Research Article

Journal of Cereal Research

Volume 17 (2): 146-155

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Assessment of Grain Iron and Zinc Content in Diverse Wheat Accessions Under Drought and Heat Stress

Seema Sheoran^{1, 2, 3}, Sawan Kumar Mehla¹, Sonu¹, CN Mishra¹, BS Tyagi¹ and Sindhu Sareen^{1*}

- ¹ ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 INDIA
- ² Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004 INDIA
- ³ ICAR- Indian Agricultural Research Institute, Regional Station, Karnal, 132001 INDIA

Article history:

Received: 22 Jul., 2025 Revised: 11 Aug., 2025 Accepted: 22 Aug., 2025

Citation:

Sheoran S, SK Mehla, Sonu, CN Mishra, BS Tyagi and S Sareen. 2025. Assessment of Grain Iron and Zinc Content in Diverse Wheat Accessions Under Drought and Heat Stress. Journal of Cereal Research 17 (2): 146-155. http://doi.org/10.25174/2582-2675/2025/169317

*Corresponding author: E-mail: sareen9@hotmail.com

© Society for Advancement of Wheat and Barley Research

Abstract

Wheat is an important staple foodgrain that acts as a primary source of dietary energy, and essential micronutrients. Thus, it is crucial to detect potential wheat genotypes that can act as donors for wheat biofortification to enhance nutritional values. The goal of current study was to evaluate a set of 155 diverse wheat genotypes, including wild relatives, synthetic hexaploid wheats (SHWs) and cultivated varieties for grain iron (Fe) and zinc (Zn) contents under normal as well as stress (drought, heat, and combined stressed) conditions. The findings revealed significant genotypic variation for grain Fe and Zn contents, indicating the presence of exploitable genetic diversity under drought and heat stressed conditions. The wild species such as Aegilops peregrina and Ae. tauschii exhibited comparatively higher Fe and Zn content than cultivated and SHWs signifying their potential as valuable genetic resources in breeding programs. Correlation analysis revealed significant positive association of Fe and Zn under all the conditions, suggesting the potential for concurrent breeding improvement. The genotypes viz., PI 603931, PI 604176, and accession 14336 were higher in grain Fe and Zn content under both drought and heat stress, while PI 603931 was identified as most stable genotype across the environments. The identified genotypes could be used as potential donor parents for Fe and Zn in future wheat biofortification programs. This study highlights the possibility of using wheat genetic variation for Fe and Zn enrichment, promoting nutritional security, and preventing hidden hunger.

Keywords: Aegilops, Drought, Heat stress, Wheat biofortification, Wild relatives

1. Introduction

Wheat is the most important foodgrain in the world, contributing around 20% of the global calories (Sharma and Sharma, 2025). It is the most essential staple cereal for 30% of the population globally, thus, the concentration of micronutrients such as iron (Fe) and zinc (Zn) in wheat grains is crucial for human health (Devate *et al.*, 2022). According to the World Health Organization estimates, 815 million people worldwide suffer from micronutrient deficiencies, while an estimated 2 billion

people experience "hidden hunger" including 45% of all child fatalities under the age of five each year (Das *et al.*, 2019). About one-third of people in developing countries suffer from Fe and Zn deficiencies, which is a greater risk factor for human health (Rathan *et al.*, 2022). The main cause of the prevalent Zn and Fe deficiencies in developing nations has been attributed to the repetitive intake of cereal-based meals with low concentrations of vitamins and minerals in addition to decreased bioavailability

of these micronutrients (Hasheminasab et al., 2023). Common cereals like wheat and rice have below-optimal quantities of micronutrients, particularly Fe and Zn (Kumar et al., 2016). Globally, Zn deficiency is the most common micronutrient shortage in agricultural lands, which lowers the nutritious value of agricultural products (Jalal et al., 2024). Although micronutrient deficiencies can be addressed by food fortification, supplementation, and dietary diversity but these tactics are expensive and short-term, particularly for the impoverished in rural areas (Bechoff et al., 2023). Therefore, biofortification or increasing the nutritional concentrations of crops using both conventional and molecular techniques is a viable and efficient way to address the problems associated with micronutrient deficiencies (Krishnappa et al., 2022). However, the complexity of the genetic and metabolic networks governing Fe and Zn homeostasis makes breeding for these micronutrients extremely difficult (Hanikenne and Bouché, 2023). Grain's ability to accumulate mineral nutrients is a complicated process that involves multiple minor genes and is profoundly influenced by environment. Thus, expanding the genetic base through utilizing wheat landraces and wild relatives, as well as the identification of genetic loci controlling these traits should be the focus of breeding programs.

Further due to climate change, food and nutritional security will be impacted by increased frequency and severity of drought and heat waves in most wheat producing regions (Velu et al., 2016). It is estimated that wheat production will reduce by 6.4% for each 1°C increase in temperature, while the frequent droughts will loss wheat production by about 12% (Helman and Bonfil, 2022). The terminal drought and heat stress reduced the spike weight and yield severely, overall causing nearly 30-50% yield loss (Kandić et al., 2023). Heat and drought stress result in smaller seeds, shorter grain filling duration, and less starch accumulation eventually reducing grain sink capacity (Zahra et al., 2021). In addition, these stresses will probably alter the nutritional makeup of wheat grain. A meta-analysis found that combined heat and drought stress reduces grain Fe and Zn by 15-30% in wheat, disproportionately affecting arid regions (Asseng et al., 2019). Breeding for micronutrient rich varieties under drought and heat stress requires a deep understanding of the genetic regulation of nutritional traits and their link with grain yield and its attributing traits under these

stresses (Samineni et al., 2022). Therefore, to identify the genetic material higher in grain Fe and Zn concentration is crucial for future wheat biofortification programs. Numerous studies have been undertaken to assess the grain Fe and Zn in wheat genotypes (Thapa et al., 2022; Hasheminasab et al., 2023; Petrovi et al., 2024), but there is a dearth of quality research to evaluate grain Fe and Zn contents in diverse wheat accessions particularly in wild relatives, under climatic stresses. Assessing the genetic variability under different stressed conditions is essential to found stable, and nutrient-dense wheat genotypes suitable to utilize in breeding programs. Moreover, the effect of drought and heat stress on micronutrient accumulation is poorly understood. The bioavailability of Fe and Zn and other anti-nutritional factors associated with these micronutrients are often ignored during stress conditions. The effects of these stresses on grain Fe and Zn concentration need to be thoroughly investigated since they have a direct impact on plant physiology, photosynthesis, and nutrient translocation. Furthermore, stress-calibrated high-throughput phenotyping technologies are not welldeveloped for large screens. The development of stressadapted, micronutrient-dense wheat will be accelerated by bridging these gaps through the combination of physiological and molecular studies, calibrated highthroughput assays, controlled and multi-environment stress screening, and pre-breeding techniques. Hence, the current study was carried with the objective to evaluate the grain Fe and Zn content under drought and heat stressed conditions in diverse wheat accessions that will be helpful to select the potential donors for future wheat biofortification programs.

2. Material and Methods

2.1. Plant material

A panel of 155 diverse wheat genotypes were evaluated for grain Fe, Zn and hundred grain weight (HGW) under four conditions, viz, timely sown irrigated (TSIR) as control, timely sown drought in rainout shelter (ROS), late-sown irrigated to induce heat stress (LSIR) and late sown rainfed (LSRF) for combined drought and heat stress. The diverse set of wheat genotypes included wild and cultivated wheat germplasm from Ae. peregrina (4x), Ae. tauschii (2x), Triticum dicoccoides (4x), SHWs (6x) and bread wheat (T. aestivum) (6x). The wheat accessions were evaluated during two Rabi seasons 2022-23 and 2023-24 at ICAR-Indian Institute

of Wheat and Barley Research, Karnal. The experiment for drought and control conditions was sown in the first fortnight of November, whereas heat and combined heat and drought stressed trials were sown in the second fortnight of December to induce heat stress in wheat. Recommended irrigations were given in TSIR and LSIR trials while no irrigation was applied to ROS and LSRF to induce drought stress. The experiment was conducted in an alpha lattice design with two replications and each genotype was sown in two rows of 2 cm with a spacing of 30 cm between rows and 10 cm between plants.

2.2. Data recording

For each genotype, the spikes from three plants of each replication were collected in clean polyethylene bags at maturity and were manually threshed. Grain Fe and Zn contents (mg/kg) were estimated with 20gm seeds of each line through a high-throughput energy-dispersive X-ray fluorescence (ED-XRF) spectrometer (model X-Supreme 8000; Oxford Instruments plc, Abingdon, United Kingdom) calibrated with glass bead-based values. It is preferred for its rapid, non-destructive nature and suitability for large-scale screening. The grain Fe and Zn concentrations were measured following the protocol outlined by Paltridge *et al.* (2012). Hundred grains were manually counted and weighted for all the genotypes to record HGW.

2.3 Statistical analysis

Analysis of variance (ANOVA) for the studied traits was performed to determine significant differences among genotypes, environments, years, and their interactions using Agricolae and lattice packages in R. To summarize and interpret the data, the descriptive statistics was analyzed including the mean, standard deviation (SD), range (minimum and maximum), and coefficient of variation (CV) for each trait under four conditions for two-year datasets. The Pearson correlation coefficient was also computed among studied traits under four conditions using R packages. The "corrplot" package was used to create a visual representation of the correlation matrix, and significance levels were also displayed (Wei and Simko, 2021).

3. Results and Discussion

3.1 Genetic variation estimates

The analysis of variance (ANOVA) showed significant (p<0.001) effects of genotype, environment, year, and their interactions for all the studied traits (Table 1). The high significance of genotype effects underscores the substantial genetic variability present in diverse germplasm panel, suggesting excellent potential for genetic improvement through breeding. In addition, significant GXE interactions were observed for Zn and HGW only indicting that genotypes responded differently across environment. While, for grain Fe content the genotypes showed consistent performance. These findings align with previous studies showing strong G×E interactions for grain micronutrients in wheat (Velu *et al.*, 2018; Murphy *et al.*, 2008).

The genotypes showed huge variability for Fe content with CV ranging from 3.9% to 50.8% across the environments. The wild tetraploid Ae. peregrina showed maximum variability (50.8%), while cultivated T. dicoccoides was most stable (6.5%). The extreme variability in Ae. peregrina suggests this species possesses valuable trait specific genomic regions that could be exploited for biofortification under stress condition, consistent with reports of wild wheat containing valuable micronutrient genes (Cakmak et al., 2004). For Zn content, the CV ranged from 6.3 to 30.2% across the years. Whereas, for HGW, the CV ranged from 11.2 to 47.2 % (Table 2). Overall, higher CV was observed under stress conditions, especially for wild species across both years, indicating greater genotypic variability in response to drought and heat stresses. In contrast, control condition exhibited lower CV, suggesting more stable performance of genotypes under optimal growth conditions. Heritability estimates for grain Fe and Zn contents varied across environments. Both the micronutrients exhibited moderate to high heritability ranging from 47.8 to 82.5% across all conditions, indicating that selection for these traits would be effective. Previous research in wheat have revealed similar patterns of moderate to high heritability for Zn and Fe contents (Velu et al., 2019; Hasheminasab et al., 2023).

Table 1: Analysis of variance (ANOVA) for studied traits evaluated across four environmental conditions

Source of variation	DF	Fe	Zn	HGW
Genotype	154	1162***	964***	25.59***
Environment	3	5227***	1802***	60.04***
Year	1	577***	8221***	07.13***
Genotype: Environment	448	70***	60***	0.51***
Genotype: Year	154	115***	60***	0.47***
Environment: Year	3	2539***	8434***	28.07***
Environment: Replication	4	69	340***	0.11
Genotype: Environment: Year	448	78***	52***	0.35***
Residuals	959	40	34	0.22

^{****}indicate the difference at $p \le 0.001$ levels of significance, DF- Degree of freedom, Fe- Iron, Zn-Zinc, HGW- Hundred grain weight

Table 2: Descriptive statistics for iron (Fe) and zinc (Zn) (mg/kg) estimates in wheat grains and hundred grain weight (HGW) (g) under four conditions

			2022-23			2023-24			Pooled		
Species	Condition	Trait	Mean±SD	Range	CV	Mean±SD	Range	CV	Mean±SD	Range	CV
Ae.	TSIR	Fe	70.3 ± 14.8	22.0-91.1	21.0	59.7 ± 9.8	46.3 - 87.2	16.5	65.0 ± 7.8	40.9 - 78.3	18.7
peregrina		Zn	57.0 ± 9.8	36.3-75.1	17.2	63.5 ± 12.3	45.7-86.8	19.3	60.2 ± 6.8	48.2 - 73.5	18.3
		HGW	1.3 ± 0.3	1.0-1.9	19.9	1.0 ± 0.3	0.7 - 1.9	26.4	1.2 ± 0.3	0.9 - 1.8	23.1
	ROS	Fe	51.5±5.1	38.6-61.3	9.9	60.7 ± 10.3	48.1 - 81.8	17.0	56.1 ± 5.6	43.4-68.2	13.5
		Zn	68.2 ± 10.3	45.8 - 91.3	15.1	55.8 ± 14.1	40.1 - 97.4	25.3	62.0 ± 8.7	43.0 - 79.3	20.2
		HGW	1.1 ± 0.3	0.6-1.7	22.7	1.0 ± 0.2	0.4-1.4	22.6	1.0 ± 0.2	0.7 - 1.4	22.7
	LSIR	Fe	48.9 ± 7.9	43.5 - 77.3	16.3	58.4 ± 11.2	48.9 - 92.4	19.1	53.6 ± 6.6	46.2 - 71.8	17.7
		Zn	38.5±11.0	28.5 - 79.3	28.6	62.9 ± 14.9	48.0-91.0	23.6	50.7 ± 8.6	38.3 - 73.4	26.1
		HGW	0.8 ± 0.2	0.1-1.1	28.2	1.0 ± 0.1	0.7 - 1.2	13.6	0.9 ± 0.2	0.6 - 1.1	20.9
	LSRF	Fe	67.6 ± 19.8	43.1-98.1	29.2	57.2 ± 15.6	45.3-84.3	27.2	62.4 ± 12.3	44.2-86.6	28.2
		Zn	48.4 ± 9.7	38.5-73.4	20.1	53.6±15.1	41.9-83.0	28.2	51.0 ± 9.4	40.2 - 73.4	24.1
		HGW	0.9 ± 0.2	0.5-1.1	16.9	0.6 ± 0.3	0.3 - 1.0	42.3	0.8 ± 0.2	0.4-1.1	29.6
Ae.	TSIR	Fe	65.5 ± 9.2	49.9-91.3	14.0	58.8 ± 8.0	46.3-84.2	13.6	62.2 ± 6.1	49.5 - 79.9	9.7
tauschii		Zn	41.3 ± 4.6	33.2-56.2	11.1	49.1 ± 8.4	38.1-90.5	17.0	45.2 ± 4.9	37.2-64.1	10.7
		HGW	1.3 ± 0.3	0.3 - 1.9	23.7	1.1 ± 0.3	0.6 - 2.2	22.9	1.2 ± 0.2	0.5-1.7	19.4
	ROS	Fe	45.3±5.8	37.4 - 69.2	12.7	58.4 ± 8.5	48.1 - 76.6	14.5	51.9 ± 5.2	43.1-65.8	10.1
		Zn	50.6 ± 5.9	38.1-68.3	11.7	48.1 ± 7.2	40.1-69.0	14.9	49.4 ± 4.7	39.1-61.1	9.5
		HGW	1.1 ± 0.2	0.7-1.8	16.2	1.0 ± 0.1	0.8 - 1.3	12.4	1.1 ± 0.1	0.8 - 1.4	11.0
	LSIR	Fe	46.5 ± 3.2	46.1 - 69.7	6.8	56.7 ± 8.4	47.2 - 78.6	14.9	51.6 ± 4.3	46.6-62.3	8.3
		Zn	35.1 ± 2.8	34.7-55.3	7.9	55.2 ± 7.7	48.0 - 75.4	13.9	45.0 ± 4.1	34.7 - 55.1	9.2
		HGW	0.9 ± 0.2	0.3-1.8	26.0	1.0 ± 0.2	0.4-1.2	16.5	0.9 ± 0.1	0.5 - 1.4	15.9
	LSRF	Fe	46.0 ± 9.8	43.1-91.6	21.2	55.4 ± 14.4	45.3-94.7	25.9	50.7 ± 9.1	44.2 - 76.8	18.0
		Zn	39.2 ± 2.5	38.5-50.3	6.3	49.7 ± 11.4	41.9 - 83.2	23.0	44.5 ± 6.0	40.2-60.9	13.6
		HGW	0.9 ± 0.2	0.3-1.1	21.0	0.9 ± 0.3	0.3-1.5	39.6	0.9 ± 0.2	0.3-1.1	21.8
T.	TSIR	Fe	37.5±5.1	28.6-61.1	13.7	39.7 ± 3.6	30.6-46.3	9.0	38.6 ± 3.5	32.2-53.0	9.0
aestivum		Zn	28.5 ± 4.3	21.2 - 39.8	15.1	38.3 ± 6.2	24.8 - 53.0	16.1	33.4 ± 4.3	23.5-44.0	12.8
		HGW	4.7 ± 0.6	3.3 - 7.2	12.4	3.7 ± 0.7	2.2 - 5.2	17.9	4.2 ± 0.5	3.2 - 5.3	11.9
	ROS	Fe	36.5 ± 3.6	28.8 - 46.6	9.9	37.2 ± 3.4	30.2 - 50.2	9.1	36.9 ± 2.7	30.6-43.5	7.5
		Zn	43.0 ± 5.3	33.6-56.4	12.3	30.7 ± 4.0	23.6-40.3	13.0	36.8 ± 3.5	30.3-47.6	9.6
		HGW	3.1 ± 0.5	2.2 - 4.5	15.5	3.6 ± 0.5	2.6 - 4.8	14.8	3.3 ± 0.4	2.7 - 4.3	12.3
	LSIR	Fe	41.4 ± 5.4	32.5 - 58.2	13.2	45.4 ± 4.2	37.0-57.1	9.2	43.4 ± 3.5	35.7-52.5	8.1
		Zn	29.1±5.1	20.1-50.7	17.4	40.1 ± 5.2	26.1 - 57.5	12.8	34.6 ± 4.0	27.2 - 45.7	11.4
		HGW	3.3±0.5	2.3-4.5	15.3	3.7 ± 0.5	2.3-5.1	14.7	3.5±0.4	2.8-4.4	10.7

			2022-23		2023-24			Pooled			
Species	Condition	Trait	Mean±SD	Range	CV	Mean±SD	Range	CV	Mean±SD	Range	CV
	LSRF	Fe	36.2 ± 4.2	28.0 - 56.3	11.5	38.9 ± 3.3	33.2-45.6	8.4	37.6 ± 2.9	31.4-47.4	7.7
		Zn	32.7 ± 4.3	25.3 - 42.7	13.1	35.1 ± 6.5	25.1 - 50.9	18.5	33.9 ± 4.2	26.6-46.5	12.4
		HGW	3.3 ± 0.6	2.0 - 4.7	18.3	3.4 ± 0.6	2.1-4.5	16.5	3.3 ± 0.6	2.0 - 4.6	16.9
Synthetic	TSIR	Fe	45.7 ± 5.7	31.4 - 62.8	12.4	43.0 ± 5.2	4.9 - 56.2	12.2	44.3±3.8	24.8 - 53.4	8.6
hexaploid		Zn	34.7 ± 4.4	20.0 - 49.3	12.8	44.8 ± 5.9	29.8 - 64.2	13.2	39.7 ± 4.0	29.8 - 51.4	10.0
wheats		HGW	5.1 ± 0.9	2.7 - 8.6	18.4	4.2 ± 0.7	2.5 - 5.5	17.4	4.7 ± 0.6	2.6 - 6.3	13.9
	ROS	Fe	38.2 ± 4.2	27.1 - 52.0	11.0	42.3 ± 4.7	30.0 – 52.1	11.0	40.2 ± 3.0	30.2-47.3	7.5
		Zn	45.1 ± 5.5	33.2-70.3	12.3	39.1 ± 9.6	21.1 - 95.2	24.6	42.1 ± 5.4	30.4-66.5	12.9
		HGW	3.8 ± 0.6	1.6 - 5.2	16.6	3.7 ± 0.6	2.4 - 5.2	15.9	3.7 ± 0.5	2.4-4.8	12.1
	LSIR	Fe	45.7 ± 5.4	33.1-73.0	11.7	46.5 ± 4.8	34.8 - 58.8	10.2	46.1 ± 3.7	37.1-60.4	8.1
		Zn	37.1±8.8	6.0 - 63.7	23.6	46.4 ± 7.2	32.9 - 70.9	15.5	41.8 ± 6.0	23.0-62.1	14.3
		HGW	3.9 ± 0.6	1.7 - 5.1	14.8	3.8 ± 0.6	2.1 - 5.1	14.6	3.9 ± 0.4	2.5 - 4.7	11.3
	LSRF	Fe	40.5 ± 4.5	31.9-68.1	11.1	42.9 ± 3.7	33.5-51.5	8.7	41.7±3.1	35.9-54.0	7.4
		Zn	39.2 ± 7.7	27.3-80.3	19.7	40.0 ± 7.6	25.3 - 61.1	19.0	39.6 ± 5.5	29.7-62.2	13.8
		HGW	3.9 ± 0.7	1.3 - 5.9	17.0	4.1 ± 0.6	2.5 - 5.1	14.4	3.9 ± 0.6	2.1-5.9	14.0
T.	TSIR	Fe	44.5 ± 6.8	34.1 - 56.4	15.3	39.3 ± 3.8	33.1-46.3	9.7	41.9 ± 3.8	37.6-48.7	9.2
dicoccoides		Zn	37.0 ± 6.0	28.7 - 47.6	16.2	48.3 ± 6.8	42.2 - 62.0	14.0	42.6 ± 5.4	36.3-54.8	12.7
		HGW	3.6 ± 0.9	2.4 - 4.7	24.6	2.8 ± 0.7	1.6 - 3.7	23.6	3.2 ± 0.4	2.5 - 3.9	13.3
	ROS	Fe	34.1 ± 2.7	30.1-37.6	7.9	39.5 ± 5.5	28.5 - 48.2	13.9	36.8 ± 2.6	32.3-40.8	7.0
		Zn	43.5 ± 4.9	34.7-51.7	11.2	42.0 ± 12.7	23.6-68.3	30.2	42.8 ± 6.0	33.9-52.5	14.0
		HGW	2.9 ± 0.7	2.1-4.2	22.4	3.2 ± 0.6	1.7-4.0	20.1	3.1 ± 0.5	2.5 - 4.0	15.0
	LSIR	Fe	44.9 ± 2.9	39.1 - 50.1	6.5	40.9 ± 3.5	36.0-46.7	8.5	42.9 ± 2.5	39.2-46.4	5.8
		Zn	36.7 ± 5.2	32.4-51.4	14.1	47.4 ± 7.1	38.5-61.2	15.0	42.0 ± 5.6	36.0-56.3	13.4
		HGW	2.9 ± 1.2	1.0 - 4.5	41.2	3.2 ± 0.7	2.0 - 4.2	21.0	3.1 ± 0.6	2.0 - 4.0	20.1
	LSRF	Fe	41.0 ± 2.7	36.1-45.7	6.5	41.6 ± 1.6	39.4-43.4	3.9	41.3±1.9	37.8-44.6	4.7
		Zn	45.1 ± 9.0	35.2-63.4	19.9	47.4 ± 10.8	35.9-67.2	22.8	46.2 ± 6.3	37.4-55.6	13.7
		HGW	2.5 ± 1.2	1.0-3.9	47.2	3.2 ± 0.4	2.8 - 3.8	11.8	2.7 ± 0.9	1.0-3.9	31.8

3.2. Genotypic performance for studied traits

For Ae. peregrina, the average grain Fe concentration was recorded highest in non-stressed condition, followed by LSRF, LSIR and ROS during 2022-23, whereas, in 2023-24, the highest mean grain Fe concentration was observed under ROS condition, followed by TSIR, LSIR and LSRF (Table 2). The overall grain Fe concentration ranged 22-98.1mg/kg and 45.3-92.4 mg/kg during 2022-23 and 2023-24, respectively, across all four conditions. The broader range of Fe concentrations in TSIR compared to stressed conditions suggest greater variability under nonstress conditions, possibly due to genotypic differences in nutrient utilization efficiency (Cakmak et al., 2004). The highest average Zn concentration was recorded under ROS and TSIR condition during 2022-23 and 2023-24, respectively. Across all the conditions, Zn content ranged from 28.5 to 97.4 mg/kg during both the years. The observed variability in micronutrient concentrations highlights the potential of Ae. peregrina as a genetic resource for biofortification programs to improve Fe and Zn content in cultivated wheat as earlier reported by Velu et al. (2014). Similarly, for Ae. tauschii, the highest average Fe concentration was observed for non-stress condition in both years dataset, and ranged from 37.4 to 91.3 mg/kg. Whereas, the average Zn content lied between 33.2 and 90.5 mg/kg with highest value under ROS condition in 2022-23, and LSIR condition during 2023-24. Accessions from T. dicoccoides exhibited high value of grain Fe and Zn content in late sown trials as compared to timely sown. The findings show the importance of genetic variability present in *T. dicoccoides* for these traits, can be incorporated in future heat and drought breeding schemes. Cultivars from T. aestivum species also performed better in stressed conditions (LSIR and ROS) as compared to normal and LSRF condition for both grain Fe and Zn concentration with average range of 28.0-61.1 mg/kg and 20.1-57.5 mg/ kg, respectively across the years.

Based on pooled analysis, it was observed that wild species *Ae. peregrina* accessions exhibited highest grain Fe and Zn content across the years under all environmental

conditions followed by Ae. tauschii, SHWs, T. dicoccoides and T. aestivum genotypes. It indicates the potential of wild species as valuable genetic resources for biofortification. Ae. peregrina exhibited superior performance under LSRF condition for Fe, and ROS condition for Zn accumulation. Similarly, accessions from Ae. tauschii outperformed under TSIR and ROS for Fe and Zn, respectively, out of the all studied conditions. T. dicoccoides and SHWs were stable over the years with best performance under LSRF condition. T. aestivum exhibited non-significant differences for both micronutrients across the conditions pooled over the years, except some genotypes which exhibited lower value in stress as compare to normal sowing conditions. These results align with previous studies indicating that wild wheat relatives possess greater genetic potential for micronutrient enrichment (Kumar et al., 2016). Velu et al. (2016) observed reduced grain Zn and Fe in CIMMYT wheat lines under drought and elevated temperatures with some genotypes maintaining stable micronutrient levels which corroborated with current findings. In contrary, T. aestivum and SHWs, has higher HGW than wild species under all conditions with maximum HGW under nonstress condition. This inverse relationship suggests the possibility of a dilution effect, in which larger grains may accumulate more carbohydrates than minerals, lowering the concentration of micronutrients.

The identified genotypes with higher Fe and Zn content are presented in Table 3. Thirteen genotypes were found to be higher in both grain Fe and Zn content (>55 mg/ kg). Out of which, ten genotypes were from Ae. peregrina, two of Ae. tauschii and one SHWs. Accessions PI 603931, PI 603247, PI 604145, and PI 604176 of Ae. peregrina depicted the higher values in more than one environment, indicating the stability of the traits and their probable use as potential donor in breeding for biofortification. In addition to these genotypes, a total of 15 genotypes has Fe content >55 mg/kg (Table 3). Nine of them were Ae. tauschii accessions and rest were Ae. peregrina. Accession 3761 of Ae. tauschii and accessions PI 604169, PI 604147, and PI 604172 of Ae. peregrina had higher grain Fe and Zn values in multi-environments. Similarly, high Zn (> 55 mg/kg) was recorded in another 15 accessions; which included one accession of T. dicoccoides and three from SHWs. However, higher grain Zn content was recorded again in Ae. peregrina (accessions PI 604192, PI 604162, PI 603247, and PI 604185) across different sowing conditions. Previous study carried out by Kumar et al. (2016) also detected the wild wheat genotypes outperforming the cultivated wheat in grain Fe and Zn concentrations in optimal conditions. These findings highlight the importance of exploiting species diversity for improving grain Fe and Zn content in wheat through

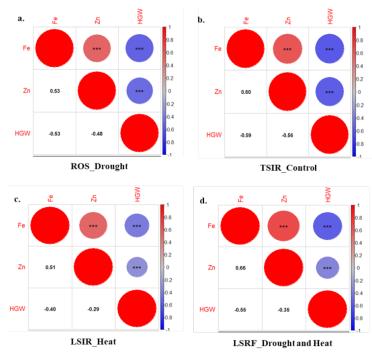


Fig. 1: Correlation among Iron (Fe), Zinc (Zn) and Hundred Grain Weight (HGW) under (a) ROS-Drought, (b) TSIR-Control, (c) LSIR-Heat and (d) LSRF-Drought and Heat stress combined conditions

Table 3: List of superior genotypes with high grain iron (Fe) and zinc (Zn) concentrations under different studied conditions

Condition	Genotype	Species	Grain Fe (mg/ kg)	Genotype	Species	Grain Zn (mg/kg)
ROS	EC-57331	Ae. peregrina	68.2	EC-573331	Ae. peregrina	79.3
	Accession 13764	Ae. tauschii	65.8	PI 603247	Ae. peregrina	76.9
	Accession 13780	Ae. tauschii	65.7	PI 604186	Ae. peregrina	72.9
	PI 604169	Ae. peregrina	63.9	PI 604192	Ae. peregrina	72
	PI604147	Ae. peregrina	63.5	PI 604162	Ae. peregrina	70.2
	PI603931	Ae. peregrina	63	PI 603931	Ae. peregrina	69.8
	Accession 3761	Ae. tauschii	62.6	PI 604185	Ae. peregrina	67.9
	PI 604186	Ae. peregrina	62.4	PI 604169	Ae. peregrina	67.8
	PI 604145	Ae. peregrina	62	SYN 78	SHW	66.5
	PI 487275	Ae. peregrina	60.6	PI 604189	Ae. peregrina	66.5
LSIR	PI 603931	Ae. peregrina	71.8	PI 603931	Ae. peregrina	73.4
	PI 604169	Ae. peregrina	63.6	PI 604145	Ae. peregrina	63.7
	PI 604145	Ae. peregrina	63.1	PI 604176	Ae. peregrina	62.9
	Accession 9788	Ae. tauschii	62.3	SYN 79	SHW	62.1
	PI 604172	Ae. peregrina	61.2	PI 603247	Ae. peregrina	61.1
	SYN55	SHW	60.4	PI 604162	Ae. peregrina	59.9
	Accession 3761	Ae. tauschii	60.1	PI 604189	Ae. peregrina	58.1
	PI 604189	Ae. peregrina	59.9	Accession 7121	T. dicoccoides	56.3
	Accession 3753	Ae. tauschii	59.4	PI 554324	Ae. peregrina	55.1
	Accession 3805	Ae. tauschii	59.3	SYN55	Synthetic	55
LSRF	PI 603931	Ae. peregrina	86.6	PI 603931	Ae. peregrina	73.4
	PI 604169	Ae. peregrina	82.4	PI 604176	Ae. peregrina	68.2
	PI 604186	Ae. peregrina	82.1	PI 604167	Ae. peregrina	65
	PI 604176	Ae. peregrina	81.5	SYN34	SHW	62.2
	PI 603931	Ae. peregrina	77.4	PI 603247	Ae. peregrina	61.5
	Accession 14336	Ae. tauschii	76.8	Accession 14578	Ae. tauschii	60.9
	Accession 13763	Ae. tauschii	72.7	Accession 14336	Ae. tauschii	58.1
	PI 604167	Ae. peregrina	70.6	PI 604162	Ae. peregrina	58.7
	Accession 9807	Ae. tauschii	70.3	PI 604192	Ae. peregrina	58.7
	PI 603247	Ae. peregrina	69.7	SYN 47	SHW	57.6
TSIR	Accession 13764	Ae. tauschii	79.9	PI 604145	Ae. peregrina	73.5
10110	PI 604145	Ae. peregrina	78.3	PI 604167	Ae. peregrina	71.4
	PI 604147		76.8	PI 603247		70.4
		Ae. peregrina			Ae. peregrina	
	PI 604162	Ae. peregrina	76.7	PI 604162	Ae. peregrina	68.8
	PI 603247	Ae. peregrina	74.2	PI 604192	Ae. peregrina	66
	PI 487275	Ae. peregrina	73.9	PI 604176	Ae. peregrina	65.3
	PI 604172	Ae. peregrina	73.1	Accession 13764	Ae. tauschii	64.1
	Accession 14325	Ae. tauschii	72.3	PI 604185	Ae. peregrina	64.1
	Accession 3761	Ae. tauschii	71.6	PI 603931	Ae. peregrina	63.9
	PI604176	Ae. peregrina	70.6	PI 487275	Ae. peregrina	62.6

selection and breeding programs. Earlier research on the Fe and Zn content of wheat grain has been restricted to a few genotypes and was mostly carried out in non-stressed environments (Velu *et al.*, 2016; Kumar *et al.*, 2016). The current study assessed a large genetic basis in a variety of stress situations and offers fresh perspectives on how stress tolerance and micronutrient enrichment interact. This study advances our knowledge of the genetic potential for Fe and Zn biofortification in the context of climate change in addition to identifying genotypes resilient for both stress and nutritional traits.

3.3. Correlation coefficient analysis

The correlation coefficient was estimated between three traits under four conditions (Figure 1). Grain Fe and Zn were significantly and positively associated under all four studied conditions. The positive correlation between Fe and Zn concentrations showed that these two traits can be improved simultaneously in a breeding program as there is possibility that a common transport mechanism or the genes for Fe and Zn are possibly co-segregating (Velu et al., 2016). These findings are in corroboration with the various earlier studies carried in wheat (Thapa et al., 2022; Liu et al., 2014; Chatrath et al., 2018, and Ghimire et al., 2019; Krishnappa et al., 2022). Hundred grain weight (HGW) had negative and significant correlation with grain Zn and Fe concentrations, whereas earlier studies indicated the non-significant association of thousand grain weight with grain Zn and Fe concentrations (Velu et al., 2018; Li-Na et al., 2022). Based on correlation analysis, it could be concluded that from grain Fe and Zn, the selection for either trait would be beneficial to improve another trait simultaneously. It suggests a possible involvement of shared genetic factors or transport pathways; however, this remains a hypothesis and requires validation through QTL mapping or functional studies.

Conclusion

Diverse ploidy wheat genotypes including wild species, synthetic hexaploidy wheats (SHW) and cultivated wheat were evaluated for grain Fe and Zn contents under drought and heat stressed conditions. Significant genotypic variability in micronutrient accumulation was observed, with wild species such as *Ae. peregrina* and *T. dicoccoides* exhibiting higher Fe and Zn concentrations compared to cultivated wheat (*T. aestivum*) and SHW. The wild accessions with higher Fe and Zn contents across years and

stressed conditions highlights their potential for genetic biofortification in wheat breeding programs, particularly PI 603931, PI 603247, PI 604145, and PI 604176 of *Ae. peregrina*. The strong positive correlation between Fe and Zn across the conditions implies that selection for one micronutrient may concurrently enhance the other. The study identified several genotypes with high Fe and Zn concentrations under stress conditions, which could be further utilized for development of nutritionally superior wheat cultivars.

Declarations

Funding

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Authors contribution

Seema Sheoran: Data compilation and analysis, interpretation of results, manuscript drafting; Sawan Kumar Mehla: Structuring and drafting the manuscript; Sonu: Data compilation; CN Mishra: Laboratory analysis and manuscript editing, BS Tyagi: manuscript editing; Sindhu Sareen: Planning, interpretation and manuscript editing. All the authors read and finalized the manuscript.

Ethical Approval

The article doesn't contain any study involving ethical approval.

Declaration on the use of Generative AI or AI-assisted technologies

The authors declare that no generative AI or AI-assisted technologies were used in the preparation of this manuscript. All text, data interpretation, and analysis were conducted entirely by the authors.

References

 Asseng S, P Martre, A Maiorano, RP Rotter, GJ O'Leary, GJ Fitzgerald, C Girousse, R Motzo, F Giunta, MA Babar, MP Reynolds, AMS Kheir, PJ Thorburn, K Waha, AC Ruane, PK Aggarwal, M Ahmed, J Balkovič, B Basso, C Biernath, M Bindi, D Cammarano, AJ Challinor, G De Sanctis, B Dumont, E Eyshi Rezaei, E Fereres, R Ferrise, M Garcia-Vila, S Gayler, Y Gao, H Horan, G Hoogenboom, RC

- Izaurralde, M Jabloun, CD Jones, BT Kassie, KC Kersebaum, C Klein, AK Koehler, B Liu, S Minoli, M Montesino San Martin, C Müller, S Naresh Kumar, C Nendel, JE Olesen, T Palosuo, JR Porter, E Priesack, D Ripoche, MA Semenov, C Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, M Van der Velde, D Wallach, E Wang, H Webber, J Wolf, L Xiao, Z Zhang, Z Zhao, Y Zhu and F Ewert. 2019. Climate change impact and adaptation for wheat protein. *Global Change Biology* 25(1): 155-173.
- Bechoff A, J De Bruyn, A Alpha, F Wieringa and V Greffeuille. 2023. Exploring the complementarity of fortification and dietary diversification to combat micronutrient deficiencies: a scoping review. *Current Developments in Nutrition* 7(2):100033.
- 3. Cakmak I, AYFER Torun, E Millet, M Feldman, T Fahima, A Korol, E Nevo, HJ Braun and H Ozkan. 2004. *Triticum dicoccoides*: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. *Soil Science and Plant Nutrition* 50(7):1047-1054.
- Cakmak I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? *Plant and* Soil 302:1-17.
- Chatrath R, V Gupta, S Kumar, O Parkash and GP Singh. 2018. Evaluation of micronutrients biofortified spring wheat genotypes for yield and micronutrients. J. Appl. Nat. Sci. 10: 210–215.
- 6. Das S, AK Chaki and A Hossain. 2019. Breeding and agronomic approaches for the biofortification of zinc in wheat (*Triticum aestivum* L.) to combat zinc deficiency in millions of a population: A Bangladesh perspective. *Acta Agrobotanica* 72(2):1770
- 7. Devate NB, H Krishna, VP Sunilkumar, KK Manjunath, CN Mishra, N Jain, GP Singh and PK Singh. 2022. Identification of genomic regions of wheat associated with grain Fe and Zn content under drought and heat stress using genome-wide association study. Frontiers in Genetics 13:1034947.
- Ghimire S, DB Thapa, A Paudel and NR Adhikari. 2019. Variability study of biofortified bread wheat genotypes for grain zinc and iron concentration, yield and yield associated traits at Khumaltar, Lalitpur, Nepal. Int. J. Appl. Sci. Biotechnol. 7:184–194.

- 9. Hanikenne M and F Bouché. 2023. Iron and zinc homeostasis in plants: a matter of trade-offs. *Journal of Experimental Botany* **74**(18): 5426-5430.
- 10. Hasheminasab KS, K Shahbazi, M Marzi, A Zare, M Yeganeh, K Bazargan and R Kharazmi. 2023. A study on wheat grain zinc, iron, copper, and manganese concentrations and their relationship with grain yield in major wheat production areas of Iran. Journal of Agriculture and Food Research 14:100913.
- Helman D and DJ Bonfil. 2022. Six decades of warming and drought in the world's top wheatproducing countries offset the benefits of rising CO2 to yield. Scientific Reports 12(1): 7921.
- 12. Jalal A, EF Júnior and MCM Teixeira Filho. 2024. Interaction of zinc mineral nutrition and plant growth-promoting bacteria in tropical agricultural systems: A review. *Plants* 13(5): 571.
- 13. Kandić V, J Savić, D Rančić and D Dodig. 2023. Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation. Agriculture 13(3): 673.
- 14. Krishnappa G, H Khan, H Krishna, S Kumar, CN Mishra and O Parkash. 2022. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (*Triticum aestivum* L.) using genome-wide association study. Sci. Rep. 12(1):12444-12514.
- 15. Kumar U, P Mathpal, S Malik, N Kumar, S Kumar, V Chugh, I Sheikh, P Sharma, T Singh, HS Dhaliwal and S Kumar. 2016. Evaluation of iron and zinc in grain and grain fractions of hexaploid wheat and its related species for possible utilization in wheat biofortification. Plant Genetic Resources 14(2):101-111.
- 16. Li-Na J, MA Jing-Li, WANG Xiao-Jie, LIU Gang-Gang, ZHU Zhao-Long, QI Chen-Yang, Z Ling-Fang, LI Chun-Xi, WANG Zhi-Min and HAO Bao-Zhen. 2022. Grain zinc and iron concentrations of Chinese wheat landraces and cultivars and their responses to foliar micronutrient applications. *Journal of Integrative Agriculture* 21(2):532-541.
- 17. Liu H, ZH Wang, F Li, K Li, N Yang, Y Yang, D Huang, D Liang, H Zhao, H Mao, J Liu, W Qiu. 2014. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat

- production areas in China. *Field Crops Res.* **156**:151–160.
- 18. Murphy KM, PG Reeves, SS Jones. 2008. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. *Euphy*tica **163**: 381-390.
- 19. Paltridge NG, PJ Milham, JI Ortiz-Monasterio, G Velu, Z Yasmin, LJ Palmer, GE Guild and JC Stangoulis. 2012. Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. *Plant* Soil. 361(1):261–269.
- Petrović S, S Vila, S Grubišić Šestanj & A Rebekić.
 2024. Variation in Nutritional Value of Diverse Wheat Genotypes. Agronomy 14(2): 311.
- 21. Pfeiffer WH and B McClafferty. 2007. HarvestPlus: Breeding crops for better nutrition. *Crop Sci.* 47:88–105.
- 22. Rathan ND, H Krishna, RK Ellur, D Sehgal, V Govindan, AK Ahlawat, G Krishnappa, JP Jaiswal, JB Singh, S Sv, D Ambati, SK Singh, K Bajpai and A Mahendru-Singh. 2022. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (*Triticum aestivum* L.). Sci. Rep. 12(1):7037–7115.
- 23. Sadeghzadeh B. 2013. A review of zinc nutrition and plant breeding. *Journal of Soil Science and Plant Nutrition* 13(4):905-927.
- 24. Samineni S, MD Mahendrakar, A Hotti, U Chand, A Rathore and PM Gaur. 2022. Impact of heat and drought stresses on grain nutrient content in chickpea: Genome-wide marker-trait associations for protein, Fe and Zn. Environ. Exp. Bot. 194:104688.
- 25. Sharma K and PK Sharma. 2025. Wheat as a nutritional powerhouse: Shaping global food security. In *Triticum-The Pillar of Global Food Security*. IntechOpen.
- Sperotto RA, FK Ricachenevsky, V de Abreu Waldow and JP Fett. 2012. Iron biofortification in rice: it's a long way to the top. *Plant Science* 190:24-39.

- 7. Thapa DB, M Subedi, RP Yadav, BP Joshi, BN Adhikari, KP Shrestha, PB Magar, KR Pant, SB Gurung, S Ghimire and NR Gautam. 2022. Variation in grain zinc and iron concentrations, grain yield and associated traits of biofortified bread wheat genotypes in Nepal. Frontiers in Plant Science 13:881965.
- 28. Velu G, L Crespo Herrera, C Guzman, J Huerta, T Payne and RP Singh. 2019. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. *Frontiers in Plant Science* 9: 1971.
- 29. Velu G, C Guzman, S Mondal, JE Autrique, J Huerta and RP Singh. 2016. Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat. *Journal of Cereal Science* **69**:182-186.
- 30. Velu G, I Ortiz-Monasterio, I Cakmak, Y Hao and RA Singh. 2014. Biofortification strategies to increase grain zinc and iron concentrations in wheat. *Journal of Cereal Science* **59**(3):365-372.
- 31. Velu G, RP Singh, L Crespo-Herrera, P Juliana, S Dreisigacker, R Valluru, J Stangoulis, VS Sohu, Mavi GS, Mishra VK and Balasubramaniam A. 2018. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. *Scientific Reports* 8(1): 13526-13610.
- Wei T, VR Simko, M Levy, Y Xie, Y Jin and J Zemla.
 2021. package "corrplot": Visualization of a Correlation Matrix. 2017 [online]
- 33. Zahra N, A Wahid, MB Hafeez, A Ullah, KH Siddique and M Farooq. 2021. Grain development in wheat under combined heat and drought stress: Plant responses and management. *Environ. Exp. Bot.* **188**:104517.

