Evaluation. *Journal* of Soil Science and Plant Nutrition 21(1):131-144. https://doi.org/10.1007/s42729-020-00348-1
- 2. Agarwal P, VK Baranwal, P Khurana. 2019. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. *Scientific reports* 9(1):1-18.
- 3. Agarwal P, M Reddy, J Chikara. 2011. WRKY: its structure, evolutionary relationship, DNA-binding

- selectivity, role in stress tolerance and development of plants. *Molecular biology reports* 38(6):3883-3896.
- 4. Ali M, H Hasan, H Bux, A Gul, HMU Memon, A Khan, F Munir, HB Tawseen, M Shakoor, M Majid, M Ahmed, SU Khan, SH Hussain. 2020. Chapter 11 Role of transcription factors in drought mediating pathways in wheat. In: Climate Change and Food Security with Emphasis on Wheat (Ozturk M and Gul A, eds.), Academic Press, pp 177-192
- Aliche EB, M Oortwijn, TP Theeuwen, CW Bachem, RG Visser, CG van der Linden. 2018. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management 206:20-30.
- 6. Alvarez MaE, RI Pennell, P-J Meijer, A Ishikawa, RA Dixon, C Lamb. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. *Cell Mol Life Sci* 92(6):773-784.
- Anderson JV, DG Davis. 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. *Physiologia plantarum* 120(3):421-433. 10.1111/j.0031-9317.2004.00249.x
- 8. Antoni R, L Rodriguez, M Gonzalez-Guzman, GA Pizzio, PL Rodriguez. 2011. News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling. *Current opinion in plant biology* 14(5):547-553.
- Araus JL, GA Slafer, MP Reynolds, C Royo. 2002.
 Plant breeding and drought in C3 cereals: what should we breed for? *Annals of botany* 89 Spec No(7):925-940. 10.1093/aob/mcf049
- 10. Ashraf M. 2010. Inducing drought tolerance in plants: recent advances. *Biotechnol Adv* 28(1):169-83. 10.1016/j.biotechadv.2009.11.005
- Ashraf M, HR Athar, PJC Harris, TR Kwon. 2008.
 Some Prospective Strategies for Improving Crop Salt Tolerance. *In: Advances in Agronomy eds.), Academic Press*, pp 45-110
- Assad ED, HS Pinto, J Zullo Junior, AMH Ávila.
 2004. Climatic changes impact in agroclimatic zonning of coffee in Brazil. J Pesquisa Agropecuária Brasileira 39(11):1057-1064.

- 13. Ausma T, LJ De Kok. 2019. Atmospheric H2S: Impact on Plant Functioning. *Frontiers in Plant Science* 10:743.
- 14. Avramova Z. 2019. Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. *Plant, Cell & Environment* 42(3):983-997. https://doi.org/10.1111/pce.13458
- Baillo EH, RN Kimotho, Z Zhang, P Xu. 2019. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. *Genes* 10(10). https://doi.org/10.3390/ genes 10100771
- 16. Banerjee S, O Siemianowski, M Liu, KR Lind, X Tian, D Nettleton, L Cademartiri. 2019. Stress response to CO2 deprivation by Arabidopsis thaliana in plant cultures. PLoS One 14(3):e0212462.
- Beck EH, S Fettig, C Knake, K Hartig, T Bhattarai.
 2007. Specific and unspecific responses of plants to cold and drought stress. *Journal of biosciences* 32(3):501-10. 10.1007/s12038-007-0049-5
- Begg J, N Turner. 1976. Crop Water Deficits. eds.), pp 161-217
- 19. Bennett D, A Izanloo, J Edwards, H Kuchel, K Chalmers, M Tester, M Reynolds, T Schnurbusch, P Langridge. 2012. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. *Theor Appl Genet* 124(4):697-711. 10.1007/s00122-011-1740-3
- 20. Bian Z, H Gao, C Wang. 2021. NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops. *International Journal of Molecular Sciences* 22(1):81.
- 21. Blum A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. *Plant Cell Environ*. 40(1):4-10. https://doi.org/10.1111/pce.12800
- 22. Blum A, A Ebercon. 1981. Cell Membrane Stability as a Measure of Drought and Heat Tolerance

- in Wheat. *Crop Science* 21(1):43-47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x
- 23. Bonneau J, J Taylor, B Parent, D Bennett, M Reynolds, C Feuillet, P Langridge, D Mather. 2013. Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126(3):747-61. 10.1007/s00122-012-2015-3
- 24. Boo H-O, S-J Hwang, C-S Bae, S-H Park, W-S Song. 2011. Antioxidant activity according to each kind of natural plant pigments. *Korean Journal of Plant Resources* 24(1):105-112.
- 25. Boyer JS, RA James, R Munns, TA Condon, JBJFPB Passioura. 2008. Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. 35(11):1172-1182.
- Brodribb TJ, NM Holbrook. 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. *Plant Physiology* 132(4):2166-2173.
- Budak H, M Kantar, K Yucebilgili Kurtoglu.
 2013. Drought Tolerance in Modern and Wild Wheat. The Scientific World Journal 2013:548246.
 10.1155/2013/548246
- 28. Chang H, D Chen, J Kam, T Richardson, J Drenth, X Guo, CL McIntyre, S Chai, AL Rae, G-P Xue. 2016. Abiotic stress upregulated TaZFP34 represses the expression of type-B response regulator and SHY2 genes and enhances root to shoot ratio in wheat. Plant Science 252:88-102.
- 29. Chapman SC, B Zheng, AB Potgieter, W Guo, F Baret, S Liu, S Madec, B Solan, B George-Jaeggli, GL Hammer. 2018. Visible, near infrared, and thermal spectral radiance on-board UAVs for high-throughput phenotyping of plant breeding trials. *In: Biophysical and Biochemical Characterization and Plant Species Studies eds.*), CRC Press, pp 275-299
- 30. Chaves MM, MM Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. *Journal of Experimental Botany* 55(407):2365-2384. 10.1093/jxb/erh269 %J Journal of Experimental Botany
- 31. Chen H, J-GJER Jiang. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. 18(NA):309-319.

- 32. Ciuc M, E Petcu. 2009. SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Romanian Agricultural Research 26:21-24.
- 33. Close TJ. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. *Physiologia Plantarum* 97(4):795-803. https://doi.org/10.1111/j.1399-3054.1996.tb00546.x
- Cook ER, R Seager, MA Cane, DW Stahle. 2007.
 North American drought: Reconstructions, causes, and consequences. *Earth-Science Reviews* 81(1):93-134. https://doi.org/10.1016/j.earscirev.2006.12.002
- 35. Corpas FJ, JM Palma. 2020. $\rm H_2S$ signaling in plants and applications in agriculture. *Journal of Advanced Research* 24:131-137. https://doi.org/10.1016/j.jare.2020.03.011
- 36. da Silva EC, MB de Albuquerque, AD de Azevedo Neto, CD da Silva Junior. 2013. Drought and its consequences to plants-from individual to ecosystem. *Responses of organisms to water stress*:18-47.
- 37. Demirevska K, D Zasheva, R Dimitrov, L Simova-Stoilova, M Stamenova, U Feller. 2009. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. *Acta Physiologiae Plantarum* 31(6):1129.
- 38. El Sabagh A, A Hossain, C Barutcular, MS Islam, S Awan, A Galal, M Iqbal, O Sytar, M Yildirim, R Meena. 2019. Wheat (Triticum aestivum l.) production under drought and heat stress-adverse effects, mechanisms and mitigation: A review. Applied Ecology and Environmental Research 4(17):8307-8332.
- 39. T, PJ Rushton, S Robatzek, IE Somssich. 2000. The WRKY superfamily of plant transcription factors. *Trends in plant science* 5(5):199-206.
- Fang Y, L Xiong. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. *Cell Mol Life Sci* 72(4):673-89. https://doi.org/10.1007/s00018-014-1767-0
- 41. Farooq M, M Hussain, KH Siddique. 2014. Drought stress in wheat during flowering and grain-filling periods. *Critical reviews in plant sciences* 33(4):331-349.

- 42. Farooq M, A Nawaz, MAM Chaudhary, A Rehman. 2017. Foliage-applied sodium nitroprusside and hydrogen peroxide improves resistance against terminal drought in bread wheat. *Journal of Agronomy and Crop Science* 203(6):473-482. https://doi.org/10.1111/jac.12215
- 43. Fleury D, S Jefferies, H Kuchel, P Langridge. 2010. Genetic and genomic tools to improve drought tolerance in wheat. *Journal of Experimental Botany* 61(12):3211-3222. 10.1093/jxb/erq152 %J Journal of Experimental Botany
- Francini A, L Sebastiani 2019 Abiotic stress effects on performance of horticultural crops. Multidisciplinary Digital Publishing Institute. 67
- Frismantiene A, M Philippova, P Erne, TJ Resink.
 2018. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity.
 Cellular signalling 52:48-64.
- 46. Gai W-X, X Ma, Y-M Qiao, B-H Shi, S ul Haq, Q-H Li, A-M Wei, K-K Liu, Z-H Gong. 2020. Characterization of the bZIP Transcription Factor Family in Pepper (Capsicum annuum L.): CabZIP25 Positively Modulates the Salt Tolerance. Front Plant Sci. 11(139). https://doi.org/10.3389/fpls.2020.00139
- Gao H, Y Wang, P Xu, Z Zhang. 2018. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in plant science 9:997.
- 48. Gao S-Q, M Chen, Z-S Xu, C-P Zhao, L Li, H-j Xu, Y-m Tang, X Zhao, Y-Z Ma. 2011. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. *Plant Molecular Biology* 75(6):537-553. 10.1007/s11103-011-9738-4
- Golding AJ, GN Johnson. 2003. Down-regulation of linear and activation of cyclic electron transport during drought. *Planta* 218(1):107-114.
- 50. Gupta PK, HS Balyan, V Gahlaut. 2017. QTL Analysis for Drought Tolerance in Wheat: Present Status and Future Possibilities. 7(1):5.
- 51. Habash DZ, Z Kehel, M Nachit. 2009. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. *J Exp Bot* 60(10):2805-15. 10.1093/jxb/erp211

- 52. Hamanishi ET, MM Campbell. 2011. Genomewide responses to drought in forest trees. *Forestry* 84(3):273-283.
- 53. Han G, C Lu, J Guo, Z Qiao, N Sui, N Qiu, B Wang. 2020. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. 11(115). 10.3389/fpls.2020.00115
- 54. Y, H Yang, M Wu, H Yi. 2019. Enhanced drought tolerance of foxtail millet seedlings by sulfur dioxide fumigation. *Ecotoxicology and Environmental Safety* 178:9-16. https://doi.org/10.1016/j.ecoenv.2019.04.006
- 55. Hao L, S Shi, H Guo, J Zhang, P Li, Y Feng. 2021. Transcriptome analysis reveals differentially expressed MYB transcription factors associated with silicon response in wheat. *Scientific reports* 11(1):1-9. https://doi.org/10.1038/s41598-021-83912-8
- 56. Haque MA, MY Rafii, MM Yusoff, NS Ali, O Yusuff, DR Datta, M Anisuzzaman, MF Ikbal. 2021. Advanced Breeding Strategies and Future Perspectives of Salinity Tolerance in Rice. 11(8):1631.
- Hasegawa PM, RA Bressan, J-K Zhu, HJ Bohnert.
 2000. Plant cellular and molecular responses to high salinity. *Annual review of plant biology* 51(1):463-499.
- Hernández I, J Cela, L Alegre, S Munné-Bosch. 2012.
 Antioxidant defenses against drought stress. *In: Plant responses to drought stress eds.*), Springer, pp 231-258
- 59. Hong Y, H Zhang, L Huang, D Li, FJFips Song. 2016. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in plant science 7:4.
- Hsiao TC, E Acevedo, E Fereres, DJPTotRSoLB Henderson, Biological Sciences. 1976. Water stress, growth and osmotic adjustment. 273(927):479-500.
- 61. Hu H, M Dai, J Yao, B Xiao, X Li, Q Zhang, L Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences 103(35):12987-12992.
- 62. Hu Z, Q Ban, J Hao, X Zhu, Y Cheng, J Mao, M Lin, E Xia, Y Li. 2020. Genome-wide characterization of the C-repeat binding factor (CBF) gene family

- involved in the response to abiotic stresses in tea plant (Camellia sinensis). *Frontiers in plant science* 11:921. 10.3389/fpls.2020.00921
- 63. Huang H, F Ullah, D-X Zhou, M Yi, Y Zhao. 2019. Mechanisms of ROS regulation of plant development and stress responses. *Frontiers in Plant Science* 10:800.
- 64. Hussain HA, S Men, S Hussain, Y Chen, S Ali, S Zhang, K Zhang, Y Li, Q Xu, C Liao, L Wang. 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports 9(1):3890. https://doi.org/10.1038/s41598-019-40362-7
- 65. Ihsan MZ, FS El-Nakhlawy, SM Ismail, S Fahad, I daur. 2016. Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment. Frontiers in plant science 7 (795). https://doi.org/10.3389/fpls.2016.00795
- 66. Ingram J, D Bartels. 1996. The molecular basis of dehydration tolerance in plants. *Annual Review of Plant Physiology and Plant Molecular Biology* 47(1):377-403. https://doi.org/10.1146/annurev.arplant.47.1.377
- 67. Irar S, F Brini, A Goday, K Masmoudi, M Pagès. 2010. Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) A wider perspective of the proteome. *Journal of Proteomics* 73(9):1707-1721. https://doi.org/10.1016/j.jprot.2010.05.003
- 68. Ji X, B Shiran, J Wan, DC Lewis, ClD Jenkins, Ag Condon, Ra Richards, R Dolferus. 2010. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. *Plant, Cell & Environment* 33(6):926-942. https://doi.org/10.1111/j.1365-3040.2010.02130.x
- Jin H, C Martin. 1999. Multifunctionality and diversity within the plant MYB-gene family. *Plant molecular biology* 41(5):577-585. 10.1023/a:1006319732410
- Juliana P, OA Montesinos-López, J Crossa, S Mondal,
 L González Pérez, J Poland, J Huerta-Espino, L
 Crespo-Herrera, V Govindan, S Dreisigacker, S

- Shrestha, P Pérez-Rodríguez, F Pinto Espinosa, RP Singh. 2019. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. *Theoretical and Applied Genetics* 132(1):177-194. https://doi.org/10.1007/s00122-018-3206-3
- 71. Juliana P, J Poland, J Huerta-Espino, S Shrestha, J Crossa, L Crespo-Herrera, FH Toledo, V Govindan, S Mondal, U Kumar, S Bhavani, PK Singh, MS Randhawa, X He, C Guzman, S Dreisigacker, MN Rouse, Y Jin, P Pérez-Rodríguez, OA Montesinos-López, D Singh, M Mokhlesur Rahman, F Marza, RP Singh. 2019. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics 51(10):1530-1539. https://doi.org/10.1038/s41588-019-0496-6
- 72. Juliana P, RP Singh, J Poland, S Mondal, J Crossa, OA Montesinos-López, S Dreisigacker, P Pérez-Rodríguez, J Huerta-Espino, L Crespo-Herrera, V Govindan. 2018. Prospects and Challenges of Applied Genomic Selection-A New Paradigm in Breeding for Grain Yield in Bread Wheat. The plant genome 11(3):10.3835/plantgenome2018.03.0017. https://doi.org/10.3835/plantgenome2018.03.0017
- Kavar T, M Maras, M Kidri, J sustar-vozlic, V Meglic. 2008. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. *Molecular Breeding* 21:159-172. 10.1007/s11032-007-9116-8
- 74. Khan MS. 2011. The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnology & Biotechnological Equipment 25(3):2433-2442. https://doi.org/10.5504/BBEQ.2011.0072
- 75. Khare V, S Pandey, S Singh, RS Shukla. 2022. Identification of drought tolerant recombinant inbred lines (RILs) based on selection indices in bread wheat. tritici. . *Journal of Cereal Research* 14(1):44-56. . http://doi.org/10.25174/2582-2675/2022/123943
- 76. Kobayashi F, M Ishibashi, S Takumi. 2008. Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. *Transgenic Research* 17(5):755-767. https://doi.org/10.1007/s11248-007-9158-z

- 77. Kohzuma K, JA Cruz, K Akashi, S Hoshiyasu, YN Munekage, A Yokota, DM Kramer. 2009. The long term responses of the photosynthetic proton circuit to drought. *Plant Cell Environ*
- 78. (3):209-219.
- Kollist H, SI Zandalinas, S Sengupta, M Nuhkat, J Kangasjärvi, RJTiPS Mittler. 2019. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. *Plant Cell Environ*. 24(1):25-37.
- 80. Kramer PJ, JS Boyer. 1995. Water relations of plants and soils. *Academic press*.
- Kumar J, S Abbo. 2001. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. *Advances in Agronomy* 72:107-138. 10.1016/S0065-2113(01)72012-3
- 82. , G Sandhu, SS Yadav, V Pandey, O Prakash, A Verma, SC Bhardwaj, R Chatrath and GP Singh. 2019. Agro-morphological and Molecular Assessment of Advanced Wheat Breeding Lines for Grain Yield, Quality and Rust Resistance. *Journal of Cereal Research* 11(2): 131-139.
- 83. Langridge P, M Reynolds. 2021. Breeding for drought and heat tolerance in wheat. *Theoretical and Applied Genetics* 134(6):1753-1769. https://doi.org/10.1007/s00122-021-03795-1
- 84. Lawlor DW, G Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. 25(2):275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
- 85. Li L-H, H-L Yi, L Xiu-Ping, H-X Qi. 2021. Sulfur dioxide enhance drought tolerance of wheat seedlings through H2S signaling. *Ecotoxicology and Environmental Safety* 207:111248. https://doi.org/10.1016/j.ecoenv.2020.111248
- Liu Y, Y Li, L Li, Y Zhu, J Liu, G Li, L Hao. 2017.
 Attenuation of Sulfur Dioxide Damage to Wheat Seedlings by Co-exposure to Nitric Oxide. *Bulletin of Environmental Contamination and Toxicology* 99(1):146-151. https://doi.org/10.1007/s00128-017-2103-9
- 87. Lockwood JG. 1986. The causes of drought with particular reference to the Sahel.
- 88. Physical Geography: Earth and Environment 10(1):111-119. https://doi.org/10.1177/030913338601000107

- 89. Maccaferri M, MC Sanguineti, S Corneti, JL Ortega, MB Salem, J Bort, E DeAmbrogio, LF del Moral, A Demontis, A El-Ahmed, F Maalouf, H Machlab, V Martos, M Moragues, J Motawaj, M Nachit, N Nserallah, H Ouabbou, C Royo, A Slama, R Tuberosa. 2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. *Genetics* 178(1):489-511. 10.1534/genetics.107.077297
- Mao H, S Li, Z Wang, X Cheng, F Li, F Mei, N Chen, Z Kang. 2020. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. 18(4):1078-1092. https://doi.org/10.1111/ pbi.13277
- 91. Mathew IE, R Priyadarshini, A Mahto, P Jaiswal, SK Parida, P Agarwal. 2020. SUPER STARCHY1/ONAC025 participates in rice grain filling. *Plant direct* 4(9):e00249.
- 92. Miloud H, G Ali. 2020. Leaf Senescence in Wheat: A Drought Tolerance Measure. *In: Plant Science-Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro eds.*), *IntechOpen*,
- 93. Mohammadi R. 2018. Breeding for increased drought tolerance in wheat: A review. *Crop and Pasture Science* 69:223-241. https://doi.org/10.1071/CP17387
- 94. Monclus R, E Dreyer, M Villar, FM Delmotte, D Delay, JM Petit, C Barbaroux, D Le Thiec, C Bréchet, F Brignolas. 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. *New Phytol* 169(4):765-77. https://doi.org/10.1111/j.1469-8137.2005.01630.x
- 95. Morgan J, M Tan. 1996. Chromosomal Location of a Wheat Osmoregulation Gene Using RFLP Analysis *Functional Plant Biology* 23(6):803-806. https://doi.org/10.1071/PP9960803
- 96. Morgan JM. 2000. Increases in grain yield of wheat by breeding for an osmoregulation gene: Relationship to water supply and evaporative demand. Australian Journal of Agricultural Research 51:971-978. 10.1071/AR00062
- 97. Morsy SM, IS Elbasyoni, AM Abdallah, PS Baenziger. 2021. Imposing water deficit on modern

- and wild wheat collections to identify drought-resilient genotypes. *Journal of Agronomy and Crop Sciense*:1-14. https://doi.org/10.1111/jac.12493
- 98. Muñoz M. 2018. Characterization of Botrytis cinerea from Commercial Cut Flower Roses and Evaluation of Current Crop Management Practices. Clemson University.
- 99. Na L, F-y Cheng, G Xin, y Zhong. 2021. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq. *Journal of Integrative Agriculture* 20(7):1832-1848.
- 100. J. 1983. Some Causes of United States Drought. Journal of Climate and Applied Meteorology 22(1):30-39.
- 101. Nerd A, PM Neumann. 2004. Phloem Water Transport Maintains Stem Growth in a Drought-stressed Crop Cactus (Hylocereus undatus) *Journal of the American Society for Horticultural Science jashs*, 129(4):486-490. 10.21273/jashs.129.4.0486
- 102. Nezhadahmadi A, ZH Prodhan, G Faruq. 2013. Drought Tolerance in Wheat. The Scientific World Journal 2013:610721. https://doi.org/10.1155/2013/610721
- 103. Nieva C, D Kizis, A Goday, V Lumbreras, M Pagès. 2000. Plant AP2/EREBP and bZIP Transcription factors: structure and functions. In: Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering (Cherry JH, Locy RD and Rychter A, eds.), Springer Netherlands, Dordrecht, pp 157-180
- 104. Nio SA, DPM Ludong, LJJA Wade, N Resources. 2018. Comparison of leaf osmotic adjustment expression in wheat (Triticum aestivum L.) under water deficit between the whole plant and tissue levels. 52(1):33-38.
- 105. Niu X, T Luo, H Zhao, Y Su, W Ji, H Li. 2020. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. *Gene* 740:144514. https://doi.org/10.1016/j. gene.2020.144514
- 106. Ooka H, K Satoh, K Doi, T Nagata, Y Otomo, K Murakami, K Matsubara, N Osato, J Kawai, P Carninci. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. *DNA research* 10(6):239-247.

- Parry MA, PJ Andralojc, S Khan, PJ Lea, AJ Keys.
 Rubisco activity: effects of drought stress.
 Annals of botany 89(7):833-839.
- 108. Paz Ares J, D Ghosal, U Wienand, P Peterson, H Saedler. 1987. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto oncogene products and with structural similarities to transcriptional activators. *The EMBO journal* 6(12):3553-3558. https://doi.org/10.1002/j.1460-2075.1987.tb02684.x
- 109. Perdomo JA, S Capó-Bauçà, E Carmo-Silva, J Galmés. 2017. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in plant science 8:490.
- 110. Pnueli L, E Hallak-Herr, M Rozenberg, M Cohen, P Goloubinoff, A Kaplan, R Mittler. 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. *The Plant journal : for cell and molecular biology* 31(3):319-30. 10.1046/j.1365-313x.2002.01364.x
- 111. Prasad P, SC Bhardwaj, RK Thakur, S Adhikari, OP Gangwar, C Lata, S Kumar. 2021. Prospects of climate change effects on crop diseases with particular reference to wheat. *Journal of Cereal Research* 13(2):118-135. http://doi. org/10.25174/2582-2675/2021
- 112. Premachandra G, T Shimada. 1988. Evaluation of polyethylene glycol test of measuring cell membrane stability as a drought tolerance test in wheat. *The Journal of Agricultural Science* 110(3):429-433.
- 113. Premachandra GS, T Shimada. 1987. The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat. *Japanese Journal of Crop Science* 56(1):92-98.
- 114. Qiu Y, D Yu. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. *Environmental and experimental botany* 65(1):35-47.
- 115. Rahaie M, G-P Xue, PM Schenk. 2013. The role of transcription factors in wheat under different abiotic

- stresses. Abiotic stress-plant responses and applications in agriculture 2:367-385.
- 116. Rehman SU, M Bilal, RM Rana, MN Tahir, MKN Shah, H Ayalew, G Yan. 2016. Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum) genotypes under conditions of heat and drought. Crop Pasture Science 67(7):712-718.
- 117. Rushton DL, P Tripathi, RC Rabara, J Lin, P Ringler, AK Boken, TJ Langum, L Smidt, DD Boomsma, NJ Emme. 2012. WRKY transcription factors: key components in abscisic acid signalling. *Plant biotechnology journal* 10(1):2-11.
- 118. Sakuma Y, Q Liu, JG Dubouzet, H Abe, K Shinozaki, K Yamaguchi-Shinozaki. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. *Biochemical and biophysical research communications* 290(3):998-1009. https://doi.org/10.1006/bbrc.2001.6299
- 119. Salih H, W Gong, S He, G Sun, J Sun, X Du. 2016. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. *BMC genetics* 17(1):1-12. https://doi.org/10.1186/s12863-016-0436-8
- 120. Sandquist DR, JR Ehleringer. 2003. Populationand family-level variation of brittlebush (Encelia farinosa, Asteraceae) pubescence: its relation to drought and implications for selection in variable environments. *American journal of botany* 90(10):1481-6. 10.3732/ajb.90.10.1481
- 121. Sazegari S, A Niazi. 2012. Isolation and molecular characterization of wheat ('Triticum aestivum') Dehydration Responsive Element Binding Factor (DREB) isoforms. Australian Journal of Crop Science 6(6):1037-1044. https://search.informit.org/ doi/10.3316/informit.734240474168720
- 122. Schubert SD, MJ Suarez, PJ Pegion, RD Koster, JT Bacmeister. 2004. Causes of Long-Term Drought in the U.S. Great Plains. *Journal of Climate* 17(3):485-503. https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2
- 123. Schuppler U, PH He, PC John, R Munns. 1998. Effect of water stress on cell division and cell-

- division-cycle 2-like cell-cycle kinase activity in wheat leaves. *Plant physiology* 117(2):667-678. 10.1104/pp.117.2.667
- 124. Serraj R, TJP Sinclair, cell, environment. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? 25(2):333-341.
- 125. Shamsi K, Petrosyan M, Noor-Mohammadi.G, Haghparast R. 2010. The role of water deficit stress and water use efficiency on bread wheat cultivars. *Journal of Applied Biosciences* 35:2325-2331.
- 126. Shanmugavadivel PS, C Prakash, SV Amitha Mithra. 2019. Chapter 42 Molecular Approaches for Dissecting and Improving Drought and Heat Tolerance in Rice. In: Advances in Rice Research for Abiotic Stress Tolerance (Hasanuzzaman M, Fujita M, Nahar K and Biswas JK, eds.), Woodhead Publishing, pp 839-867
- 127. Siddique M, A Hamid, M Islam. 1999. Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. *Botanical Bulletin of Academia Sinica* 40.
- 128. Srivastava LM. 2002. CHAPTER 16 Abscisic Acid and Stress Tolerance in Plants. *In: Plant Growth and Development (Srivastava LM (ed) eds.)*, Academic Press, San Diego, pp 381-412
- 129. Sun Z-h, C-h Ding, X-j Li, X Kai. 2012. Molecular characterization and expression analysis of TaZFP15, a C2H2-type zinc finger transcription factor gene in wheat (Triticum aestivum L.). *Journal of Integrative Agriculture* 11(1):31-42.
- 130. Szegletes Z, L Erdei, I Tari, L Cseuz. 2000. Accumulation of osmoprotectants in wheat cultivars of different drought tolerance. *Cereal Research Communications* 28(4):403-410. https://doi.org/10.1007/BF03543622
- 131. Tejada-Jimenez M, A Llamas, A Galván, E Fernández. 2019. Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. *Plants* 8(3). https://doi.org/10.3390/plants8030056
- 132. Trenberth KE, GW Branstator. 1992. Issues in Establishing Causes of the 1988 Drought over North America. *Journal of Climate* 5(2):159-172. https://doi.org/10.1175/1520-0442(1992)005<0159:Iiecot >2.0.Co;2

- 133. Trouverie J, C Thevenot, JP Rocher, B Sotta, JL Prioul. 2003. The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. *Journal of experimental botany* 54(390):2177-86. 10.1093/jxb/erg234
- 134. Turner N, G Wright, K Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, Vol 71 71:193-231. 10.1016/ S0065-2113(01)71015-2
- 135. Turner NC. 2018. Turgor maintenance by osmotic adjustment: 40 years of progress. *Journal of Experimental Botany* 69(13):3223-3233. 10.1093/jxb/ery181 %J Journal of Experimental Botany
- 136. Verma V, MJ Foulkes, AJ Worland, R Sylvester-Bradley, PDS Caligari, JW Snape. 2004. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. *Euphytica* 135(3):255-263. 10.1023/B:EUPH.0000013255.31618.14
- 137. Wang B, L Li, D Peng, M Liu, A Wei, X Li. 2021. TaFDL2-1A interacts with TabZIP8-7A protein to cope with drought stress via the abscisic acid signaling pathway. *Plant Science* 311:111022.
- 138. Wang M, L Ren, X Wei, Y Ling, H Gu, S Wang, K Guagnchao. 2021. Identification and characterization of a novel NAC transcription factor gene from triticale (x Triticosecale Wittmack). *Research square*.
- 139. Wang S, R Zhang, Z Zhang, T Zhao, D Zhang, S Sofkova, Y Wu, Y Wang. 2021. Genome-wide analysis of the bZIP gene lineage in apple and functional analysis of MhABF in Malus halliana. *Planta* 254(4):1-18.
- 140. Wang W, B Vinocur, A Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. *Planta* 218(1):1-14.
- 141. Wang X, Q Li, J Xie, M Huang, J Cai, Q Zhou, T Dai, D Jiang. 2021. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. *The Crop Journal* 9(1):120-132. https://doi.org/10.1016/j.cj.2020.06.002
- 142. Wang X, Q Li, M Yang, J Zhang, M Huang, J Cai, Q Zhou, T Dai, B Wollenweber, D Jiang. 2021. Crosstalk between hydrogen peroxide and nitric

- oxide mediates priming-induced drought tolerance in wheat. *Journal of Agronomy and Crop Science* 207(2):224-235. https://doi.org/10.1111/jac.12458
- 143. Wang X, Z Mao, J Zhang, M Hemat, M Huang, J Cai, Q Zhou, T Dai, D Jiang. 2019. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany 166:103804. https://doi.org/10.1016/j.envexpbot.2019.103804
- 144. Wardlaw IF, J Willenbrink. 2000. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. *New Phytol* 148(3):413-422. https://doi.org/10.1046/j.1469-8137.2000.00777.x
- 145. Wilkinson S, WJ Davies. 2002. ABA based chemical signalling: the co ordination of responses to stress in plants. *Plant, cell environment* 25(2):195-210.
- 146. Xie Z, TM Nolan, H Jiang, Y Yin. 2019. AP2/ ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. *Frontiers in Plant Science* 10(228). https:// doi.org/10.3389/fpls.2019.00228
- 147. Xue M, H Yi. 2018. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide. *Ecotoxicology and Environmental Safety* 147:523-529. https://doi.org/10.1016/j.ecoenv.2017.09.011
- 148. Yamaguchi-Shinozaki K, K Shinozaki. 2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. *Trends in plant science* 10(2):88-94.
- 149. Yang K, J-P An, C-Y Li, X-N Shen, Y-J Liu, D-R Wang, X-L Ji, Y-J Hao, C-X You. 2021. The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2. *Horticulture research* 8(1):1-14.
- 150. Yang X, X Chen, Q Ge, B Li, Y Tong, A Zhang, Z Li, T Kuang, C Lu. 2006. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparison between a hybridization line and its parents grown under field conditions. *Plant Science* 171(3):389-397.

- 151. S, D-F Zhang, J Fu, Y-S Shi, Y-C Song, T-Y Wang, Y Li. 2012. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. *Planta* 235(2):253-266.
- 152. Yordanov I, V Velikova, T Tsonev. 2000. Plant Responses to Drought, Acclimation, and Stress Tolerance. *Photosynthetica* 38(2):171-186. https://doi.org/10.1023/A:1007201411474
- 153. Zhang H, Y Liu, F Wen, D Yao, L Wang, J Guo, L Ni, A Zhang, M Tan, M Jiang. 2014. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. *Journal of experimental botany* 65(20):5795-5809.
- 154. Zhang H, X Pan, S Liu, W Lin, Y Li, X Zhang. 2021. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. *Genomics* 113(2):474-489.
- 155. Zhang J, S Zhang, M Cheng, H Jiang, X Zhang, C Peng, X Lu, M Zhang, J Jin. 2018. Effect of drought on agronomic traits of rice and wheat: A metaanalysis. *International journal of environmental research* public health 15(5):839.

- 156. Zhang L, L Zhang, C Xia, G Zhao, J Liu, J Jia, X Kong. 2015. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. *Physiologia plantarum* 153(4):538-554.
- 157. Zhao Y, X Cheng, X Liu, H Wu, H Bi, H Xu. 2018. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Frontiers in plant science 9:1426. https://doi.org/10.3389/fpls.2018.01426
- 158. Zhu J-K. 2002. Salt and drought stress signal transduction in plants. *Annual Review of Plant Biology* 53(1):247-273. 10.1146/annurev. arplant.53.091401.143329
- 159. Zivcak M, M Brestic, O Sytar. 2016. Osmotic adjustment and plant adaptation to drought stress. *In:* Drought Stress Tolerance in Plants, Vol 1 eds.), Springer, pp 105-143
- 160. Živčák M, J Repkova, K Olšovská, M Brestič. 2009. Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. *Cereal research communications* 37:569-572.

