Phosphorus Dynamics under Saline Water Irrigation and Phosphorus Fertilization in Cowpea

Pooja Devi Jat¹, Chiranjeev Kumawat^{1*}, KK Sharma¹, SK Dadhich¹, Arvind Kumawat², Rajhans Verma¹ and Manish Yadav³

¹Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner-303 329, Rajasthan, India

²College of Dairy Science & Technology, Sri Karan Narendra Agriculture University, Johner-303 329, Rajasthan, India ³ICAR-Central Soil Salinity Research Institute, Karnal-132 001, Haryana, India *Corresponding author's E-mail: chiranjeev.soils@sknau.ac.in

Abstract

Soil salinity is one of the major problems in arid and semi-arid areas around the world. Salinity results in soil and water degradation. Cowpea is very sensitive to salinity and sodicity as compared to cereals and oilseed crops. Salinity reduced germination percentage and germination index. In saline soils, availability of phosphorus is low due to immobilization of applied P, fixation of P by Ca. The requirement of phosphorus for pulses is more important than nitrogen and potassium but the availability of phosphorus is low in Rajasthan. The experiment consisted of twelve treatment combinations including three levels of saline irrigation water [normal (1.26) and 6 dS m⁻¹ keeping Cl⁻: SO₄²⁻ ratio in 3:1 and 1:3] and four levels of phosphorus application (0, 10, 20 and 30 mg kg⁻¹). The experiment was conducted in pots and carried out in completely randomized design (CRD) with three replications. Phosphorus transformation in soil, yield attributes and yield of the crop were observed significantly higher with normal (1.26 dS m⁻¹) irrigation water and 30 mg kg⁻¹ phosphorus application in soil. The result indicated that irrigation with normal (1.26 dS m⁻¹) water and 30 mg kg⁻¹ phosphorus application in soil to the cowpea crop significantly increased the different forms of soil phosphorus *viz.*, Al-P, Fe-P, saloid-P, organic-P and total-P, effective number of nodules per plant, nodule index, fresh and dry weight of nodules, plant height, pods per plant, seeds per pod, seed index, seed and straw yield.

Key words: Cowpea, Saline water irrigation, Nodules, Phosphorus transformation

Introduction

One of the most significant pulse crops is the cowpea [Vigna unguiculata (L.)]. It may thrive in regions with little rainfall and is drought-tolerant. Cowpea grain's nutritional value includes 23.4% protein, 55-66% carbohydrates, 0.08-0.11% fiber, 3.9% fat, 1.2% calcium, 0.005% iron, and numerous essential amino acids, including phenylalanine, lysine, and leucine. The vegetable cowpea pod is composed of 0.1% fat, 8.0% carbohydrates, 4.1% protein, and 84.4% moisture. Because of the shade effect of their broad, drooping leaves, cowpeas are known to be drought-hardy by nature. A cowpea crop can add 30-80 kg of nitrogen per hectare to the soil (Silva et al., 2025). An estimated 23.40 million tons of pulse crops are produced annually on 29.03 million hectares of land in India, with a yield of 806 kg ha⁻¹ (Singh *et al.*, 2023). The total area planted to pulses in Rajasthan is 6.018 million ha, with an average yield of 636 kg ha⁻¹ and an annual production of 4.49 million tons with a yield of 3.2 thousand tones and an average productivity of 658 kg ha⁻¹, cowpeas occupy 50 thousand hectares of land (Puniya and Kumawat, 2024).

The main issue in arid and semi-arid regions of the world is salinity. Degradation of soil and water, biodiversity loss, climate change, low farm income, increased rural poverty, and a drop in the yield of many agricultural products are all consequences of salinity (Gebremeskel *et al.*, 2018). Compared to cereals and oilseed crops, pulses are extremely vulnerable to salt and sodicity. In sorghum, salinity decreased the following: seedling fresh weight, seedling dry weight, seedling vigour index, seedling shoot length,

seedling root length, germination index, and germination % (Dehnavi et al., 2020). The extent of salt-affected soil in India is 6.73 million hectares, and it is growing daily. 0.38 million ha land of Rajasthan are degraded by salts (Narayanan and Chellappan, 2024). Cations like Ca²⁺ and Mg²⁺ and anions like Cl⁻, SO₄²⁻, carbonate, and bicarbonate are the primary substances that contribute to salinity. The physical, chemical, and biological characteristics of soil are weakened by these salts, which eventually affect crop production and growth. By reducing nutrient uptake and altering the physical, chemical, and biological characteristics of the soil, the ongoing use of saline irrigation water has a negative impact on soil fertility (Ding et al., 2020). Due to ionic imbalance, toxicity of certain ions, and inadequate food availability, salinity causes osmotic stress in plants, which lowers crop output (Lata et al., 2017).

Phosphorus availability is limited in saline soils because to immobilization of applied P, fixation of P by Ca, slow diffusion of P, and antagonism caused by excess chloride and sulphate. High concentrations of Cl in saline soils may negatively impact phosphorus intake because phosphorus and Cl- are taken via the same mechanism (Germano et al., 2022). Consequently, in saline conditions, P content and absorption are often low. Although phosphorus is more crucial for pulses than nitrogen and potassium, Indian soils have limited phosphorus availability. Only 15% to 30% of the phosphorus that is sprayed is used by plants; the remainder is transformed into an insoluble form. As a component of ADP, ATP, DNA, RNA, phosphate enzyme, nucleotides, phospholipids, and phosphorylated sugars, P is needed for the growth of Rhizobium bacterium, which is in charge of biological nitrogen fixation. Applying phosphorus to legumes not only benefits the current crop but also has a positive impact on the next non-legume crop. Additionally,

phosphorus is crucial in protein synthesis, nucleic acid, amino acids, phytin, and other substances (Bawa, 2020). Keeping all these facts in the mind the present study was carried out to quantify the performance of cowpea and phosphorous transformation in soil under saline irrigation and applied fertilizer phosphorus.

Materials and Methods

During the 2020-21 kharif season, the pot experiment was carried out at the cage house of the Department of Plant Physiology at S.K.N. College of Agriculture, Johner (Raj.). Geographically, Jobner is located in the Jaipur district of Rajasthan at 26°5' North latitude and 75°28' East longitude. It is 427 meters above mean sea level. This area of Rajasthan is located in the semi-arid eastern plain zone, or agroclimatic zone III-A. With 1.81 g kg⁻¹ soil organic carbon and 128.72, 15.23, and 145.75 kg ha⁻¹ of accessible N, P, and K, respectively, the soil had a sandy loam texture with an alkaline response (pH 7.90). Twelve treatment combinations were used in the experiment, which included four levels of phosphorus administration (0, 10, 20, and 30 mg kg-1) and three levels of saline irrigation water [normal (1.26) and 6 dS m⁻¹ maintaining Cl⁻: SO₄²ratio in 3:1 and 1:3]. Three replications and a completely randomized design were used for the experiment, which was carried out in pots. Cylindrical ceramic pots (20 cm in diameter and 28 cm in height) were filled with soil. 10 kilograms of soil were in each pot. Broken stone fragments were positioned over the bottom hole when the pots were being filled to allow for unrestricted drainage.

To test the impact of rainfall, every pot was kept in the covered cage house. The required Cl and SO₄²⁻ of Na⁺, Ca²⁺, and Mg²⁺ were added in a 3:1 solution ratio to reach the EC level of 6 dS m⁻¹ (Table 1). The number of elements (cations

Table 1. Ionic composition of saline waster used for irrigation

EC (dS m ⁻¹)	Na ⁺ Meq L ⁻¹	$\begin{array}{c} Ca^{2+} \\ Meq \ L^{\text{-}1} \end{array}$	$\begin{array}{c} Mg^{2+} \\ Meq \ L^{\text{-}1} \end{array}$	Cl ⁻ Meq L ⁻¹	SO ₄ ²⁻ Meq L ⁻¹	Final EC (dS m ⁻¹)
1.26 (Normal)	9.43	1.0	1.2	2.2	6.0	1.26
6 (C1: SO ₄ ² -, 3:1)	25.5	11.1	11.1	38.4	12.8	6.12
6 (Cl ⁻ : SO ₄ ²⁻ , 1:3)	21.8	11.1	11.1	12.8	38.4	6.00

46 Jat et al.

and anions) were measured in water to determine the development of salinity. Before planting, soil was treated by adding 0, 10, 20, and 30 mg kg⁻¹ of phosphorus using a single super phosphate. A phosphorus fractionation scheme developed by Chang and Jackson (1958), refined by Peterson and Corey (1966) was used to identify the different forms of phosphorus, including Ca-P, Al-P, Fe-P, and saloid-P.

Total organic phosphorus was calculated by subtracting the sum of all inorganic phosphorus from total phosphorus, and total P was recovered using the perchloric acid digestion procedure. At 40 days, the number of nodules and their effective number per plant were counted during the flowering stage. Five plants were chosen at random. The effective number of nodules per plant was determined by counting the number of healthy, pink nodules and recording the mean value. An electronic scale was used to weigh the effective root nodules, and the average was calculated and recorded as the fresh weight of effective root nodules plant⁻¹. The nodules were subsequently dried in an oven at 70°C until their weight remained constant, and the average was calculated. A formula was used to calculate the nodule index, or the number of nodules per centimeter of taproot (Sandhu et al., 1992).

Nodule index =
$$\frac{\text{Number of nodules plant}^{-1}}{\text{Length of tap root (cm)}}$$

The data of growth, yield and P dynamics were analyzed with analysis of variance of completely randomized design. The treatment means of different parameters were compared using least significant difference at 5% level of significance (P<0.05).

Results and Discussion

Effect of saline water irrigation on soil phosphorus dynamics

The data pertaining to the effect of chloride and sulphate dominated saline irrigation water and phosphorus application on different forms of soil P (Ca-P, Al-P, Fe-P, saloid-P, organic-P and total-P) have been summarized in Table 2. Significantly maximum Ca-P (87.31 mg kg⁻¹ soil) was found in Cl-dominated saline irrigation water as compared to SO₄²⁻ dominated saline irrigation water. Al-P, Fe-P, saloid-P, organic-P and total-P (30.58, 27.65, 7.69, 68.08 and 212.15 mg kg⁻¹ soil, respectively) were obtained in C₀ and minimum in C₁ Al-P, Fe-P, saloid-P, organic-P and total-P except Ca-P decreased significantly with increasing levels of EC of irrigation water and the decrease was more in Cl- dominated salinity as compared to SO₄²- salinity but Ca-P increase was more in C_1 (3:1) as compared to C_2 (1:3).

The relative proportion of different forms of inorganic phosphorus depends on a number of soil characteristics, including pH, organic carbon,

Table 2	Effect of	saline	water irrigation	and	nhoenhorus	levels on	soil P	dynamics	(ma ka	-1 soil)
Table 2.	LIICCI OI	Samme	water mireamon	anu	DIIOSDIIOI US	ICACIS OII	SULL	uvnamics	meke	SOHI

Treatments	Ca-P	Al-P	Fe-P	Saloid-P	Organic-P	Total-P
		Salinity	of irrigation water	r (dS m ⁻¹)		
C ₀ -1.26 (Normal)	78.1	30.5	27.6	7.69	68.0	212.1
C ₁ -6 (3:1)*	87.3	18.4	19.3	4.93	47.9	177.9
C ₂ -6 (1:3)*	81.3	23.4	22.4	5.84	54.5	187.6
SEm±	2.06	0.64	0.60	0.17	1.46	4.89
LSD (p=0.05)	5.94	1.84	1.74	0.48	4.22	14.12
		Phosph	orus levels (mg P	kg ⁻¹ soil)		
P ₀ (Control)	70.7	19.3	18.4	4.50	48.6	161.7
P_{10}	79.5	21.4	22.0	5.10	52.2	180.4
P_{20}	85.3	24.3	23.8	6.48	57.0	197.0
P_{30}	93.3	31.5	28.2	8.52	69.4	231.0
SEm±	2.38	0.73	0.69	0.19	1.69	5.65
LSD (p=0.05)	6.86	2.12	2.00	0.56	4.88	16.31

^{*(}C1 : SO₄2-)

CaCO₃, CEC, and texture (Devra *et al.*, 2014). Increasing the amount of CaCO₃ in soil significantly decreased the amount of saloid-P and Fe-P forms, while increasing Ca-P due to the solubilization of CaCO₃. Nasrin *et al.* (2016), Singh *et al.* (2016) and Sarker *et al.* (2025) also found that Ca-P was the most prevalent form of P fixation in soil, while saloid-P was less prevalent.

Effect of phosphorus levels on soil phosphorus dynamics

Significantly maximum Ca-P, Al-P, Fe-P, saloid-P, organic-P and total-P (93.33, 31.56, 28.25, 8.52, 69.42 and 231.08 mg kg⁻¹ soil, respectively) were observed with application of 30 mg P kg⁻¹ and minimum in control (Table 2). The presence of CaCO₃ enhances the formation of Ca-bound phosphorus (Ca-P), which occurs due to the reaction between phosphate ions and calcium ions released from the solubilization of CaCO₃. This results in the precipitation of relatively less soluble calcium phosphates, such as dicalcium phosphate (DCP), octacalcium phosphate (OCP), and hydroxyapatite, which are dominant in calcareous soils. Research findings by Nasrin et al. (2016) and Singh et al. (2016) supported this observation, indicating that Ca-P is the most prevalent form of phosphorus fixation in calcareous and alkaline soils, whereas the proportion of saloid-P is relatively lower. This suggests that phosphorus availability in such soils is largely controlled by calcium interactions rather than iron or aluminum complexes, which are more common in acidic soils. The findings proved that among all forms of P, the Ca-P fraction showed the highest accumulation, while the saloid-P in all fertilizertreated pots showed the lowest value.

When phosphorus fertilizers are applied to the soil, a portion remains in the soluble form, which is immediately available to plants, while the rest undergoes chemical transformations and gets converted into less available forms, such as iron (Fe)-bound P, aluminum (Al)-bound P, calcium (Ca)-bound P, or occluded P, depending on the soil conditions. For instance, in acidic soils, phosphorus tends to react with iron and aluminum oxides, leading to the formation of Fe-P and Al-P complexes that reduce phosphorus availability. Conversely, in calcareous soils with high pH,

phosphorus is more likely to precipitate as calcium phosphates, which can limit its solubility and plant accessibility. The application of different levels of phosphorus affects the equilibrium among these forms. Higher phosphorus application rates generally lead to an increase in the labile (readily available) phosphorus pool, as well as a gradual accumulation of phosphorus in less soluble fractions over time. Continuous phosphorus addition may enhance the buildup of residual and occluded phosphorus, which can contribute to long-term phosphorus availability in the soil. Additionally, phosphorus dynamics are influenced by microbial activity and organic matter content. Soil microbes play a crucial role in phosphorus mineralization, converting organic phosphorus into inorganic forms that can be utilized by plants. Organic matter also helps in phosphorus retention and prevents excessive fixation by soil minerals, thereby improving phosphorus use efficiency. Kratz et al. (2019) noted that, in accordance with the solubility product principle, Ca-P and Al-P are the immediate products shortly after the application of phosphorus fertilizer because of the relatively higher activities of Ca-P and Al-P in soil. These findings are in close conformity with those of Devra et al. (2014), Sudhakaran et al. (2018), Kumawat et al. (2022) and Mahmood et al. (2025).

Effect of saline water irrigation on growth and yield attributes

Saline water irrigation significantly affects the growth, physiological processes, and yield attributes. Significantly maximum total number of nodules per plant, effective nodules per plant, nodule index, fresh weight (g), dry weight (g), plant height (cm), number of pods per plant and number of seeds per pod (28.34, 23.26, 2.58, 204.48, 51.53, 71.70, 13.42 and 10.03, respectively) were observed irrigation with normal EC water (C_0) followed by $SO_4^2 > Cl^-(C_2)$.

The lowest value of above parameters recorded under Cl⁻>SO₄²⁻ (C₁). This is might be due to the build-up of salinity with different saline irrigation water containing excessive Cl⁻ and SO₄²⁻ ions of Ca²⁺, Mg²⁺ and Na⁺ which adversely affects the plant growth results from high osmotic stress, low physiological availability of water and direct harmful effects of particular ions. Within plant

48 Jat et al.

Table 3. Effect of saline water irrigation and phosphorus levels on nodulation

Treatments	Total nodules	Effective	Nodule	Fresh weight	Dry weight
	per plant	nodules per plant	index	(g)	(g)
		Salinity of irriga	ation water (dS m ⁻¹)		
C ₀ -1.26 (Normal)	28.3	23.2	2.58	204.4	51.5
C ₁ -6 (3:1)*	18.4	14.9	2.30	166.7	33.4
C ₂ -6 (1:3)*	20.3	16.7	2.44	169.1	36.1
SEm+	0.60	0.51	0.06	4.73	1.12
LSD (p=0.05)	1.73	1.47	0.18	13.66	3.23
		Phosphorus lev	rels (mg P kg ⁻¹ soil)		
P ₀ (Control)	18.9	12.9	2.22	146.6	29.5
P_{10}	21.0	16.7	2.41	176.7	37.0
P_{20}	22.7	19.6	2.54	193.6	44.1
P_{30}	26.7	24.0	2.59	203.4	50.8
SEm+	0.69	0.59	0.07	5.46	1.29
LSD (<i>p</i> =0.05)	1.99	1.70	0.21	15.78	3.73

*(C1 : SO₄ 2-)

cells and tissue, where salts compartmentalize in vacuoles and excess salt begins to degrade enzymatically, salt stress results in ion toxicity (Arif *et al.*, 2022). Early stage of the plant during the osmotic stress might delay leaf emergence, leaf expansion and promote leaf senescence before the major buildup of harmful ions (Rajendran *et al.*, 2009; Tavakkoli *et al.*, 2010; Maryum *et al.*, 2022).

Effect of phosphorus levels on growth and yield attributes

Significantly maximum yield attributes (Table 3 and 4) total number of nodules per plant, effective nodules per plant, nodule index, fresh weight, dry weight, plant height, number of pods per plant and number of seeds per pod (26.76, 24.03, 2.59, 203.40, 50.80, 69.40, 13.09 and 10.65, respectively) were observed with application of 30 mg P kg⁻¹ and minimum in control (P_0). By providing assimilates to the roots, phosphorus enhances nodule formation and biological N₂ fixation in addition to being crucial for root growth and development. It is the primary constituent of the co-enzymes ATP and ADP, which function as plants' "energy currency." Phosphorus plays a crucial role in plant physiology, influencing the synthesis of nucleic acids, proteins, and phospholipids, as well as enhancing photosynthetic activity. It is a key component in energy transfer processes, such as ATP synthesis,

which is vital for plant growth and metabolic functions. Studies by Ayodele *et al.* (2014) and Verma *et al.* (2015) have also reported a significant increase in nodulation in cowpea with phosphorus application. This suggests that phosphorus availability not only supports overall plant growth but also enhances symbiotic nitrogen fixation, thereby improving legume productivity in phosphorus-deficient soils (Zhang *et al.*, 2025).

Effect of saline water irrigation and phosphorus levels on yield

The seed yield, straw yield and seed index of cowpea (6.41, 8.65 and 79.93, respectively) were recorded significantly higher in C_0 and minimum in C_1 (Table 4)

The reduction in the number of pods per plant and the number of seeds per pod may also be due to the loss of naturally occurring hormones under saline conditions. Many studies concluded that cowpea yield and nutrient uptake are significantly affected by soil salinity and phosphorus levels. Lower salinity levels result in higher yields and nutrient uptake compared to higher salinity levels. These findings are consistent with research conducted by Khare *et al.* (2025) on mungbean, Jat (2011) on chickpea, and Patel (2010) on fenugreek. The application of 30 mg P kg⁻¹ resulted in a significantly higher seed yield (g pot⁻¹), straw yield (g pot⁻¹), and seed index (g) (6.24, 8.27, and

Table 4. Effect of saline water irrigation and phosphorus levels on growth and yield of cowpea

Treatments	Plant height (cm)	Number of pods per plant	Number of seeds per pod	Seed yield (g pot ⁻¹)	Straw yield (g pot ⁻¹)	Seed index (g)			
Salinity of irrigation water (dS m ⁻¹)									
C ₀ -1.26 (Normal)	71.7	13.42	10.0	6.41	8.65	29.9			
C ₁ -6 (3:1)*	56.9	8.22	6.94	3.41	5.86	21.9			
C ₂ -6 (1:3)*	58.1	9.42	8.72	3.95	6.03	22.7			
SEm+	1.5	0.28	0.23	0.13	0.19	1.89			
LSD (p=0.05)	4.53	0.81	0.67	0.37	0.55	5.43			
Phosphorus levels (mg P kg ⁻¹ soil)									
P ₀ (Control)	58.3	8.93	6.83	3.30	5.29	20.0			
P_{10}	60.2	9.55	7.66	4.10	6.37	23.1			
P_{20}	61.0	10.2	9.10	4.70	7.47	26.1			
P ₃₀	69.4	13.0	10.6	6.24	8.27	29.9			
SEm+	1.81	0.32	0.27	0.15	0.22	2.18			
LSD (p=0.05)	5.23	0.94	0.77	0.43	0.63	8.71			

*(C1 : SO₄2-)

79.98, respectively), while the control group (P0) showed the lowest. The increase in seed yield following phosphorus application may be attributed to the concurrent rise in the number of pods per plant. This can be explained by the fact that seeds serve as the primary sink for assimilates, which are mobilized from senescing leaves. As a result, enhanced phosphorus availability supports better nutrient partitioning, ultimately leading to higher seed yield. These findings also reported by Khan *et al.* (2012) and Khare *et al.* (2025), who also observed a positive correlation between phosphorus application and improved pod formation and seed output under saline water irrigation conditions.

Conclusion

The phosphorus transformation, yield attributes and yield of cowpea reduced under Cl⁻dominated saline water irrigation as compared to SO₄²⁻ dominated saline water irrigation. The application of 30 mg P kg⁻¹ resulted in higher productivity of cowpea and phosphorus transformation in semi-arid regions of Rajasthan. Phosphorus requirement of the crop was higher under Cl⁻ dominated irrigation water salinity that could be fulfilled by the additional phosphorus fertilization. The future research should focus on phosphorus transformation under cereal based cropping systems.

References

Arif Y, Singh P, Siddiqui H, Bajguz A and Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. *Plant Physiology and Biochemistry* **156**: 64-77.

Ayodele OJ and Oso AA (2014) Cowpea responses to phosphorus fertilizer application at Ado-Ekiti, South-West Nigeria. *Journal of Applied Science and Agriculture* **9**: 485-489.

Bawa A (2020) Yield response of cowpea to phosphorus fertilizer application. *Journal of Experiment Agriculture International* **42**: 125-135.

Chang SC and Jackson ML (1958) Soil phosphorus fractions in some representative soils. *Journal of Soil Science* **9**: 109-119.

Dehnavi AR, Zahedi M, Ludwiczak A, Perez SC and Piernik A (2020) Effect of salinity on seed germination and seedling development of sorghum [Sorghum bicolor (L.) Moench] genotypes. *Agronomy* **10**: 1-15.

Devra P, Yadav SR and Gulati IJ (2014) Distribution of different phosphorus fractions and their relationship with soil properties in western plain of Rajasthan. *Agropedology* **24**: 20-28.

Ding Z, Ahmed MSK, Marwag MA, Osama AMA, Aly IN, Abdelaal XL, Zhaoxi Z, Bizun W, Beibei L and Zhenli H (2020) The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. *Scientific Reports* 10: 1-13.

Gebremeskel G, Gebremicael TG, Kifle M, Meresa E, Gebremedhin T and Girmay A (2018) Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia. An integrated approach of quantitative and spatial analysis. *Agricultural Water Management* **206**: 147-157.

Jat et al.

- Germano RP, Melito S, Cacini S, Carmassi G, Leoni F, Maggini R and Massa D (2022) Sweet basil can be grown hydroponically at low phosphorus and high sodium chloride concentration: Effect on plant and nutrient solution management. *Scientia Horticulturae* **304**: 111324.
- Jat SR (2011) Phosphorus requirement of chickpea (*Cicer arietinum* L.) irrigated with chloride and sulphate dominated saline water. M.Sc. (Ag.) Thesis, SKRAU, Bikaner.
- Khan FU, Khan AA, Iqbal A, Ali A, Iqbal M, Alamzeb M, Jan FM and Parmarv B (2017) Effect of phosphorus and Rhizobium inoculation on yield and yield components of mungbean. *Journal of Pharmacognosy and Phytochemistry* SP1: 252-258.
- Khare N and Khare P and Singh S (2025) Molecular and physiological concepts: Macronutrients in crop plant growth and development. In *Agricultural Crop Improvement* (pp. 148-164). CRC Press.
- Kratz S, Vogel C and Adam C (2019) Agronomic performance of P recycling fertilizers and methods to predict it: a review. *Nutrient Cycling in Agroecosystems* **115**: 1-39.
- Kumawat C, Sharma VK, Barman M, Meena MC, Dwivedi BS, Kumar S and Patra A (2022) Phosphorus forms under crop residue retention and phosphorus fertilization in maize-wheat rotation. *Communications in Soil Science and Plant Analysis* **53**: 257-267.
- Lata C, Kumar A, Sharma SK, Singh J, Sheokand S, Pooja, Mann A and Rani B (2017) Tolerance to combined boron and salt stress in wheat varieties: Biochemical and molecular characterization. *Indian Journal of Experimental Biology* **55**: 321-328.
- Mahmood M, Wang J, Mehmood S, Ahmed W, Ayyoub A, Seleiman MF and Li W (2025) Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems. *BMC Plant Biology* **25**: 62.
- Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A and Khan MKR (2022) An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. *Frontiers in Plant Science* 13: 907937.
- Narayanan K and Chellappan RK (2024) Phytoremediation efficiency of *Salicornia brachiata* Roxb. A salt marsh halophyte on restoration of shrimp farm contaminated soil: Phytoremediation efficiency of *Salicornia brachiata*. *Journal of Soil Salinity and Water Quality* **16**: 378-389.
- Nasrin S, Biswas TK, Amin MDS and Khatun M (2016) Study of salinity effects on the inorganic phosphorus transformation in three different soil series of Ganga river floodplain. *Jahangirnagar University Journal of Biological Science* 5: 71-79.
- Patel BS, Patel SG, Patel SP and Amin AU (2010) Integrated nutrient management in fenugreek (Trigonella foenum-graecum L.). *Journal of Spices and Aromatic Crops* **19**: 68-70.

- Peterson GW and Corey RB (1966) A modified Chang and Jackson procedure for routing fractionation of inorganic soil phosphate. *Soil Science Society of America Proceedings* **30**: 563-565.
- Puniya M and Kumawat P (2024) Assessment of yield gaps, economics and adoption level through frontline demonstration on chickpea (*Cicer arietinum L.*) cultivation in the arid region of western Rajasthan. *Journal of Community Mobilization and Sustainable Development* 19: 1049-1054.
- Rajendran K, Tester M and Roy SJ (2009) Quantifying the main components of salinity tolerance in cereals. *Plant Cell and Environment* **32**: 237.
- Sandhu BS, Khera KL and Sudhee Rajan M (1992) Response of summer mungbean to irrigation and straw mulching on a loamy sand soil in Northern India. *Journal of Indian Society of Soil Science* **40**: 240-245.
- Sarker PR, Biswas DR, Bhattacharyya R, Basak BB, Sarkar A, Das D and Singh R (2025) Soil phosphorus fractionations under different fertilization practices on soybean (Glycine max)-based cropping systems in a Vertisol. *Journal of Plant Nutrition* **48**: 1316-1325.
- Silva GRD, Liska AJ and Bayer C (2025) Cover crops can reduce greenhouse gas emissions from no-till maize in Southern Brazil: Insights from a long-term field experiment. *Agronomy* **15**: 267.
- Singh NP, Mishra RK, Bandi SM and Kumar N (2023) Advances in pest management in pulses-based cropping systems under changing climate. In *Integrated Pest Management in Diverse Cropping Systems* (pp. 259-291). Apple Academic Press.
- Singh YV, Roy P, Jat LK and Kumar M (2016) Forms of phosphorus in rice-wheat growing soils of Indo-Gangetic Alluvium plains of Bihar. *Annals of Plant and Soil Research* **18**: 396-400.
- Sudhakaran SV, Patil SR, Kondvilkar NB, Naik RM, Pharande AL and Kadlag AD (2018) Effect of 32-year long-term integrated nutrient management on soil P fractions and availability of phosphorus under sorghum-wheat cropping sequence in vertisol. *Journal of Pharmacognosy and Phytochemistry* 7: 3410-3416.
- Tavakkoli E, Rengasamy P and Mcdonald GK (2010) The response of barley to salinity stress differs between hydroponics and soil systems. *Functional Plant Biology* **37**: 621-633.
- Verma HP, Chovatia PK, Sharma S and Shivran AC (2015) Growth and yield of cowpea as influenced by nitrogen and phosphorus level on medium black soils of Gujarat. *Annals of Agriculture Research Series* **36**: 400-404.
- Zhang Y, Zhu W, Luo L, Lambers H and Zhang C (2025) The yield and phosphorus content of maize intercropped with faba bean are enhanced by belowground interspecies interactions at low phosphorus input and by aboveground interactions at high phosphorus input. *Plant and Soil* **9**:1-14.