Journal of Cereal Research

Volume 17 (2): 206-210

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Effect of Seed Coating on Storability of Barley (*Hordeum vulgare* L.) Seeds

Parul Walia, KC Dhiman, Rajesh Kanwar* and RK Kapila

Department of Seed Science and Technology, College of Agriculture, CSK Himachal Pradesh Krishi Vishwavidyalaya Palampur - 176062, Himachal Pradesh, India

Article history: Received: 03 Nov., 2023 Revised: 28 Jul., 2025 Accepted: 30 Aug., 2025

Citation: Walia P, KC Dhiman, R Kanwar, RK Kapila. 2025. Effect of Seed Coating on Storability of Barley (Hordeum vulgare L.) Seeds. Journal of Cereal Research 17 (2): 206-210. http://doi.org/10.25174/2582-2675/2025/144849

*Corresponding author: E-mail: intangiblekanwar07@gmail.com

© Society for Advancement of Wheat and Barley Research

Barley (*Hordeum vulgare* L.) is a self-pollinated, diploid species (2n=2x=14) belonging to the tribe *Triticeae* of the family Poaceae. It is an important cereal crop cultivated globally and in India, covering approximately 453 thousand hectares with a production of 1.37 million tonnes and an average productivity of 30.0 q/ha (Anonymous, 2023). In Himachal Pradesh, barley is mainly grown during the *Rabi* season on about 20 thousand hectares, yielding around 36.2 thousand tonnes with an average productivity of 18.1 q/ha (Anonymous, 2021).

Seed quality is one of the key determinants of crop productivity, as the commercial success of a variety depends on its viability, vigour, and storability. Seed deterioration is a natural and irreversible process that begins once the seed reaches physiological maturity, leading to a gradual loss in germination and vigour over time (Doijode, 1990). Since seeds are generally stored for later sowing, proper storage conditions are critical. The rate of deterioration is influenced by both genetic and environmental factors but can be reduced by adopting suitable seed treatments or maintaining controlled storage environments (Parashurama et al., 2021). Among various preservation techniques, seed coating has emerged as a cost-effective method to maintain seed quality without requiring expensive infrastructure (Javed et al., 2022). It involves the application of thin polymer films (around 8 um) embedded with fungicides, insecticides, or growthpromoting substances. These coatings are non-toxic,

permeable to gases and water, and protect seeds from environmental stress and microbial infection, thereby improving germination, seedling emergence, and early growth (Dixit *et al.*, 2018). Polymers also act as carriers for nutrients, bioagents, and protectants, offering a versatile and efficient approach for seed enhancement.

Despite the importance of seed quality, systematic studies on barley seed storability under Indian conditions are limited. With the expansion of organized seed production, awareness of seed ageing and storage losses has increased. It has been reported that about 80% of certified seed in India is used within a single season, while 20% is retained for subsequent sowing (Bal, 1976). In Himachal Pradesh, rapid deterioration of barley seed is commonly observed due to untreated seeds, poor storage environments, and substandard packaging, emphasizing the need for improved preservation strategies. The present study was undertaken to evaluate the efficacy of polymer-based coatings, alone and in combination with fungicides and insecticides, for enhancing barley seed longevity under ambient storage conditions in the mid-hills of Himachal Pradesh. Seeds harvested during Rabi 2021-22 from the Hill Agricultural Research and Extension Centre, Bajaura (Kullu), were cleaned and manually coated with polymers, fungicides, insecticides, and Trichoderma spp. following standard protocols. The treated seeds were shade-dried for 72 hours to reduce their moisture content to approximately 13% before being packed in high-density

Treatment	Treatment Description	Gern	Germination (%)	Field I	Emergence (%)	Seedlin (c	Seedling Length (cm)	Seedl. Weig	Seedling Dry Weight (mg)	Vigour	Vigour Index – I	Vigour Index	Index – II
	•	Initial	12 Months	Initial	12 Months	Initial	12 Months	Initial	12 Months	Initial	12 Months	Initial	12 Months
T1	Control	88.33	82.67	75.67	79.07	39.87	37.82	20.00	18.38	3522.14	3126.23	1766.70	1519.42
T2	Polymer coating (Polykote) @ 3.0 ml/kg seed + 5.0 ml water	88.33	84.33	76.00	71.33	40.33	38.28	20.26	18.64	3562.77	3228.55	1789.63	1571.69
Т3	Tebuconazole @ 1.0 g/kg seed	88.67	86.00	77.67	73.00	40.70	38.67	20.47	18.84	3608.73	3325.91	1814.72	1619.95
T 4	Polymer + Tebuconazole @ 1.0 g/kg seed	89.00	86.67	78.33	73.67	40.80	38.82	20.56	18.94	3631.20	3364.10	1830.14	1641.18
T5	Vitavax Power (Thiram 37.5% + Carboxin 37.5%) @ 2.0 g/kg seed	88.67	86.33	78.00	73.33	40.75	38.77	20.55	18.92	3613.15	3346.86	1822.41	1633.71
T6	Polymer + Vitavax Power @ 2.0 g/kg seed	89.33	87.00	78.67	74.00	40.83	38.85	20.57	18.95	3647.77	3380.24	1837.58	1648.36
T7	Imidacloprid (Gaucho) @ 4.0 ml/kg seed	88.33	84.67	76.33	71.67	40.37	38.33	20.28	18.65	3565.70	3245.27	1791.11	1579.31
T8	Polymer + Imidacloprid (Gaucho) @ 4.0 ml/kg seed	88.33	85.67	77.33	72.67	40.67	38.63	20.46	18.83	3592.23	3309.58	1807.01	1612.82
Т9	Trichoderma harzianum coating @ 5.0 g/kg seed	88.33	85.33	77.00	72.33	40.63	38.60	20.45	18.82	3589.30	3293.87	1806.71	1605.97
T10	Trichoderma virens coating @ 5.0 g/kg seed	88.33	85.00	76.67	72.00	40.40 /	38.37	20.29	18.66	3568.67	3261.17	1791.99	1586.38
	Mean	88.57	85.37	77.17	72.47	40.54	38.51	20.39	18.76	3590.17	3288.18	1805.80	1601.88
	$SE(m\pm)$	0.017	0.015	0.016	0.016	0.03	0.04	0.02	0.01	12.62	11.49	7.55	5.18
		5											

polyethylene (HDPE) interwoven bags and stored under ambient conditions from March 2022 to March 2023. The experiment was laid out in a Completely Randomized Design (CRD) with three replications. Bimonthly observations were taken on germination, field emergence, seedling length, dry weight, rate of germination, and vigour indices following standard procedures (Abdul Baki and Anderson, 1973; Divya, 2022; Kotia, 2020). Moisture content was measured using a non-destructive moisture meter (PM 600). Data were statistically analyzed using OPSTAT software, and treatment differences were tested at the 5% level of significance (Sundararaj *et al.*, 1972). Germination and field emergence percentages were square-root transformed prior to analysis.

The resulted mentioned in Table 1 indicated that seed germination decreasing from 88.57% initially to 85.37% after twelve months of storage. Seeds treated with polymer + Vitavax Power (T6) recorded the highest germination (87.0%), followed by polymer + Tebuconazole (T4) at 86.67% and Vitavax Power alone (T5) at 86.33% (Table 1). The polymer coating appeared to act as a barrier against fluctuations in oxygen and moisture, thereby reducing ageing-related deterioration. Similar results have been reported in wheat and rice, where polymer-fungicide treatments maintained higher germination rates during storage (Thakur and Dhiman, 2020; Sharma and Dhiman, 2017).

Field emergence exhibited a similar pattern, declining from 77.17% to 72.47% over the storage period. The highest emergence (74.0%) was recorded in T6-treated seeds, demonstrating the protective effect of polymer-fungicide combinations against soil-borne pathogens and early pest damage. The rate of germination also decreased gradually, from an average of 80.51 to 79.22, with T6, T4, and T5 consistently showing superior performance (Table 1). Seedling length and dry matter content declined with time, but the highest values were recorded in T6 (38.85 cm length and 18.95 mg dry weight), indicating that the treated seeds retained better metabolic efficiency and resource utilization. These results corroborate findings in maize, soybean, okra, and radish, where similar seed treatments enhanced vigour under storage conditions (Sharma et al., 2017; Goswami et al., 2017; Parihar et al., 2019; Divya, 2022; Kotia, 2020).

Seed vigour indices I and II declined from 3590.17 and 1805.80 initially to 3288.18 and 1601.88, respectively, after twelve months (Table 1). The highest vigour was consistently recorded in T6, followed by T4 and T5, indicating that polymer-fungicide combinations effectively mitigated physiological ageing. Improved vigour in these treatments can be attributed to enhanced seedling growth, maintenance of dry matter, and reduced cellular damage. Similar beneficial effects of polymer-based treatments have been reported in soybean, chickpea, wheat, and rice (Desai *et al.*, 2015; Roopashree *et al.*, 2018; Dixit *et al.*, 2018; Padhi *et al.*, 2017).

Seed moisture content showed slight variation during storage, increasing marginally from 13.26% to 13.85%. Significant differences among treatments emerged after two months, with the lowest moisture content recorded in polymer + imidacloprid (T8), followed by imidacloprid alone (T7) and polymer + Vitavax Power (T6). The polymer coating likely reduced exposure to ambient humidity, minimizing moisture absorption and preserving seed quality, which is consistent with earlier reports in soybean and wheat (Thakur and Dhiman, 2016).

Overall, the study clearly demonstrated that barley seed quality declines gradually during storage under ambient conditions, but polymer-based coatings, particularly when combined with fungicides, significantly retard deterioration. Treatments such as polymer + Vitavax Power (T6), polymer + Tebuconazole (T4), and Vitavax Power alone (T5) were most effective in maintaining germination, field emergence, vigour, and moisture stability over twelve months of storage. These results clearly indicate the practical utility of polymer-fungicide coatings as a cost-effective, environmentally safe, and efficient strategy for improving barley seed storability, especially in the mid-hill regions of Himachal Pradesh where storage conditions are suboptimal. Adoption of such treatments can help farmers and seed producers maintain seed viability and vigour, ensuring better field establishment, higher yields, and long-term seed security. Future research should explore integrating polymers with bioagents and micronutrients to develop multifunctional coatings that further enhance seed longevity and early seedling performance under variable environmental conditions.

Acknowledgements

The authors are thankful to the Department of Seed Science and Technology, CSKHPKV, Palampur for providing necessary laboratory facility and support for carrying out the study.

Author's Contribution

Conceptualization of research (PW, KCD, RKK, RK); Designing of the experiments (KCD, RKK, RK, PW); Contribution of experimental materials (KCD, PW); Execution of field/lab experiments and data collection (PW, KCD, RKK, RK); Analysis of data and interpretation (KCD, RKK, RK, PW); Preparation of the manuscript (PW, KCD, RKK, RK).

Conflict of Interest

Authors declare that they have no conflict of interests.

Ethical Compliance Statement

NA

Generative AI or AI/Assisted Technologies use in Manuscript Preparation

No

References

- Abdul Baki AS and JD Anderson. 1973. Vigour deterioration in soybean by multi criteria. Crop Science 13: 630-633
- 2. Anonymous. 2021. Research Highlights of Barley Improvement. Progress Report 2020-21. ICAR-Indian Institute of Wheat and Barley Research, Karnal 132 001 (Haryana).
- 3. Anonymous. 2023. http://www.ipad.fas.usda.gov/. Foreign Agricultural Service, U.S. Department of Agriculture (USDA), USA.
- Bal SS. 1976. Magnitude and types of seed storage needs in India. Seed Research 4: 1-5
- Desai SB, VR Shelar and DR Nagawade. 2015. Effect of seed coating on storability of soybean (Glycine max (L.) Merill). Bioinfolet - A Quarterly Journal of Life Sciences 12: 615-621
- Divya. 2022. Effect of seed coating with polymer and chemicals on seed storability of maize (*Zea mays* L.). M.Sc. Thesis, Department of Seed Science and Technology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishwavidyalaya, Palampur, India.

- Dixit S, P Singh, CB Singh, A Kumar and VK Yadava. 2018. Effect of seed coating treatments on germination and vigour of wheat (*Triticum aestivum* L.) during ambient storage. *Journal of Pharmacognosy and Phytochemistry* 7: 1145-1147
- 8. Doijode SD. 1990. The influence of storage containers on germination of onion seeds. *Journal of Maharashtra Agriculture University* **15**: 34-35
- Goswami AP, K Vishunavat, M Chander and S Ravi. 2017. Effect of seed coating, storage periods and storage containers on soybean (Glycine max (L.) Merrill) seed quality under ambient conditions. Journal of Applied and Natural Science 9 (1): 598 - 602
- Kotia K, KC Dhiman and R Kanwar. 2020. Effect of seed treatments on quality and storability of radish (Raphanus sativus L.) seeds. Agriculture Research Journal 57: 414-424
- 11. Padhi SK, S Behera, SP Mishra, AK Padhiary and B Nayak. 2017. Effect of seed coating materials on seed quality duringstorage of paddy. *Journal of Pharmacognosy and Phytochemistry* **6** (6): 1263-1279
- Parashyrama H, K Parimala and B Pushpavathi.
 2021. Effect of seed coating with polymer, fungicide and biocontrol agent on seed quality parameters of groundnut (*Arachis hypogea* L.), *The Pharma Innovation Journal* 10 (9): 2130-2134
- Parihar P, KC Dhiman, RK Kapila and R Kanwar.
 2019. Effect of coating on quality of okra seeds in storage. Seed Research 47: 36-43
- Roopashree B, RB Jolli, SS Ashok and BN Motagi.
 2018. Effect of Polymer coating and fungicide on storage performance of kabuli chickpea varieties.
 International Journal of Current Microbiology and Applied Sciences 7: 954-961
- Sharma A and KC Dhiman. 2017. Effect of seed coating with synthetic polymer and chemicals on seed quality and storability of rice (*Oryza sativa* L.). Himachal Journal of Agricultural Research 43 (2): 102-111
- 16. Sharma J, KC Dhiman, JK Sharma, RK Kapila and R Kumar. 2017. Effect of seed coating on seed quality of quality protein maize hybrid and storability under hill conditions. *Seed Research* 45: 147-155

- 17. Sundararaj J, S Nagaraju, MN Venkataramu and MK Jagannath. 1972. Design and Analysis of Experiment. Published by University of Agricultural Science, Bangalore, India pp 424440.
- 18. Thakur A and KC Dhiman. 2020. Effect of seed treatment on storability and field performance in wheat (*Triticum aestivum* L.). M.Sc. Thesis, Department of Seed Science and Technology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
- Thakur S and KC Dhiman. 2016. Effect of seed coating with synthetic polymer and additives on storability of soybean seeds under mid hill condition of Himachal Pradesh. *Himachal Journal of Agricultural* Research 42: 34-40
- 20. Javed T, I Afzal, R Shabbir, K Ikram, MS Zaheer, M Faheem, HH Ali, J Iqbal. 2022. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. *Journal of the Saudi Society of Agricultural Sciences* 21(8): 536-545.

