

# Journal of Wheat Research

7(1):27-30

Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR

Research Article

# Genetic divergence analysis for morpho-physiological traits, under timely and late sown condition in bread wheat (*Triticum aestivum L.*)

Rajendra Kumar\*<sup>1</sup>, Brij Kumar Prasad, Muneendra Kumar Singh<sup>2</sup>, Gyanendra Singh<sup>1</sup> and Ajay Verma<sup>1</sup>

\*Amar Singh College Lakhaoti, Bulandshahar, UP, India
<sup>1</sup>ICAR- Indian Institute of Wheat and Barley Research, Karnal- 132 001, India
<sup>2</sup>ICRISAT, Hyderabad, India

### Article history

Received: 24 June, 2014 Revised: 10 March, 2015 Accepted:11 March, 2015

#### Citation

Kumar R, BK Prasad, MK Singh, G Singh<sup>1</sup> and A Verma. 2015. Genetic divergence analysis for morpho-physiological traits, under timely and late sown condition in bread wheat (*Triticum aestivum L.*) *Journal of Wheat Research* 7(1):27-30

## \*Corresponding author

Email: *rkgola1@gmail.com* Tel: *01842209132* 

@ Society for Advancement of Wheat Research

#### **Abstract**

Fifty bread wheat genotypes were evaluated during *rabi* crop season, over the two years (2007/08 and 2008/09), to work out the genetic divergence for yield and morpho-physiological traits under normal and heat-stress environmental conditions. Significant differences were observed for genotypes in respect to all traits under both environments. Fifty genotypes were grouped into 10 diverse clusters under both normal and heat-stress environment. Most of the genotypes (9) were grouped in cluster I and 7 genotypes in cluster I and II under normal and heat-stress conditions. Maximum divergence was observed in cluster II and IX under normal conditions and cluster VI and VIII under heat-stress conditions. Therefore, genotypes of these cluster showed more divergence, then genotypes from cluster II, IX, VI and VIII can be used to produce superior hybrids for terminal heat-stress conditions.

**Keywords**: Bread wheat, genetic divergence, clustering, CTD, CMTS, terminal heat-stress

#### 1. Introduction

India achieved remarkable progress in wheat production during the last four decades and is the second largest wheat producer in the world with the production touching a record level of 95.91 million tons during 2013-14 (Anonymous 2014). Food security worldwide is major challenged by increasing food demand and threatened by global climatic changes, as drought, temperature, salinity and nutrient imbalance and others (Trethowan and Kazi, 2008).

Terminal heat stress during crop growth is a main environmental factor that reduces the grain yield (Fischer, 1983), because of early senescence and acceleration of grain filling activities in wheat (Paulsen, 1994), and also shortening grain filling duration along with constriction of carbon assimilation (Stone, 2001). Stone and Nicolas (1994) have reported that losses in kernel weight (23%) occurred when the temperature was increased from 20°C to 15°C (day/night) to 40°C to 15° C on the third day after anthesis.

Obtaining accurate estimates of the genetic diversity among the germplasm sources may increase the efficiency of plant breeding (Barrett and Kidwell, 1998). Studying variation among the germplasm lines of known potentialities can generate information helpful to the breeders to choose suitable parents for purposeful hybridization (Sharma, 2008). Improving the productivity of wheat under heat-stress is one of the primary goals of the wheat breeding programmes in India.

Thus present study was undertaken to clustering the genotypes, based on inter and intra cluster distances along with heat-stress adapted traits and select suitable genotypes that can be recommended for further wheat breeding programmes for the development of high yielding and heat tolerant genotypes.

#### 2. Materials and methods

Field experiments were conducted at the Amar Singh College, Lakhaoti, Bulanshahar, Uttar Pradesh, India during two growing *rabi* seasons (2007-08 and 2008-09)

followed by randomized complete block design with three replications and two dates of sowing as 15th November as timely sown and 15th December as late sown, where timely sown conditions was considered as normal environment and late sown conditions as heat-stress environment. All the genotypes were sown in one row plot of 3.0 m length with 23 cm row to row distance. The standard agronomical practices were done for wheat under normal and heat-stress conditions.

Observations were recorded on 14 morpho-physiological traits as, days to 50% heading, days to maturity, grain filling duration, plant height (cm), number of tillers/plant, number of tillers/m, number of spikelets/spike, number of seeds/spike, 1000 grain weight (g), biological yield (g/plot), harvest index (%), canopy temperature depression, cell membrane thermo stability and grain yield (g/plot) from each plot. The canopy temperature depression was measured at crop growth particular at anthesis stage using a portable infrared thermometer (Model AG-42)

with a view of 2.5° under both normal and heat-stress environment. Membrane thermal stability was estimated using procedures as described by Blum and Ebercon (1981). Cluster analysis was carried out using statistical softwareas SAS version 9.2 (2008). Possibly also include the name of clustering method with reference.

#### 3. Results and discussion

Analysis of variance: All the traits studied showed significant variation in respect of the genotypes under the present investigation. This was apparent from the significant to highly significant values (F-calculated values) under timely sown conditions of year 2007-08 and 2008-09 and late sown conditions of the year 2007/08 and 2008/09. There was also significant differences exist at genotypic level under normal and heat-stress environments. Cluster analysis was done by using the data of normal and heat-stress environment and analyzed results are presented in table 1 and 2.

**Table 1**. Distribution of fifty genotypes of bread wheat into different clusters under normal and heatstress environmental conditions.

| Clusters | Environment | Number of genotypes | Name of genotypes included in different clusters                        |  |  |  |  |  |  |
|----------|-------------|---------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| Ι        | Normal      | 9                   | PBW502, BL1724, PBW175, GW322, HI1500, HUW510, HW2045, DWR19 and HP1744 |  |  |  |  |  |  |
|          | Heat-stress | 7                   | DBW14, GW173, HD2009, HD2643, RAJ3765, HW2045 and UP2425                |  |  |  |  |  |  |
| II       | Normal      | 4                   | PBW343, WH542, HD2687 and HD 2733                                       |  |  |  |  |  |  |
|          | Heat-stress | 7                   | K9107, VL738, K9006, RAJ4037, GW190, PBW550 and HI1077                  |  |  |  |  |  |  |
| III      | Normal      | 7                   | PBW443, DL788-2, DBW14, HD2009, RAJ4037, PBW550 and HI1077              |  |  |  |  |  |  |
|          | Heat-stress | 5                   | DBW17, PBW502, PBW175, PBW343 and HD2824                                |  |  |  |  |  |  |
| IV       | Normal      | 7                   | UP2338, HUW468, GW273, WH157, NW1012, K9107 and UP2565                  |  |  |  |  |  |  |
|          | Heat-stress | 6                   | HD2687, HI977, HI1500, NW1014, CPAN3004 and HD2781                      |  |  |  |  |  |  |
| V        | Normal      | 7                   | DBW17, HI977, HUW533, HUW234, NW1014, PBW299and PBW226                  |  |  |  |  |  |  |
|          | Heat-stress | 5                   | HUW510, HUW533, HP1744, HUW213 and PBW299                               |  |  |  |  |  |  |
| VI       | Normal      | 2                   | GW173 and CPAN3004                                                      |  |  |  |  |  |  |
|          | Heat-stress | 2                   | C306 and DWR195                                                         |  |  |  |  |  |  |
| VII      | Normal      | 5                   | HW2004, VL738, K9006, C306 and HD2781                                   |  |  |  |  |  |  |
|          | Heat-stress | 6                   | WH542, WH157, BL1724, NW1012, HD2329 and PBW226                         |  |  |  |  |  |  |
| VIII     | Normal      | 1                   | PBW373                                                                  |  |  |  |  |  |  |
|          | Heat-stress | 3                   | PBW343, UP2338 and UP2565                                               |  |  |  |  |  |  |
| IX       | Normal      | 5                   | MP4010, HD2643, RAJ3765, UP2425 and HUW213                              |  |  |  |  |  |  |
|          | Heat-stress | 7                   | HD2733, HUW468, GW273, GW322, MP4010, DL788-2 and HUW234                |  |  |  |  |  |  |
| X        | Normal      | 3                   | HD2824, GW190 and HD2329                                                |  |  |  |  |  |  |
|          | Heat-stress | 2                   | HW2004 and PBW373                                                       |  |  |  |  |  |  |

**Table 2.** Estimates of average intra and inter cluster distances D<sup>2</sup> Values for ten clusters constructed from fifty genotypes of wheat under normal and heat-stress environment.

| Cluster | Environment | I    | II   | III  | IV   | V    | VI   | VII  | VIII | IX   | X    |
|---------|-------------|------|------|------|------|------|------|------|------|------|------|
| I       | Normal      | 2.21 | 6.37 | 2.26 | 3.15 | 2.33 | 5.12 | 3.29 | 5.75 | 3.29 | 5.86 |
|         | Heat-stress | 2.47 | 4.33 | 3.33 | 3.97 | 4.03 | 5.49 | 4.55 | 5.27 | 2.94 | 5.09 |
| II      | Normal      |      | 2.12 | 6.16 | 4.46 | 5.84 | 4.64 | 6.19 | 6.18 | 7.13 | 3.69 |
|         | Heat-stress |      | 2.35 | 3.52 | 2.68 | 4.70 | 3.71 | 4.43 | 4.69 | 3.62 | 3.42 |
| III     | Normal      |      |      | 1.79 | 3.20 | 3.31 | 5.27 | 3.78 | 5.58 | 4.02 | 5.37 |
|         | Heat-stress |      |      | 2.60 | 3.49 | 4.76 | 6.01 | 4.06 | 4.61 | 3.78 | 4.71 |
| IV      | Normal      |      |      |      | 2.49 | 3.52 | 4.54 | 2.89 | 4.25 | 3.98 | 4.76 |
|         | Heat-stress |      |      |      | 2.08 | 4.11 | 3.78 | 3.18 | 3.92 | 3.22 | 4.42 |
| V       | Normal      |      |      |      |      | 2.21 | 4.08 | 4.03 | 5.51 | 3.36 | 5.41 |
|         | Heat-stress |      |      |      |      | 2.68 | 4.52 | 4.21 | 5.38 | 3.69 | 5.68 |
| VI      | Normal      |      |      |      |      |      | 1.88 | 5.73 | 4.42 | 5.16 | 3.93 |
|         | Heat-stress |      |      |      |      |      | 1.97 | 5.31 | 6.73 | 4.39 | 5.34 |
| VII     | Normal      |      |      |      |      |      |      | 2.79 | 4.87 | 4.95 | 5.67 |
|         | Heat-stress |      |      |      |      |      |      | 2.47 | 3.57 | 3.35 | 5.82 |
| VIII    | Normal      |      |      |      |      |      |      |      | 1.12 | 6.51 | 5.67 |
|         | Heat-stress |      |      |      |      |      |      |      | 2.47 | 4.15 | 4.59 |
| IX      | Normal      |      |      |      |      |      |      |      |      | 2.02 | 6.35 |
|         | Heat-stress |      |      |      |      |      |      |      |      | 2.32 | 4.37 |
| X       | Normal      |      |      |      |      |      |      |      |      |      | 1.93 |
|         | Heat-stress |      |      |      |      |      |      |      |      |      | 1.29 |

Bold values denote intra cluster distances for Normal and Heat stress environments.

#### Cluster analysis

Divergence analysis of 50 bread wheat genotypes was carried out and results with respect to normal and heatstress environments are presented in the Tables 1-2. In any crop improvement programme, genetic diversity has been considered as an important factor which is also an essential prerequisite for hybridization programme for obtaining high yielding progenies or genotypes. Direct group constellation was formed using the D<sup>2</sup> values for each of the traits. All the fifty bread wheat genotypes were grouped into ten clusters in both normal and heat-stress environmental conditions and details of each of the cluster is presented in the table 1. Under normal environmental conditions, among the ten clusters, cluster I contained the maximum number of genotypes (9) followed by cluster III, IV and V with 7 genotypes. Under heat-stress environmental conditions, cluster I and II contained the maximum number of genotype (7) followed by cluster IV and VII (6), cluster III and V (5), cluster VIII (3), cluster VI and X (2) as exhibited by table 1.

D<sup>2</sup> analysis also used to identify the diverse and desirable genotypes on the basis of intra and inter-cluster distances and cluster mean performance respectively. The intra and inter cluster distances from the normal and heatstress environmental conditions are presented in table 2. Under normal sown environmental conditions, maximum intra-cluster distance was observed in cluster VII, while maximum inter-cluster distances were observed between cluster II and IX (7.13) followed by cluster VIII and IX (6.51), cluster I and II (6.37), cluster IX and X (6.35), cluster II and VII (6.19), cluster II and VIII (6.18) and cluster II and III (6.16). The minimum inter-cluster distances were recorded between cluster I and III (2.26) as presented in table 2. Therefore genotypes of cluster II and IX exhibited maximum divergence and indicated that genotypes PBW343, WH542, HD2687 and HD2733 (cluster II) and genotypes MP4010, HD2643, RAJ3765, UP2425 and HUW213 (cluster IX) showed more divergence, these genotypes may be used to produce the superior hybrids and transgressive segregants.

Under heat-stress environmental conditions, the maximum intra-cluster distance was observed in cluster

V (2.68), while maximum inter-cluster distances were observed between clusters VI and VIII (6.73) followed by cluster III and VI (6.01), cluster VII and X (5.82) and cluster VI and VII (5.31). The minimum inter cluster distances were observed between cluster I and IX (2.94) as sown in table 2. The genotypes of cluster VI and VIII exhibited maximum divergence and indicated that the genotypes C306 and DWR195 (cluster VI) and genotypes PBW343, UP2338 and UP2565 (cluster VIII) showed more divergence, these genotypes may be used to produce superior hybrids. Similar results have been reported by Jag Shoran and Tandon (1995) and Kant *et al.*, (1999).

One of the important aspects of the present investigation was to classify 50 genotypes into different clusters based on the genetic distances. This aspect is important in sense that in long run, it may be help full to avoid repetition of genetically similar genotypes in hybridization. This has been achieved by resorting to assignment of these genotypes into different groups and studying their interand intra-group distances. In our study  $D^2$  analysis led to the formation of ten groups under both normal and heat-stress conditions.

A close view of 50 genotypes revealed that some genotypes were belonging to different eco-geographical areas, but they included in the same cluster. This indicated that there is no association between clustering pattern and eco-geographical distribution of the genotypes. Also, the clustering of genotypes from different eco-geographical locations into one cluster could be attributed to make possible free exchange of breeding material from one place to other (Sharma & Hore 1997). This may also be due to the fact that the unidirectional selection may helpful for a particular trait at several place which produced similar phenotypes and which were aggregated in one cluster irrespective of their distant geographical origin.

#### References

- Anonymous (2014). Progress Report of All India Coordinated Wheat and Barley Improvement Project, 74 pp. Sharma Indu (Ed.). Directorate of Wheat Research, Karnal.
- Barrett BA and KK Kidwell 1998. AFLP-based genetic diversity assessment among wheat cultivars from Pacific Northwest. Crop Science 38: 1261-1271.
- 3. Blum A and A Ebercon 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. *Crop Science* **21**: 43-47.
- 4. Dwivedi AN and IS Pawar 2005. Evaluation of genetic diversity among bread wheat germplasm line and for yield and quality-attributing traits. *Haryana Agriculture University Journal of Research* **34**(1): 35-39.
- 5. Fischer RA 1983. Wheat. In: Smith WH, Banta SJ, ed. Potential productivity of field crops under different

- environments, IRRI, Los Banos, Philippines, pp. 129-154.
- 6. Garg DK and PL Gautam 1997. Genetic divergence studies in wheat germplasm using non-Hierarchical Euclidean analysis. *Indian Journal of plant Genetic Resources* **10**(1): 11-15.
- 7. Gartan SL and RK Mittal 2003. Genetic divergence in bread wheat. *Crop Improvement* **30**(2): 185-188.
- Goel P, Swati, PK Sharma and K Srivastva 2005.
   Genetic divergence in elite germplasm collection of wheat (*Triticum spp*). Crop Improvement 32(2): 114-120.
- 9. Jag Shoran and JP Tandon 1995. Genetic divergence in wheat (*Triticum aestivum L em Thell*). *Indian Journal of genetics and plant breeding* 55(4): 406-409.
- 10. Kant LVP, Mani and VS Chauhan 1999. Genetic divergence in facultative and winter wheat germplasm. *Rachis* 18(2): 69-74
- Paulsen GM 1994. High temperature responses of crop plants. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM, ed. Physiology and Determination of Crop Yields, ASA, CSSA, SSSA, Madison, WI, pp. 364-389
- 12. Saadalla MM, JS Quick and JF Shanahan 1990a. Heat tolerance in winter wheat: II. Membrane thermo stability and field performance. *Crop Science* **30**:1248-1251.
- 13. SAS Institute 2008. What's new in SAS/STAT 9.2, release 3.08, SAS Inst. Inc., Cary, NC.
- Sharma BD and DK Hore 1997. Yield attributes of rice (Oryza sativa) under acid, low phosphorus and high iron soil of northeast region of India. Indian Journal of Agricultural Sciences 67(12): 580-582.
- 15. Sharma RK 2008. Genetic divergence among some differentially heat tolerant genotypes of wheat. *Agricultural Science Digest* **28**(1): 69-70.
- 16. Singh I and DK Garg 2003. Genetic divergence studies in salinity tolerant wheat germplasm using cluster analysis. *Annals of Agriculture Research New Series* **24**(2): 256-260.
- 17. Stone P 2001. The effects of heat stress on cereal yield and quality hexaploid wheat. *Euphytica* **126:** 275-282.
- Stone PJ and ME Nicolas 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. *Australian Journal of Plant Physiology* 21: 887-900.
- 19. Trethowan RM and AM Kazi 2008. Novel germplasm resources for improving environmental stress tolerance in hexaploid wheat. *Crop Science* **48**: 1255-1265.