Research Article

Journal of Cereal Research

Volume 16 (1): 67-76

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Investigating the impact of different halopriming treatments on biochemical and physiological changes in barley (*Hordeum vulgare* L.) under different salinity levels

Rahul Kumar*¹, Virender Singh Mor¹, Axay Bhuker¹, DS Duhan², Somveer Nimbal³, Manoj Kumar⁴, Hemender¹, MS Puneeth Raj¹ and Shivani¹

- ¹Department of Seed Science & Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar-125004, Haryana, India
- ²Department of Vegetable Science, CCSHAU, Hisar
- ³Department of Genetics & Plant Breeding, CCSHAU, Hisar
- ⁴Department of Department of Statistics, CCS HAU Hisar

Article history:

Received: 19 Aug., 2023 Revised: 13 Nov., 2023 Accepted: 07 Dec., 2023

Citation:

Kumar R, VS Mor, A Bhuker, DS Duhan, S Nimbal, M Kumar, Hemender, MSP Raj and Shivani. 2024. Investigating the impact of different halopriming treatments on biochemical and physiological changes in barley (Hordeum vulgare L.) under different salinity levels. Journal of Cereal Research 16 (1): 67-76. http://doi.org/10.25174/2582-2675/2024/150624

*Corresponding author: E-mail: rahuldahiya1903@gmail.com

© Society for Advancement of Wheat and Barley Research

Abstract

A research experiment was carried out at, Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, during 2023-24 on barley to study the effect of various priming treatments on seed quality of barley under different salinity levels. The experiment was laid out in a completely randomized design with three replications having seven priming treatments viz., T₀: Control, T₁: Hydropriming with water, T_3 : Halopriming with saline water (4 dS/m), T_3 : Halopriming with saline water (8 dS/m), T₄: Halopriming with saline water (12 dS/m), T.: Halopriming with saline water (16 dS/m), T6: Halopriming with saline water (20 dS/m) with six salinity treatments viz., ST₀: Control (Non-saline), ST₁: 4 dSm⁻¹, ST₂: 8 dSm⁻¹, ST₃: 12 dSm⁻¹, ST₄: 16 dSm⁻¹, ST₅: 20 dSm⁻¹. The results revealed that seed priming with saline water produce a negative effect on seed quality as it showed a reduction in all the seed quality parameters with increase in salinity of the priming solution as compared to simple water. Seed priming with water of upto 8 dSm⁻¹ salinity improved the seed performance as compared to control (dry seed) and from above 8 dSm⁻¹, the performance of seed decreased and at the level of 20 dSm⁻¹, it drastically reduced. Simple water priming (hydropriming) was found best with highest germination percentage, seedling length, vigour indices, emergence index and seedling establishment parameters which was found to be statistically at par with that of saline priming with a salinity level of 4 dSm⁻¹.

Keywords: Barley, priming, salinity, germination, halopriming

1. Introduction

Barley (*Hordeum vulgare* L.) was domesticated from its wild progenitor *Hordeum spontaneum*. It belongs to one the earliest domesticated and most important crops of the Fertile Crescent, emerging in the Near East around 11,000 years ago (Badr *et al.*, 2000; Pourkheirandish and Komatsuda, 2007; Lister *et al.*, 2018). Over the passage of domestication,

barley grain morphology changed significantly, moving from an elongated shape to a more rounded spherical one (Hughes, *et al.*, 2019). Barley varieties are classified into two-rowed and six-rowed, based on type of ear. In wild barley only the central spikelet is fertile, whereas the other two are reduced. This condition is retained in certain

cultivars known as two-rowed barley. A pair of mutations (one dominant, the other recessive) results in the fertile lateral spikelets to produce six-rowed barleys (Zohary and Hopf, (2000). Two-rowed barley has a lower protein content than six-rowed barley. High-protein barley is best suited for animal feed. Lower protein barley is used for malting purpose (Adrian *et al.*, 2008).

It is the world's fourth most important cereal crop, after wheat, rice and maize with production of 145.93 million metric tons (Annonymous, 2022). It is one of the world's most important and resilient crops, able to grow in marginal environments where other crops are unable to grow, which has important implications for food security (Newton *et al.*, 2011). As it is cultivated in extremely diverse regions of the world from 330 m below sea level near the Dead Sea in the Middle East up to 4200 m on Atipano and the Andes in Bolivia. In comparision to wheat it is more tolerant, hardier and genetically equipped to adjust well under limited inputs and saline soils (Ballantyne, 1962; Sallam *et al.*, 2019).

Soil salinity has become a severe threat to ensuring food security in the dry and semi-dry regions as it negatively impacts the production of crops (El hasini et al., 2019). Increasing soil salinity had significant impact on food production and more agriculture lands are expected to become salt affected due to climate change (Rengasamy, 2006). Globally, about 831 million hectares (M ha) area is affected by soil salinity and sodicity which include 397 m ha of saline and 434 m ha of sodic soils. In India, about 6.75 m ha area is salt-affected. (Mandal et al., 2018). Approximately 20 percent of the total agricultural land is affected by salt, accounting for more than 7 percent of the world's total land area and most of this land is nearly unsuitable for cereal production (Parihar et al. 2014) and is estimated to expand by the year 2050 at a greater rate than it is presently (Central Soil Salinity Research Institute (CSSRI), 2014).

Salinity stress affects the various physiological and metabolic processes in plants, depending on the duration of exposure and severity, which restricts the good germination and crop production (Munns, 2005; Rozema and Flowers, 2008; Rahnama *et al.*, 2010; James *et al.*, 2011). So, seed germination, growth and development of crop plants get adversely affected by salinity stress which ultimately reduces the yield (Schleiff and Muscolo, 2011; Muscolo *et al.* 2011.

In order to revive seeds under salinity stress, a number of advanced seed priming techniques have been developed. Some of these techniques include hydro-priming, osmopriming, halo-priming, bio-priming, hormonal-priming, chemical priming, and nutri-priming. But the extent of the effectiveness of various priming techniques varies with plant species and diverse climatic conditions (Iqbal and Ashraf, 2005; Lutts *et al.*, 2016). Hydropriming is one of the most common seed priming techniques since it is the simplest, most affordable, and most effective at improving plant stand and crop yield in both normal and stressful conditions (Kaur *et al.*, 2002; Waqas *et al.*, 2019). It pledges physiochemical processes in seeds before germination (Basra *et al.*, 2003).

2. Material and Methods

The study was conducted during 2023–2024 in the laboratories of the Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, situated in a semi-tropical region in the western zone of India. Two barley genotypes BH 393 and BH 885 were primed in water with different salininty *viz.*, T_0 : Control, T_1 : Hydropriming with water, T_2 : Halopriming with saline water (4 dS/m), T_3 : Halopriming with saline water (8 dS/m), T_4 : Halopriming with saline water (12 dS/m), T_5 : Halopriming with saline water (20 dS/m) with different salinity treatment *viz.*, ST_0 : Control (Non-saline), ST_1 : 4 dSm⁻¹, ST_2 : 8 dSm⁻¹, ST_3 : 12 dSm⁻¹, ST_4 : 16 dSm⁻¹, ST_5 : 20 dSm⁻¹.

The salinity treatments was comprises of five salinity levels dominated by Cl $^{-}$ salts (Cl:SO $_{4}^{-2}$ = 7:3) and control. For creating the different salinities, different salts of Na $^{+}$, Ca $^{+2}$ and Mg $^{+2}$ in the ratio 4:1:3 will be dissolved.

Table 3.1: Composition of saline solutions of different salinities

S. No.	Salts -		Qu	antity (gram/litre	e)	
5. No.	Saits	4 dSm ⁻¹	8 dSm ⁻¹	12 dSm ⁻¹	16 dSm ⁻¹	20 dSm ⁻¹
1.	NaCl	1.17	2.34	3.51	4.68	5.85
2.	$CaCl_2.7H_2O$	0.56	1.10	1.66	2.20	2.80

3.	MgCl_2	0.31	0.61	0.92	1.22	1.55
4.	MgSO_4	1.48	2.96	4.44	5.92	7.40

These solutions were used to soak the substrata used in the germination and vigour potential test and for priming of seed.

3. Results and Discussion

3.1 Effect on physiological parameters

The results revealed that the genotypes, salinity levels and different seed priming treatments significantly influenced the physiological parameters such as seed germination, speed of germination, seedling length, vigour indices, emergence index and seedling establishment (Table 1). Among the genotypes, BH 885 (81.03%) had the highest standard germination followed by BH 393 (79.22%). The standard germination was found to reduce continuously and significantly with the increase in salinity. Maximum germination percentage (92.17%) was recorded under

non-saline conditions whereas, lowest value (63.82%) was recorded at 20 dSm⁻¹. Among the priming treatments (Fig. 1), highest standard germination was recorded in simple water (hydroprimed) primed seeds (87.53%) at par with 4 dSm⁻¹ solution (86.42%) and 8 dSm⁻¹ solution priming (85.36%) as compared to control (82.61%). Priming of seeds with upto 8 dSm⁻¹ saline solution has proved beneficial as compared to control (unprimed seeds) but the seed priming of 12 dSm⁻¹, 16 dSm⁻¹ and 20 dSm⁻¹ solutions has declined the seed quality. The result are in accordance with Askari *et al.* (2016) in barley, Naseri *et al.* (2012) in barley, Sayar *et al.*, 2010 in wheat, Sabagh *et al.*, 2019 in barley.

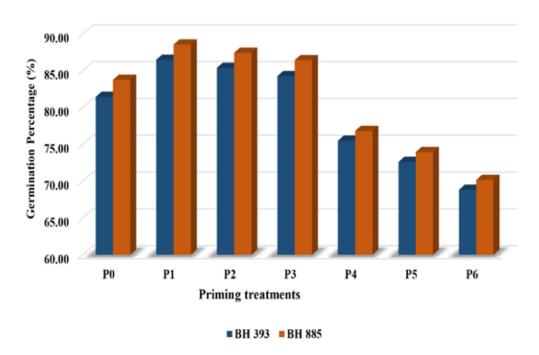


Fig. 1. Standard germination percentage of different halopriming treatments of different salinity levels.

Speed of germination was found to reduce continuously and significantly with the increase in salinity levels. Maximum speed of germination (54.59) was recorded under non-saline conditions whereas, lowest value (21.68) was recorded at 20 dSm⁻¹. Highest speed of germination were recorded in simple water primed seeds (61.78) followed by 4 dSm⁻¹ solution (55.08) and 8 dSm⁻¹ solution priming (46.68)) but the seed priming of 12 dSm⁻¹, 16 dSm⁻¹ and 20 dSm⁻¹ solutions has declined the seed quality

and reduced the speed of germination to 33.57, 28.80 and 22.52, respectively. Similar results were found in Luan *et al.*, 2014 in sunflower.

Among the priming treatments, highest seedling length and seedling dry weight was recorded in simple water primed seeds (22.45cm), (12.83mg) followed by 4 dSm⁻¹ solution (21.39 cm), (12.30mg), respectively. Both seedling length and dry weight was found to reduce continuously and significantly with the increase in salinity. Maximum

length and dry weight (29.53cm), (14.84mg) was recorded under non-saline conditions whereas, lowest value (7.74cm), (7.47mg) was recorded at $20~\mathrm{dSm^{-1}}$, respectively. Similar results are found by Li J *et al.*, (2011) in maize, Datta *et al.* (2009) in wheat, Hussain *et al.* (2013) in wheat.

Different seed priming treatments and salinity levels significantly influenced the vigour index I & II. The interaction of salinity with priming indicated that the vigour index I & II was found to reduce continuously and significantly with the increase in salinity. Maximum vigour index I (2739) and vigour index II (1374) was recorded under non-saline conditions, whereas lowest value (509), (484) was recorded on 20 dSm⁻¹ salinity level in vigour index I & II respectively. Priming of seeds with upto 8 dSm⁻¹ saline solution has proved beneficial as all the treatments showed higher vigour index I & II than control (unprimed seeds) but the seed priming of 12 dSm⁻¹, 16 dSm⁻¹ and 20 dSm⁻¹ solutions has declined the seed quality and reduced the vigour index I to 1404, 1177 and 976, and vigour index II to 843, 747 and 655 respectively. Among the priming treatments, highest vigour index I & II was recorded in simple water primed seeds (2039), (1146) followed by 4 dSm⁻¹ solution (1924), (1088) and 8 dSm⁻¹ solution priming (1737), (1016) respectively. Results are supported by Naseri et al. (2012) in barley.

Maximum emergence index (7.15) was recorded under non-saline conditions, whereas lowest value (0.36) was recorded on 20 dSm⁻¹ salinity level. Priming of seeds with upto 8 dSm⁻¹ saline solution has proved beneficial as all the treatments showed higher emergence index than

control (unprimed seeds) but the seed priming of 12 dSm⁻¹, 16 dSm⁻¹ and 20 dSm⁻¹ solutions has declined the seed quality and reduced the emergence index to 2.98, 2.44 and 2.06, respectively. Among the priming treatments, highest emergence index was recorded in simple water primed seeds (5.42) followed by 4 dSm⁻¹ solution (5.15) and 8 dSm⁻¹ solution priming (4.14). Similar results are also reported by Dantas *et al.*, 2007 in beans, Othman *et al.*, 2007 in barley.

Different seed priming treatments and salinity levels significantly influenced the seedling establishment in both the genotypes. Between the genotypes, BH 885 (39.83) had the highest value of seedling establishment followed by BH 393 (37.89). The seedling establishment was found to reduce continuously and significantly with the increase in salinity (Fig. 2). Maximum seedling establishment (54.12) was recorded under non-saline conditions, whereas lowest value (20.57) was recorded on 20 dSm⁻¹salinity. Priming of seeds with upto 8 dSm⁻¹ saline solution showed higher seedling establishment than control (unprimed seeds) but the seed priming of 12 dSm⁻¹, 16 dSm⁻¹ and 20 dSm⁻¹ solutions has declined the seed quality and reduced the seedling establishment to 37.03, 31.56 and 26.11, respectively. Highest seedling establishment was recorded in simple water primed seeds (48.31) followed by 4 dSm⁻¹ solution (45.64) and 8 dSm⁻¹ solution priming (43.61) and minimum seedling establishment was recorded in seed priming of 20 dSm-1 (26.11) as compared to control (dry seed) (39.75). Similar results are found in Munns et al., 2012 in wheat, Debez et al., 2019 in barley.

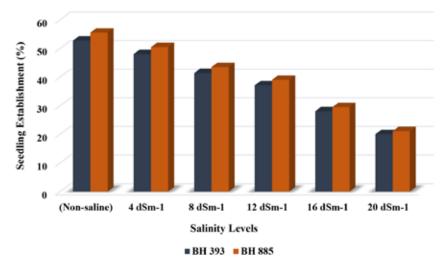


Fig. 2. Seedling establishment (%) percentage of both varieties with different halopriming treatments under different salinity levels.

$\textbf{Genotype} \; \boldsymbol{\leftarrow} \; \textbf{Factors} \to$	1	2	က	4	5	9	7	∞
BH 393	79.22	39.16	16.71	10.04	1419	829	3.33	37.89
BH 885	81.03	41.66	19.59	12.22	1688	1025	3.99	39.83
CD (p=0.05)	1.628	0.87	0.31	0.232	18.56	19.89	0.118	1.032
Salinity \downarrow				Salinit	Salinity levels			
ST0-Control (Non saline)	92.17	54.59	29.53	14.84	2739	1374	7.15	54.12
ST1-4 dSm-1	89.12	52.15	26.67	13.92	2408	1251	6.02	49.21
ST2-8 dSm-1	84.98	46.67	20.95	12.21	1807	1046	4.82	42.43
ST3-12 dSm-1	79.29	39.36	13.67	9.61	1104	772	2.56	38.05
ST4-16 dSm-1	71.38	28.01	10.33	8.74	754	635	1.04	28.76
ST5-20 dSm-1	63.82	21.68	7.74	7.47	509	484	0.36	20.57
CD (p=0.05)	2.82	1.52	0.54	0.402	32.15	34.45	0.204	1.787
Priming ←				Priming 7	Priming Treatments			
P0: Control (Dry seed)	82.61	34.45	18.48	11.67	1619	993	3.41	39.75
P1: Simple water	87.53	61.78	22.45	12.83	2039	1146	5.42	48.31
P2: Saline water (4 dSm-1)	86.42	55.08	21.39	12.3	1924	1088	5.15	45.64
P3: Saline water (8 dSm-1)	85.36	46.68	19.39	11.59	1737	1016	4.14	43.61
P4: Saline water (12 dSm-1)	76.17	33.57	17.2	10.67	1404	843	2.98	37.03
P5: Saline water (16 dSm-1)	73.28	28.8	15.06	9.8	1177	747	2.44	31.56
P6: Saline water (20 dSm-1)	69.51	22.52	13.06	90.6	926	655	2.06	26.11
(D) (2-0 0E)								

Overall effect of seed priming with saline water on electrical conductivity (µS cm⁻¹ g⁻¹) of seed leachates, catalase activity (µmoles mg⁻¹ dry weight), superoxide dismutase activity (µmoles mg⁻¹ dry weight) and peroxidase activity (µmoles mg⁻¹ dry weight) in barley seed Table 2.

Genotype $\mathop{ar{\lor}}$ Factors $\mathop{ ightarrow}$	electrical conductivity (µS cm ⁻¹ g ⁻¹)	Catalase activity (µmoles mg¹ dry weight)	Superoxide dismutase activity (µmoles mg¹ dry weight)	Peroxidase activity (µmoles mg ⁻¹ dry weight)
BH 393	198.69	242.61	29.22	41.44
BH 885	175.51	247.68	33.1	45.2
CD (p=0.05)	2.6	0.476	1.031	1.437
Priming \downarrow		Primi	Priming Treatments	
P0: Control (Dry seed)	123.87	242.49	24.36	42.2
P1: Simple water	107.61	284.77	45.2	45.06
P2: Saline water (4 dSm-1)	146.85	297.15	54.08	48.12
P3: Saline water (8 dSm-1)	172.11	265.38	32.49	44.05
P4: Saline water (12 dSm-1)	221.16	230.25	23.1	41.74
P5: Saline water (16 dSm-1)	253.15	210.35	20.5	41.22
P6: Saline water (20 dSm-1)	284.93	185.62	18.36	40.86
CD (p=0.05)	4.87	0.891	1.929	2.688

The Fig. 3 represents the percent reduction in standard germination and seedling establishment of both the genotypes (data pooled) under halopriming priming treatments. At salinity levels of 4, 8, 12 and 16 dSm⁻¹, the mean reduction is (3.31) (90.6), (7.81) (21.60), (13.98) (29.69) and (22.55) (46.85) percent in standard germination and seedling establishment as compared to non-saline conditions. Maximum reduction was observed

at 20 dSm $^{-1}$ (30.77) (61.98) in standard germination and seedling establishment, respectively. The overall reduction in seedling establishment was more than that in the standard germination. The extent of reduction in the seedling establishment is higher at each salinity level than the standard germination. These results are in accordance with the findings of Okcu *et al.* (2005) in pea, Kaya *et al.* (2008) and Ozaktan *et al.* (2016) in chickpea.

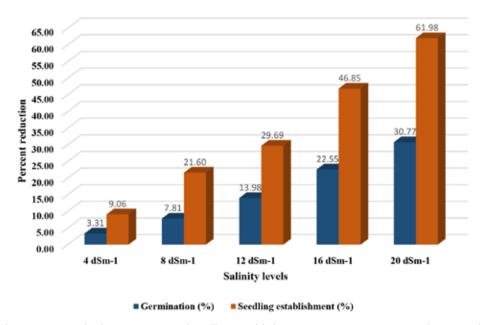


Fig. 3. Percent decrease in standard germination and seedling establishment percentage as compared to non-saline conditions in different haloprimed seeds of barley (data pooled for all the priming treatments)

The seed performance declined with the increase of salinity levels of germination media. It could be due to that it alters the imbibition of seeds as it increases the osmotic potential of germination medium, increases the toxic absorption of ions and ultimately adversely affects the germination process (Khan and Weber, 2008, Sayar et al., 2010, Sabagh et al., 2019, Polash et al., 2019). Salinity causes toxicity for the enzymes and alters the protein synthesis of seed (Dantas et al., 2007) and disrupts the hormones balance which reduces the utility of seed reserves for the developing embryo (Othman et al., 2007, Bordi, 2010, Munns et al., 2012, Parihar et al., 2015, Debez et al., 2019).

The data presented of biochemical activity in table 2 indicates that both genotypes and different priming treatments had a significant effect on enzymatic activity of barley seed. Between the genotypes BH 885 (175.51 $\mu Sm^{-1}g^{-1}$) had the minimum electrical conductivity followed by BH 393 (198.69 $\mu Sm^{-1}g^{-1}$). The electrical conductivity increased continuously and significantly with the increase

in salinity of priming solutions. Minimum electrical conductivity (107.61 $\mu Sm^{-1}g^{-1})$ was recorded under simple water priming whereas, highest value (284.93 $\mu Sm^{-1}g^{-1})$ was recorded at 20 dSm $^{-1}$ priming. Priming affected the activity of this enzyme significantly in seeds and the soaking with saline water (4 dSm $^{-1}$) maximized the enzyme activity of catalase, superoxide dismutase (SOD) and peroxidise, with a value of (297.15), (54.08) (48.12) and the activity was minimum in the seeds primed with saline water of 20 dSm $^{-1}$ (185.62) (18.36), (40.86), respectively. The enzyme activity of seeds primed with 12, 16 and 20 dSm $^{-1}$ saline water was degraded and the activity was lower even than that of the unprimed seeds.

Conclusion:

From the present study it can be concluded that simple water priming (hydropriming) gave better results in terms of germination percentage, vigour indices and other seed vigour parameters which was found to be statistically at

par with that of saline priming with a salinity level of 4 dSm⁻¹. As the salinity of priming solution increased from above 8 dSm⁻¹, the performance of seed decreased and at the level of 20 dSm⁻¹, it drastically reduced and showed lower values of germination and seed vigour even than the unprimed (dry) seed.

Author Contributions

All authors contributed equally for preparing the final version of the manuscript.

Conflict of Interest

Authors declare no conflict of interest.

Ethical Approval

The article doesn't contain any study involving ethical approval.

References

- Adrian J, S Murrell and C Grant. 2009. Nitrogen Fertilizer Management of Malting Barley: Impacts of Crop and Fertilizer Nitrogen Prices (Prairie Provinces and Northern Great Plains States. *International Plant* Nutrition Institute. 05-28.
- Anonymous, 2022. Statista. https://www.statista. com/statistics/271973/world-barley-productionsince-2008/
- 3. Askari H, SK Kazemitabar, HN Zarrini and MH Saberi. 2016. Salt tolerance assessment of barley (*Hordeum vulgare* L.) genotypes at germination stage by tolerance indices. *Open Agriculture*. 1(1):37-44.
- Badr A, K Muller, R Schafer-Pregl, H El Rabey, S Effgen, HH Ibrahim, C Pozzi, W Rohde and F Salamini. 2000. On the origin and domestication history of barley (*Hordeum vulgare*). *Molecular Biology* and Evolution. 17:499–510.
- Ballantyne AK. 1962. Tolerance of cereal crops to saline soils in Saskatchewan. *Canadian Journal of Soil* Science. 42(1): 61-67.
- Basra SMA, IA Pannu and I Afzal. 2003. Evaluation of seedling vigor of hydro and matriprimed wheat (*Triticum aestivum* L.) seeds. *International Journal of Agriculture and Biology*. 5: 121–123.
- Bordi A. 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars.

- Notulae Botanicae Horti Agrobotanici Cluj-Napoca. **38**(1):128-133.
- Central Soil Salinity Research Institute (CSSRI), 2014. Vision 2050. Pragmatic assessment of the agricultural production and food demand scenario of India by the year 2050. Central Soil Salinity Research Institute, Karnal, India.
- 9. Dantas B, L De Sa Ribeiro and C A Aragao. 2007. Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. *Revista Brasileira de Sementes*. **29**(2): 106-110.
- Datta J K, S Nag, A Banerjee and N K Mondal. 2009. Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. *Journal of Applied Sciences and Environmental Management.* 13(3): 93-97.
- 11. Debez A, IDB Slimen and S Bousselmi. 2019. Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. *Plant Biosystem.*. https://doi.org/10.1080/11263504.2019.1651777
- 12. El hasini S, IO Halima, ME Azzouzi, A Douaik, K Azim and A Zouahri. 2019. Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune Marrakech (Morocco). Soil Tillage Research. 193: 153-160.
- 13. Hughes N, HR Oliveira, N Fradgley, F Corke, J Cockram, JH Doonan and V Nibau. 2019. μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. The Plant Journal. Wiley-Blackwell (Society for Experimental Biology (SEB)). 99 (1): 98–111.
- 14. Hussain S, A Khaliq, A Matloob, MA Wahid and Afzal I. 2013. Germination and growth response of three wheat varieties to NaCl salinity. *Soil and Environment.* 32(1): 36-43.
- Iqbal M and M Ashraf. 2006. Wheat seed priming in relation to salt tolerance: growth, yield and levels of free salicylic acid and polyamines. *Annales Botanici Fennici.* 43: 250–259.
- James RA, C Blake, CS Byrt and Munns R. 2011.
 Major genes for Na+ exclusion, Nax1 and Nax2

- (wheat HKT1; 4 and HKT1;5), decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions. *Journal of Experimental Botany.* **62**(8): 2939–2947.
- 17. Kaur S, AK Gupta and N Kaur. 2002. Effect of osmoand hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. *Plant Growth Regulation*. 37(1): 17–22.
- 18. Kaya M, G Kaya, MD Kaya, M Atak, S Saglam, KW Khawar and CY Ciftci. 2008. Interaction between seed size and NaCl on germination and early seedling growth of some Turkish cultivars of chickpea (Cicer arietinum L.). Journal of Zhejiang University Science. 9:371-377.
- Khan MA and DJ Weber. 2008. Ecophysiology of High Salinity Tolerant Plants: Tasks for Vegetation Science (1st Ed.). Springer, the Netherlands.
- Lister DL, H Jones, HR Oliveira, CA Petrie, X Liu, J Cockram and MK Jones. 2018. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. *PloS one.* 13(7), e0196652.
- 21. Luan ZH, MX Xiao and DW Zhou. 2014. Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (*Helianthus annuus* L.). *Scientific World Journal*. 170418. https://doi.org/10.1155/2014/170418
- 22. Lutts S, P Benincasa, L Wojtyla, R Pace and K Lechowska. 2016. Seed priming: New comprehensive approaches for an old empirical technique. New Challenges in Seed Biology–Basic and Translational Research Driving Seed Technology. Rijeka, *Croazia: Intech Open.* 1-40.
- 23. Mandal S, R Raju, A Kumar, P Kumar and PC Sharma. 2018. Current status of research, technology response and policy needs of salt-affected soils in India a review. *Indian Society of Coastal Agricultural Research.* 36: 40–53.
- 24. Munns R. 2005. Genes and salt tolerance: bringing them together. *New Phytologist.* **167**(3): 645–663.
- Munns R, RA James and B Xu. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. *Nature Biotechnology*. 30(4):360-364.

- 26. Muscolo A, MSidari, MR Panuccio, C Santonoceto, F Orsini and S De Pascale. 2011. Plant responses in saline and semiarid environments: an overview. The European Journal of Plant Science and Biotechnology. 5: 1–11.
- Naseri R, T Emami, A Mirzaei and A Soleymanifard.
 2012. Effect of salinity (sodium chloride) on germination and seedling growth of barley (*Hordeum vulgare* L.) cultivars. *International Journal of Agriculture and Crop Sciences.* 4(13): 911-917.
- 28. Newton AC, AJ Flavell, TS George, P Leat, B Mullholland and L Ramsay. 2011. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. *Food Security*. 3(2):141–78.
- 29. Okcu G, MD Kaya and M Atak. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (*Pisum sativum* L.). *Turkish Journal of Agriculture and Forestry.* **29**: 237-242.
- 30. Othman Y, G Al-Karaki, AR Al-Tawaha and A Al-Horani. 2007. Variation in germination and ion uptake in barley genotypes under salinity conditions. *World Journal of Agricultural Sciences.* 2: 11-15.
- 31. Ozaktan H, CY Ciftci, MD Kaya, S Uzun, O Uzun and G Akdogan. 2016. Chloride salts inhibit emergence and seedling growth of chickpea rather than germination. *Legume Research.* 41: 60-66.
- 32. Parihar P, S Singh and R Singh. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. *Environmental Science and Pollution Research*. **22**(6):4056-4075.
- 33. Parihar P, S Singh, R Singh, VP Singh and SM Prasad. 2014. Effect of salinity stress on plants and its tolerance strategies: A review. *Environmental Science and Pollution Research International.* 22: 4056-4075.
- 34. Polash MAS, A Sakil and A Hossain. 2019. Plants responses and their physiological and biochemical defence mechanisms against salinity: a review. *Tropical Plant Research.* **6**(2):250-274.
- Pourkheirandish M and T Komatsuda. 2007. The importance of barley genetics and domestication in a global perspective. *Annals of Botany*. 100:999–1008.

- 36. Rahnama A, RA James, K Poustini and R Munns. 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. *Functional Plant Biology.* 37(3): 255–263.
- 37. Rengasamy P. 2006. World salinization with emphasis on Australia. *Journal of Experimental Botany*. 57: 1017-1023
- 38. Rozema J and T Flowers. 2008. Ecology: crops for a salinized world. *Science*. **322**(5907): 1478–1480.
- Sabagh A E L, A Hossain and S Islam. 2019. Drought and salinity stresses in barley: consequences and mitigation strategies. *Australian Journal of Crop Science*. 13(6):810-820.
- 40. Sallam AAM, Alqudah, MF Dawood, PS Baenziger and A Borner. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. *International journal of molecular sciences*. 20(13): 3137.
- 41. Sayar R, H Bchini and M Mosbahi. 2010. Effects of salt and drought stresses on germination, emergence and seedling growth of durum wheat (*Triticum durum*

- Desf.). Journal of Agricultural Research. 5(15):2008-2016.
- 42. Schleiff U and A Muscolo. 2011. Fresh look at plant salt tolerance as affected by dynamics at the soil/root-interface using Leek and Rape as model crops. *The European Journal of Plant Science and Biotechnology*. 5: 27–32.
- 43. Waqas M, NE Korres, MD Khan, A Nizami, F Deeba and I Ali. 2019. Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings. Singapore: *Springer*. 11-41.
- 44. Zohary D and M Hopf. 2000. Domestication of plants in the old world. The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley. Oxford University Press, Oxford. 3:59–69. ISBN 978-0-19-850357-6.

