### Journal of Cereal Research

Volume 15 (3): 329-335

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

# Screening of wild and synthetic wheat genotypes for resistance against corn leaf aphid, *Rhopalosiphum maidis* (Fitch)

Pritam Kumari and Poonam Jasrotia

Indian Institute of Wheat and Barley Research, Karnal - 132001 Haryana

#### Article history:

Received: 04 Sep., 2023 Revised: 05 Dec., 2023 Accepted: 19 Dec., 2023

#### Citation:

KPritam and P Jasrotia. 2023. Screening of wild and synthetic wheat genotypes for resistance against corn leaf aphid, *Rhopalosiphum maidis* (Fitch). *Journal of Cereal Research* **15 (3):** 329-335. <a href="http://doi.org/10.25174/2582-2675/2024/141372">http://doi.org/10.25174/2582-2675/2024/141372</a>

#### \*Corresponding author: E-mail: primehra36@gmail.com

© Society for Advancement of Wheat and Barley Research

#### Abstract

Among different aphid species attacking wheat crop, corn leaf aphid R. maidis (Fitch) severely threaten wheat production. A total of twenty eight genotypes of wheat including Aegilops tauschii, synthetic wheat and Ae. ovata were screened for two years against corn leaf aphid. In the first year of screening (2021-22), one highly resistant, nine resistant (R) and 14 moderately resistant (MR) and four susceptible wheat accessions were identified. Further screening done in second year (2022-23), identified one highly resistant, 13 resistant, 12 moderately resistant and two susceptible wheat accessions against corn leaf aphid. The majority of wheat accessions were found moderately resistant or resistant to corn leaf aphid. Overall, the two years of screening identified one highly resistant (Ae. tauschii 3744b), six moderately resistant (Ae. tauschii 33, 13764 and 3744a; synthetic SYN4 and SYN47; Ae. ovata 87), five resistant (Ae. tauschii 9807, 3769 and 13762; synthetic SYN55, and Ae. ovata 2) and two susceptible accessions (Ae. tauschii 3757 and synthetic SYN21) against corn leaf aphid.

Key words: Screening, resistant, wheat, aphid, accessions.

#### 1. Introduction

Wheat (Triticum aestivum L) is one of the most widely grown cereal crop around the world (Wei et al., 2022). It is also known as "king of cereals". Although, it is widely grown cereal crop, however there are multiple biotic and abiotic factors which cause a substantial decrease in wheat production (Ahmad et al., 2022). Among the biotic constraints, insect pests like aphids, pink stem borer, termites, gujhia weevil, cut worms and army worms etc. are responsible for causing a considerable yield reduction in wheat. Among these insect-pests, aphids are considered as one of the major biotic threat to food production causing significant (3.5-21.0 per cent) grain yield reduction (Li et al., 2021). More than 11 aphid species are reported to attack wheat crop, out of which four species namely Sitobion avenae (Fabricius), Sitobion miscanthi, Rhopalosiphum padi and Rhopalosiphum maidis are reported to be most predominant (Singh and Jasrotia, 2020). Among these,

the corn leaf aphid (CLA), *R. maidis* is most serious aphid species of North-Western plains.

It is a small size, green color aphid attacking wheat crop from seedling stage onwards. It appears on wheat during October-November and the population reaches its peak during February-March at ear ripening stage. Aphids cause damage by sucking the cell sap from leaves at vegetative stage causing chlorosis (Wang et al., 2021). As the ear emerges, they move to ears to suck sap from them due to which either grains will not developed and if developed they remain shrivelled. Aphids secrete a sugary material which is known as "honey dew". On this honeydew, black sooty mould developed that interferes with photosynthetic activities of the plant and ultimately reduce the grain yield (Simon et al., 2021). They can cause the direct yield losses to the tune of 20-30% by sucking the plant sap (Singh et al., 2020) and indirect losses of around 5-80%



by transmission of viral and fungal diseases (Aradottir et al., 2021). Economic threshold level for wheat aphids was established as 5 aphids/earhead or 10 aphids/flag leaf.

Currently in most of wheat growing regions aphid management is done primarily through the application of commonly used systemic insecticides (Devrani et al., 2018). Furthurmore, these insecticides can provide sufficient protection against aphid problem but the drawbacks lies with their irrational use resulting in emerged problems of induced resistance among aphids to several groups of chemicals besides disrupting their natural biological control and environmental pollution (Foster et al., 2014). All these factors affecting wheat food security, has increased the focus on alternative methods of aphid control. In this regard, eco-friendly approaches must be adopted as a valid alternative to the synthetic chemical pesticides. It is, therefore, advisable to screen

wheat accessions possessing resistance against aphids. Also the screening of wheat germplasm has resulted in identification of varying level of aphid resistance in different countries (Wains et al., 2014). Keeping in view the above facts, the present study was conducted with the objective to screen various available genotypes of wheat showing resistant and susceptible response to aphids.

#### 2. Materials and Methods

To identify potential wheat genotypes against corn leaf aphid, *R. maidis* a total of 28 genotypes of synthetic wheat (*T. aestivum*) and wild wheat (*Ae.* spp) were screened during 2021-22 and 2022-23 rabi season under filed conditions at ICAR-IIWBR, Karnal. These 28 genotypes under study included 10 synthetic wheat genotypes and 18 wild wheat accessions comprising 13 accessions of *Ae. tauschii* and 5 from *Ae. ovata*. The list of wheat genotypes screened during the study is listed below in Table 1.

Table 1: List of wild and synthetic wheat genotypes under investigation

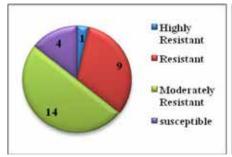
| Sr. no. | Species      | Accession no. | Sr. no. | Species   | Accession no. |
|---------|--------------|---------------|---------|-----------|---------------|
| 1       | Ae. tauschii | 62            | 15      | Synthetic | SYN4          |
| 2       | Ae. tauschii | 3761          | 16      | Synthetic | SYN81         |
| 3       | Ae. tauschii | 33            | 17      | Synthetic | SYN38         |
| 4       | Ae. tauschii | 3744          | 18      | Synthetic | SYN51         |
| 5       | Ae. tauschii | 9807          | 19      | Synthetic | SYN52         |
| 6       | Ae. tauschii | 13764         | 20      | Synthetic | SYN55         |
| 7       | Ae. tauschii | 45            | 21      | Synthetic | SYN47         |
| 8       | Ae. tauschii | 9788          | 22      | Synthetic | SYN42         |
| 9       | Ae. tauschii | 3744          | 23      | Synthetic | SYN21         |
| 10      | Ae. tauschii | 13781         | 24      | Ae. ovata | 24            |
| 11      | Ae. tauschii | 3769          | 25      | Ae. ovata | 20            |
| 12      | Ae. tauschii | 13762         | 26      | Ae. ovata | 82            |
| 13      | Ae. tauschii | 3757          | 27      | Ae. ovata | 87            |
| 14      | Synthetic    | SYN7          | 28      | Ae. ovata | 2             |

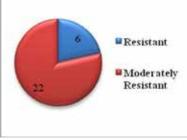
Each genotype was sown in one meter row with row to row spacing of 30 cm (3 replications; 2 rows per replication) in randomized block design (RBD). The crop was grown by following the all recommended package and practices except plant protection measures. Each genotype was tagged with their genotype name and accession number. The screening test against aphid infestation in terms of number of aphids per shoot, leaf chlorosis and leaf rolling were conducted. The observations were recoreded three times from the five randomly selected plants from each genotype row during the season. The categorization of wheat genotypes was done on the basis of grading system suggested by Zhu et al. (2005). Based upon mean number

of aphids per shoot and leaf chlorosis, the wheat genotypes were categorized as immune (I), highly resistant (HR), resistant (R), moderately resistant (MR), and susceptible (S) while on the basis of leaf rolling, the wheat genotypes were categorized as resistant (R) and susceptible (S).

#### 3. Results and Discussion

Screening of wild and synthetic wheat genotypes against R. maidis under field conditions during 2021-22


Data presented in Table 2 described the various categories of resistance response of 28 wild as well as synthetic wheat genotypes against corn leaf aphid, *R. maidis*. On the basis of aphids/shoot, among the 13 *Ae. tauschii* accessions,




only one accession was highly resistant, 4 accession were resistant, 6 accessions were moderately resistant, and 2 accessions were found to be susceptible. On the basis of leaf chlorosis, 1 accession was resistant, and 12 accessions were moderately resistant. On the basis of leaf rolling, 9 accessions were resistant and 4 accessions were susceptible. Thus among Ae. tauschii accessions, the accession '3744b' was found to be highly resistant while the accessions '62 and 3757' were found to be susceptible on the basis of aphids/shoot. Among the 10 synthetic wheat genotypes, based upon mean number of aphids per shoot, 3 genotypes were classified to be having resistant response, 5 genotypes were having moderately resistant response and 2 genotypes were having susceptible response toward corn leaf aphid, R. maidis infestation. No genotype was found to be highly resistant and immune against the aphid infestation. On the basis of leaf chlorosis, 3 genotypes were resistant, and 7 genotypes were moderately resistant while 6 genotypes were resistant and 4 genotypes were susceptible based upon leaf rolling. Among the 5 Ae. ovata accessions, on the basis of aphids/shoot, 3 accessions were moderately resistant, and 2 accessions were found to be resistant. On the basis of leaf chlorosis, similar

trend was observed while on the basis of leaf rolling, 3 accessions were found to be resistant and 2 accessions were susceptible.

Contemporarily, the grouping of the 28 wheat genotypes under investigation are depicted and described in Table 2 and Figure 1 respectively. Out of total wheat genotypes, on the basis of aphid population, only one accessions was highly resistant, 9 accessions were resistant, 14 accessions were moderately resistant, and 4 accessions were found to be susceptible (Fig. 1a). Thus, 3.57% accessions were highly resistant, 32.14% were resistant, 50.00% were moderately resistant and 14.28% were found to be highly resistant. The accession no. 3744b (Ae. tauschii) was found to be susceptible while the accession no. 62, 3757, (Ae. tauschii) and SYN21, SYN 42 (synthetic) were found to be susceptible. On the basis of leaf chlorosis, 6 accessions were resistant, and 22 accessions were moderately resistant while on the basis of leaf rolling, 18 accessions were resistant and 10 accessions were susceptible. Thus, 21.43% were resistant, 78.57% were moderately resistant (Fig. 1b) and 64.29% were resistant and 35.71% were found to be susceptible (Fig. 1c) based upon leaf chlorosis and leaf rolling respectively.





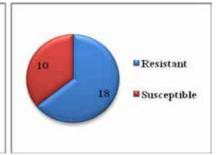



Fig. 1(c)

Fig. 1 (a)

Fig. 1(b)

Figure 1 Characterization of wild and synthetic wheat genotypes into different categories of resistance based on (a) aphids/shoot, (b) leaf chlorosis and (c) leaf rolling under field conditions during 2021-22

Table 2. Characterization of wild and synthetic wheat genotypes based on aphids/shoot, leaf chlorosis and leaf rolling under field conditions during 2021-22

| Species      | Accession no. | Based on aphid population |           | Based on leaf chlorosis |           | Based on leaf rolling |           |
|--------------|---------------|---------------------------|-----------|-------------------------|-----------|-----------------------|-----------|
|              |               | Grade                     | Reaction* | Grade                   | Reaction* | Grade                 | Reaction* |
| Ae. tauschii | 62            | 5                         | S         | 4                       | MR        | 2                     | R         |
| Ae. tauschii | 3761          | 3                         | R         | 4                       | MR        | 3                     | S         |
| Ae. tauschii | 33            | 4                         | MR        | 3                       | R         | 2                     | R         |
| Ae. tauschii | 3744a         | 4                         | MR        | 4                       | MR        | 2                     | R         |
| Ae. tauschii | 9807          | 3                         | R         | 4                       | MR        | 2                     | R         |
| Ae. tauschii | 13764         | 4                         | MR        | 4                       | MR        | 2                     | R         |



| Ae. tauschii | 45    | 4 | MR | 4 | MR | 2 | R |
|--------------|-------|---|----|---|----|---|---|
| Ae. tauschii | 9788  | 4 | MR | 4 | MR | 2 | R |
| Ae. tauschii | 3744b | 2 | HR | 4 | MR | 3 | S |
| Ae. tauschii | 13781 | 4 | MR | 4 | MR | 3 | S |
| Ae. tauschii | 3769  | 3 | R  | 4 | MR | 2 | R |
| Ae. tauschii | 13762 | 3 | R  | 4 | MR | 3 | S |
| Ae. tauschii | 3757  | 5 | S  | 4 | MR | 2 | R |
| Synthetic    | SYN7  | 4 | MR | 3 | R  | 3 | S |
| Synthetic    | SYN4  | 4 | MR | 3 | R  | 2 | R |
| Synthetic    | SYN81 | 4 | MR | 4 | MR | 2 | R |
| Synthetic    | SYN38 | 3 | R  | 4 | MR | 2 | R |
| Synthetic    | SYN51 | 3 | R  | 4 | MR | 2 | R |
| Synthetic    | SYN52 | 4 | MR | 4 | MR | 3 | S |
| Synthetic    | SYN55 | 3 | R  | 4 | MR | 3 | S |
| Synthetic    | SYN47 | 4 | MR | 4 | MR | 2 | R |
| Synthetic    | SYN42 | 5 | S  | 4 | MR | 2 | R |
| Synthetic    | SYN21 | 5 | S  | 3 | R  | 3 | S |
| Ae. ovata    | 24    | 3 | R  | 4 | MR | 2 | R |
| Ae. ovata    | 20    | 4 | MR | 3 | R  | 2 | R |
| Ae. ovata    | 82    | 4 | MR | 4 | MR | 3 | S |
| Ae. ovata    | 87    | 4 | MR | 3 | R  | 3 | S |
| Ae. ovata    | 2     | 3 | R  | 4 | MR | 3 | R |
|              |       |   |    |   |    |   |   |

<sup>\*</sup>Reaction: I=Immune; HR=Highly resistant; R=Resistant; MR=Moderately Resistant; S=Susceptible

## Screening of wild and synthetic wheat genotypes against R. maidis under field conditions during 2022-23

Data given in Table 3 shows the screening of wild and synthetic wheat genotypes during 2022-23. The grouping of 13 Ae. tauschii accessions based upon aphids per shoot concluded that on the basis of mean no. of aphids per shoot, one accession was found to be highly resistant, 6 accession were resistant, and 6 accessions were moderately resistant indicating that there were neither immune nor susceptible wheat genotypes. On the basis of leaf chlorosis, 7, 5 and one accessions were resistant, moderately resistant and susceptible while on the basis of leaf rolling, 8 accessions were resistant and 5 accessions were susceptible. Among the 10 synthetic wheat genotypes evaluated, on the basis of aphid population per shoot, 3 genotypes were resistant, 6 genotypes were moderately resistant and only one genotype was found to be susceptible. On the basis of leaf chlorosis, 6 genotypes were found to be resistant and 4 genotypes were moderately resistant. However on the basis of leaf rolling, 8 genotypes were resistant and 2 genotypes were

susceptible. Likewise, among the 5 *Ae. ovata* accessions, on the basis of aphid population, 3 accessions showed resistant, and 2 accessions showed moderately resistant reaction. On the basis of leaf chlorosis, 3 accessions were resistant, and 2 accessions were moderately resistant while 4 accessions were resistant and only one accessions was susceptible based upon the criteria of leaf rolling.

Among the 28 wild and synthetic wheat genotypes, on the basis of aphid population, 1 accessions was highly resistant, 13 accessions were resistant, and 12 accessions were moderately resistant and 2 accessions were found to be susceptible. This concluded that there were neither immune nor susceptible wheat genotypes. On the basis of leaf chlorosis, 16 accessions were resistant, 11 accessions were moderately and only one accession was susceptible while on the basis of leaf rolling, 20 accessions were resistant and 8 accessions were found to be susceptible. Thus, among the 28 wild and synthetic wheat genotypes, on the basis of aphid population, 3.57% were highly resistant, 46.43% were resistant, 42.85% were moderately resistant, and 7.14% were susceptible (Fig. 2a). Likewise on



the basis of leaf chlorosis, 57.14% were resistant, 39.29% were moderately resistant and 3.57% were susceptible (Fig. 2b) and on the basis of leaf rolling, 71.43% were resistant and 28.57% were found to be susceptible (Fig. 2c).



Fig. 2 (a) Fig. 2 (b) Fig. 2 (c)

Figure 2 Characterization of wild and synthetic wheat genotypes into different categories of resistance based on (a) aphids/shoot, (b) leaf chlorosis and (c) leaf rolling under field conditions during 2022-23

Table 3. Characterization of wild and synthetic wheat genotypes based on aphids/shoot, leaf chlorosis and leaf rolling under field conditions during 2022-23

| Species      | Accession no. | Based on aphid polpulation |           | Based on leaf chlorosis |           | Based on leaf rolling |           |
|--------------|---------------|----------------------------|-----------|-------------------------|-----------|-----------------------|-----------|
|              |               | Grade                      | Reaction* | Grade                   | Reaction* | Grade                 | Reaction* |
| Ae. tauschii | 62            | 4                          | MR        | 3                       | R         | 2                     | R         |
| Ae. tauschii | 3761          | 4                          | MR        | 3                       | R         | 2                     | R         |
| Ae. tauschii | 33            | 4                          | MR        | 3                       | R         | 3                     | S         |
| Ae. tauschii | 3744a         | 4                          | MR        | 3                       | R         | 3                     | S         |
| Ae. tauschii | 9807          | 3                          | R         | 4                       | MR        | 3                     | S         |
| Ae. tauschii | 13764         | 4                          | MR        | 3                       | R         | 2                     | R         |
| Ae. tauschii | 45            | 3                          | R         | 3                       | R         | 2                     | R         |
| Ae. tauschii | 9788          | 3                          | R         | 4                       | MR        | 2                     | R         |
| Ae. tauschii | 3744b         | 2                          | HR        | 5                       | S         | 2                     | R         |
| Ae. tauschii | 13781         | 3                          | R         | 4                       | MR        | 2                     | R         |
| Ae. tauschii | 3769          | 3                          | R         | 4                       | MR        | 3                     | S         |
| Ae. tauschii | 13762         | 3                          | R         | 3                       | R         | 3                     | S         |
| Ae. tauschii | 3757          | 5                          | S         | 4                       | MR        | 2                     | R         |
| Synthetic    | SYN7          | 3                          | R         | 3                       | R         | 3                     | S         |
| Synthetic    | SYN4          | 4                          | MR        | 3                       | R         | 3                     | S         |
| Synthetic    | SYN81         | 3                          | R         | 4                       | MR        | 2                     | R         |
| Synthetic    | SYN38         | 4                          | MR        | 4                       | MR        | 2                     | R         |
| Synthetic    | SYN51         | 4                          | MR        | 3                       | R         | 2                     | R         |
| Synthetic    | SYN52         | 3                          | R         | 4                       | MR        | 2                     | R         |
| Synthetic    | SYN55         | 3                          | R         | 4                       | MR        | 2                     | R         |
| Synthetic    | SYN47         | 4                          | MR        | 3                       | R         | 2                     | R         |
| Synthetic    | SYN42         | 4                          | MR        | 3                       | R         | 2                     | R         |
| Synthetic    | SYN21         | 5                          | S         | 3                       | R         | 2                     | R         |
| Ae. ovata    | 24            | 4                          | MR        | 4                       | MR        | 2                     | R         |
| Ae. ovata    | 20            | 3                          | R         | 4                       | MR        | 2                     | R         |



| Ae. ovata | 82 | 3 | R  | 3 | R | 2 | R |
|-----------|----|---|----|---|---|---|---|
| Ae. ovata | 87 | 4 | MR | 3 | R | 3 | S |
| Ae. ovata | 2  | 3 | R  | 3 | R | 2 | R |

<sup>\*</sup>Reaction: I=Immune; HR=Highly resistant; R=Resistant; MR=Moderately Resistant; S=Susceptible

Present study revealed that neither of the 28 wild and synthetic wheat genotypes evaluated were found to be immune even in both years investigation based upon all three grading criteria. These findings are in line with results of Zhang et al. (2022) who investigated the response of six wheat cultivars toward wheat aphid, but are in contradiction with the finding of Wains et al. (2014) who reported that out of 464 accessions screened against aphids, 71 accessions exhibited an immune response, 87 varieties/lines were found resistant, 127 moderately resistant, while 141 accessions were graded as tolerant, although not all genotypes same as used in the current study against R. maidis. Most of the wild wheat genotypes screened in the current study have not been screened by any other workers in the past except a few. Three years of screening identified one resistant (Aegilops tauschii 14096) and six moderately resistant accessions (Aegilops tauschii 14135, 14232, 14339, 14348, 14576 and 3733) against foliage feeding wheat aphids (Singh et al., 2018) support the present findings. Also, Liu et al. (2018) carried out a field screening tests to evaluate the S. avenae resistance of 527 wheat landraces and the results indicated that 25 accessions (4.74%) were resistant to S. avenae in the three consecutive seasons. Considerable variations in aphid response on different wheat species was exhibited by present study is consistent with the finding of Qamar Zeb et al. (2015) who reported a differential resistance in wheat and barley against Russian wheat aphid and with Aradottir et al. (2017) who also reported significant variation in aphid performance among different wheat collections. These findings are also confirmed by other studies. For instance, Akhtar et al. (2010) evaluated wheat lines/varieties resistance against *R. padi* and found that five varieties were resistant, thirteen were moderately resistant and two were susceptible. Jan et al. (2018) screened eleven wheat genotypes and found that shafaq 2006 and V-12120 were more susceptible while Punjab-2011 and 11C023 were exhibiting resistance against wheat aphids. Among the varieties tested for wheat aphid resistance based on the number of aphid/tillers, the variety UP-2526 and UP-2869 was most resistant and DPW-62150 was most

susceptible (Devrani et al., 2018). The result of seedling bulk test revealed that varieties namely NIAW 917, NIAW 301, NIAW 34, NIAW 1415, HD 2189 and LOK-1 were found moderately resistant and varieties namely A-9-30-1, NIDW 295 and GW 496 were found susceptible against wheat aphid (*Rhopalosiphum padi* L) (Vare et al., 2018).

#### Conclusion

From the present study it can be concluded that there was no genotypes with immune reaction towards *R. maidis* however, one highly resistant (*Ae tauschii* 3744b), and six resistant (*Ae tauschii* 9807, 13764, 3769 and 13762; synthetic SYN55; *Ae. ovata* 2) accessions in two consecutive years were identified. This collection from diverse sources of resistance provides noval source of resistance and may help to reduce aphid problem in wheat as resistant cultivar deployment is an effective method for cereal aphid management. This will further ensure food security for world's rapidly growing population.

#### **Author Contributions**

PK & PJ prepared the manuscript and preparing the final version of the manuscript and correspond to the journal.

#### **Ethical Approval**

This article does not contain any studies involving human or animal participants performed by any of the authors.

#### **Conflicts of Interest:**

The authors declare no conflict of interest.

#### References

- Ahmad A, Z Aslam, T Javed, S Hussain, A Raza, R Shabbir and M Tauseef. 2022. Screening of wheat (*Triticum aestivum* L.) genotypes for drought tolerance through agronomic and physiological response. *Agronomy*, 12(2), 287.
- 2. Akhtar N, M Ashfaque, WA Gillani, A Tashfeen and I Begum. 2010. Antibiosis resistance in national uniform wheat yield trials against Rhopalosiphum padi (L.). *Pakistan Journal of Agriculture Research*, 23(1-2).



- Aradottir GI and L Crespo-Herrera. 2021. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. *Current Opinion in Insect Science*, 45, 59-68.
- Aradottir GI, JL Martin, SJ Clark, JA Pickett and LE Smart. 2017. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. *Annals of Applied Biology*, 170(2), 179-188.
- 5. Devrani A, RS Bisht and N Rawat. 2018. Screening of different wheat varieties against aphids at pantnagar. *Journal of Entomological and Zoological Studies*, 6(3), 151-155.
- Foster SP, VL Paul, R Slater, A Warren, I Denholm, LM Field and MS Williamson. 2014. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. *Pest Management* Science, 70(8), 1249-1253.
- Jan H, M Zia-ul-Haq, ZR Akhtar, W Afzal, SA Naveed, S Raza and M Latif. 2018. Varietal screening of advance wheat genotypes against wheat aphids and association of natural enemies. *Journal of Entomological and Zoological Studies*, 6, 2225-2228.
- 8. Li Q, J Sun, Y Qin, J Fan, Y Zhang, X Tan and J Chen. 2021. Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonella defensa. *Pest Management Science*, 77(4), 1936-1944.
- 9. Liu XL, BY Lu, CY Wang, YJ Wang, H Zhang, ZR Tian and WQ Ji. 2018. Identification of Sitobion avenae F. resistance and genetic diversity of wheat landraces from Qinling Mountains, China. *Cereal Research Communications*, 46, 104-113.
- Vare RB, SD Patil, BM Mhaske and NM Patil. 2018. Antibiosis resistance in various wheat varieties against wheat aphid (Rhopalosiphum padi l). BIOINFOLET-A Quarterly Journal of Life Sciences, 15(3and4), 265-268.
- 11. Qamar Zeb MN, S Ahmad and SA Khan. 2015. Seedling bulk test (mass screening) of fifty wheat genotypes against Schizaphis graminum (Rondani) (Aphididae: Hemiptera).

- Simon AL, JC Caulfield, KE Hammond-Kosack, LM Field and GI Aradottir. 2021. Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. *Scientific Reports*, 11(1), 13495.
- 13. Singh B and P Jasrotia. 2020. Impact of integrated pest management (IPM) module on major insect-pests of wheat and their natural enemies in North-western plains of India. *Journal of Cereal Research*, 12(2), 114-119.
- 14. Singh B, S Kaur and P Chhuneja. 2018. Evaluation of plant resistance in progenitors of wheat against foliage feeding aphids. *Agriculture Research Journal*, 55(1), 117-121.
- 15. Singh B, A Simon, K Halsey, S Kurup, S Clark and GI Aradottir. 2020. Characterisation of bird cherry-oat aphid (*Rhopalosiphum padi* L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. *Annals of Applied Biology*, 177(2), 184-194.
- 16. Wains MS, MW Jamil, MA Ali, M Hussain and J Anwar. 2014. Germplasm screening and incorporation of aphid resistance in bread wheat (*Triticum aestivum* L.). *JAPS: Journal of Animal & Plant Sciences*, 24(3).
- 17. Wang J, J Song, XB Wu, QQ Deng, ZY Zhu, MJ Ren and RS Zeng. 2021. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. *Pest Management Science*, 77(10), 4709-4718.
- Wei C, Q Jiao, E Agathokleous, H Liu, G Li, J Zhang and Y Jiang. 2022. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Science of The Total Environment, 807, 150992.
- Zhang KX, HY Li, P Quandahor, YP Gou, CC Li, QY Zhang and CZ Liu. 2022. Responses of six wheat cultivars (*Triticum aestivum*) to wheat aphid (*Sitobion avenae*) infestation. *Insects*, 13(6), 508.
- Zhu LC, CM Smith, A Fritz, E Boyko, P Voothuluru and BS Gill. 2005. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theoretical and Applied Genetics, 111, 831-837.

