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ABSTRACT: Integrating machine learning (ML) and artificial intelligence (Al) into seed science and technology
represents a transformative paradigm in agricultural research. This study explores the potential and applications
of ML and Al methodologies to enhance various facets of seed-related processes. From seed viability assessment
to crop vyield prediction, using advanced algorithms enable a more precise and efficient understanding of seed
characteristics. The abstract delves into specific applications such as predictive modeling, image recognition, and
data-driven decision-making in seed breeding. By harnessing the power of ML and Al, researchers and practitioners
in seed science can revolutionize traditional approaches, fostering sustainable agriculture and ensuring food

security in an ever-evolving global landscape.
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INTRODUCTION

Artificial Intelligence (Al) is a broad field encompassing
simulation of human intelligence processes by computer
systems. These processes include learning, reasoning,
perception, self-correction, and creative problem-solving.
The evolution of Al has been fueled by various techno-
logies, with modern advancements heavily relying on
machine learning algorithms and deep neural networks.

Machine learning enables computers to learn from
experience without explicit programming. This paradigm
shift allows Al systems to improve performance over time,
adapting to new information and evolving circumstances.
Deep neural networks, inspired by the structure of the
human brain, enable the processing of vast amounts of
data and the extraction of complex patterns, contributing
to the advancement of Al capabilities.

The applications of Al are diverse and impactful. Natural
language processing empowers machines to understand,
interpret, and generate human language, facilitating
communication between humans and computers. Image
recognition enables Al systems to analyze and interpret
visual information, leading to advancements in various
fields, including agriculture.

NEED FOR Al IN SEED SCIENCE AND
TECHNOLOGY

Artificial Intelligence (Al) can play a significant role in Seed
Science and Technology, offering various benefits and

addressing challenges in the industry. Here are some
key areas where Al can be applied in seed science and
technology:

1. Genetic improvement: Al algorithms can analyze
vast genomic datasets to predict the performance
of different plant varieties. This can accelerate the
breeding process by identifying traits associated with
desirable characteristics, leading to the development
of high-yielding and resilient crops.

2. Crop monitoring and precision agriculture: Al-
powered image analysis can be used to monitor crop
health, identify diseases, and assess environmental
conditions. This information can guide farmers in
making data-driven decisions, optimizing resource
allocation, and improving overall crop yield.

3. Seed sorting and quality control: Al-based image
recognition can enhance seed sorting processes by
automatically identifying and sorting seeds based
on quality parameters such as size, shape, and color.
This ensures the production of high-quality seeds
for planting.

4. Data-driven decision-making: Al algorithms can
analyze historical and real-time data to predict
optimal planting times, irrigation schedules, and
harvesting periods. This enables farmers to make
informed decisions, maximizing crop yield and
resource efficiency.
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5. Disease and pest management: Al can detect early
signs of diseases or pest infestations by analyzing
sensor data, images, and other relevant information.
This allows for prompt intervention and reduces the
risk of crop losses.

6. Climate Adaptation: Climate modeling: Al can
assist in modeling and simulating the impact of
climate change on different crops. This information
helps researchers and farmers develop strategies
to adapt to changing environmental conditions and
ensure sustainable seed production.

7. Supply chain optimization: Al algorithms can
optimize the supply chain by predicting demand,
managing inventory levels, and streamlining
distribution processes. This helps ensure a steady
supply of seeds to farmers and minimizes waste.

8. Research and development: Al-powered Natural
Language Processing (NLP): tools can assist
researchers in mining and extracting valuable
information from scientific literature, facilitating the
discovery of new insights, techniques, and
innovations in seed science.

APPLICATIONS OF MACHINE LEARNING AND Al
IN SEED SCIENCE AND TECHNOLOGY

1. Enhancing seed quality assessment

Seed quality assessment is a critical aspect of seed
science, influencing crop establishment, vigor, and yield
potential. Traditionally, assessing seed quality involved
labor-intensive and subjective methods. However, this
process has been revolutionized with the advent of
machine learning algorithms. By analyzing vast datasets
encompassing genetic information, environmental
parameters and phenotypic traits, Al can accurately
predict seed quality parameters such as germination rate,
vigor and disease resistance [1, 2 and 3]. This data-driven
approach in seed science plays a crucial role in modern
plant breeding. By using advanced technologies like
genomics, bioinformatics, and data analytics, scientists
can identify genetic markers linked to desirable traits such
as disease resistance, drought tolerance, higher yields,
and improved nutritional quality.

2. Accelerating breeding programs

Breeding new crop varieties with desired traits is a time-
consuming process traditionally reliant on trial and error.
However, machine learning and artificial intelligence
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techniques have expedited this process significantly. By
leveraging predictive modeling and genomic analysis, Al
algorithms can sift through vast amounts of genetic data
to identify candidate genes linked to desirable traits. This
accelerates the selection of parental lines and progeny
with desired characteristics, ultimately shortening
breeding cycles and increasing breeding efficiency.
Additionally, Al-driven breeding programs optimize
hybridization and genome editing techniques, enhancing
traits such as yield, stress tolerance, and nutritional
content. By leveraging Al, seed scientists can develop
resilient crop varieties adapted to changing climatic
conditions and evolving market demands more rapidly
than ever before.

3. Precision agriculture and seed placement

Precision agriculture relies on data-driven decision-
making to optimize resource use and maximize crop
productivity. Al plays a pivotal role by integrating data
from various sources, including satellite imagery, drones
and loT sensors [4]. By analyzing spatial variability in
soil properties, climate conditions and crop health
indicators, Al generates precise seeding maps and
recommends optimal seed placement strategies.
Additionally, Al-powered machinery enables precise seed
placement and planting density adjustments, ensuring
uniform crop establishment and maximizing yield
potential. This precision enhances resource efficiency,
minimizes input costs, and mitigates environmental
impact, promoting sustainable agricultural practices.

ADVANTAGES OF Al IN SEED SCIENCE AND
TECHNOLOGY

Artificial Intelligence (Al) application in Seed Science and
Technology offers numerous advantages, impacting
various aspects of seed production, breeding, and
agricultural practices.

1. Accelerated breeding programs: Al enables faster
and more efficient identification of desirable traits in
plant genomes. This accelerates the breeding
process, reducing the time required to develop new
and improved seed varieties.

2. Precision in trait identification: Computer vision
and Al algorithms enhance the accuracy of
identifying phenotypic traits in plants. This precision
is crucial for selecting seeds with specific
characteristics, contributing to the development of
high-yielding and resilient crops.
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Optimized crop monitoring: Al-based technologies,
such as remote sensing and data analytics, provide
real-time monitoring of crop health, disease
detection, and environmental conditions. This allows
for timely interventions and optimized crop
management.

Resource efficiency: Precision agriculture guided
by Al optimizes the use of resources such as water,
fertilizers, and pesticides. This leads to more efficient
resource allocation, reducing waste and
environmental impact while maximizing crop yields.

Seed sorting and quality control: Al applications
in seed sorting, utilizing computer vision and
machine learning, ensure the production and
distribution of high-quality seeds. This improves crop
uniformity and overall productivity.

Early detection of diseases and pests: Al
algorithms analyze data to detect early signs of
diseases and pest infestations. Early intervention
helps prevent the spread of diseases, minimizing
crop losses and reducing the reliance on chemical
treatments.

Climate-resilient seed varieties: Al assists in
modeling and predicting the impact of climate
change on crops. This information aids in developing
seed varieties that are more resilient to changing
climate conditions, ensuring stable yields in diverse
environments.

Data-driven decision making: Al processes large
volumes of data to provide actionable insights for
farmers and researchers. This data-driven approach
enhances decision-making, allowing for more
informed and efficient agricultural practices.

Supply chain optimization: Predictive analytics
powered by Al optimizes seed production,
distribution, and inventory management. This results
in a more streamlined supply chain, reducing costs
and ensuring a consistent and reliable supply of
seeds to farmers.

Automation in laboratory processes: Al-driven
robotics and automation streamline laboratory
processes, reducing manual labor and expediting
research efforts. This accelerates the pace of
research and development in seed science.

Knowledge discovery and literature analysis: Al,
particularly Natural Language Processing (NLP),
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helps researchers analyze vast amounts of scientific
literature, facilitating knowledge discovery and
keeping scientists informed of the latest
advancements in seed science.

12. Improved farm management systems: Integrated
Al platforms offer comprehensive solutions for farm
management, providing real-time insights into
weather conditions, soil health, and crop
performance. This enables farmers to make data-
driven decisions for better overall farm management.

REVIEW OF WORK ON Al AND ML IN SEED
SCIENCE AND TECHNOLOGY

Soybean

The viability of seeds is a critical factor in determining
their quality, and ensuring high germination rates is
essential for maximizing agricultural productivity.
Traditional methods for assessing seed viability, such as
germination tests, are often time-consuming and labor-
intensive. As a result, there is a growing demand for rapid,
non-destructive techniques that can accurately evaluate
seed quality. Fourier Transform Near-Infrared (FT-NIR)
spectroscopy has emerged as a powerful tool in this
context. This technique measures the absorption of near-
infrared light by the chemical bonds within the seed,
providing detailed information about its molecular
composition. Since viable and non-viable seeds have
different chemical profiles, FT-NIR spectroscopy can be
used to differentiate between them. Using both viable
and artificially aged soybean seeds, Kusumaningrum et
al. [5] applied partial least-squares discriminant analysis
(PLS-DA) along with the variable importance in projection
(VIP) method for optimal variable selection. Out of 1557
variables, 146 were identified as crucial by the VIP
method. Results showcased the effectiveness of FT-NIR
spectral analysis with PLS-DA, achieving prediction
accuracies close to 100% for soybean viability. This
highlights the potential of FT-NIR techniques, combined
with chemo\metric analysis, for rapid and accurate
soybean seed viability assessment, offering substantial
benefits for agricultural productivity and seed quality
control.

The study conducted by Baek et al. [6] demonstrates the
power of near-infrared hyperspectral imaging (NIR-HSI)
combined with advanced analytical methods in rapidly
and non-destructively assessing soybean seed viability.
Traditional methods of seed viability testing, while
accurate, suffer from several limitations, including being
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time-consuming, labor-intensive, and destructive, which
the NIR-HSI approach aims to overcome. Hyperspectral
imaging integrates both spectroscopy and imaging,
capturing spectral data for each pixel in an image. This
allows for a detailed analysis of the chemical composition
of the seeds. The NIR-HSI was employed to capture the
spectral information of both viable and non-viable
soybean seeds across a wide range of wavelengths.
Partial Least Squares Discriminant Analysis (PLS-DA)
was used as the main statistical method to classify seeds
based on their spectral profiles. PLS-DA is effective for
handling complex and high-dimensional data, making it
suitable for analyzing the large datasets generated by
hyperspectral imaging. The method initially provided
reasonable classification accuracy, especially for viable
seeds, but the pixel-based analysis did not offer high
enough precision for non-viable seed detection. To
improve efficiency, the study used Variable Importance
in Projection (VIP) to identify the most informative
wavelengths. VIP helps in selecting the wavelengths that
contribute the most to the variance in the dataset, thus
reducing the complexity of the model. This selection
process resulted in a multispectral model that used only
a few optimal wavebands, significantly simplifying the
analysis without compromising accuracy. In response to
the limitations of pixel-based classification, a kernel image
threshold method was introduced. This method relies on
creating image-based features, such as seed kernels,
which better capture the overall characteristics of seeds
rather than individual pixels. This kernel-based approach,
combined with the optimal detection-rate strategy,
achieved over 95% accuracy in distinguishing viable from
non-viable seeds when using only seven wavebands
identified by VIP. This study highlights the potential of
using hyperspectral imaging for fast and non-invasive
seed viability testing. Unlike traditional methods that often
require destroying the seed (e.g., tetrazolium tests or
germination tests), NIR-HSI preserves the seed for future
use. The ability to accurately detect seed viability using
only seven optimal wavebands is significant. This
reduction in data dimensionality allows for the
development of more cost-effective and efficient
multispectral imaging systems that could be more readily
adopted in practical seed testing environments. The
approach outlined in this study could be extended beyond
soybean seeds to other crops, improving seed quality
testing in agricultural production. Additionally, it could be
used for real-time sorting in seed processing facilities,
contributing to better seed selection and enhanced crop
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yields. The approach outlined in this study could be
extended beyond soybean seeds to other crops,
improving seed quality testing in agricultural production.
Additionally, it could be used for real-time sorting in seed
processing facilities, contributing to better seed selection
and enhanced crop yields. The NIR-HSI technology,
combined with PLS-DA and kernel-based classification,
presents a promising avenue for automating seed viability
testing on a larger scale.

de Medeiros et al. [1] proposed an interactive and
traditional machine learning approach to classify soybean
seeds and seedlings based on appearance and
physiological potential. Categorizing 700 seeds from
seven lots into seven groups, they considered both
physical and physiological characteristics. Seed
appearance and physiological quality were classified into
seven and three classes, respectively: vigorous
seedlings, weak seedlings and non-germinated seeds.
Utilizing descriptors from llastik, the researchers
developed classification models using Linear Discriminant
Analysis (LDA), Random Forest (RF) and Support Vector
Machine (SVM) algorithms. The dataset was divided into
70% training and 30% validation sets to ensure the
robustness of the models. The cost-effective models,
utilizing free-access software, exhibited an impressive
0.94 overall accuracy, effectively categorizing soybean
seeds and assessing seedling vigor. The observed
correlation between seed appearance and physiological
performance added significant value to their findings.

Da Silva Andre et al. [7] employed machine learning
techniques, including Artificial Neural Networks,
REPTree, M5P, Random Forest and Linear Regression,
to predict soybean seed quality based on temperature
(T), packaging (P) and storage time (ST). The research
incorporated a randomized three-factor design with
variations in temperature, packaging types (raffia bag and
polyethylene-coated raffia bags) and evaluation times,
conducting three repetitions every three months. The
models, encompassing Artificial Neural Network, decision
trees (REPTree and M5P), Random Forest, and Linear
Regression, utilized inputs such as temperature (T),
packaging (P) and storage time (ST), alongside
combinations like T+P, T+ST, and T+P+ST. Results
highlighted the superior accuracy of temperature and
storage time predictions, particularly with REPTree and
Random Forest models compared to linear regression.
Notably, combinations like T+P+ST, T+ST, P+ST and ST
accurately predicted apparent specific mass, with
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T+P+ST and T+ST demonstrating superior accuracy in
germination results. The study underscores the efficacy
of computational intelligence for predicting soybean seed
quality, providing valuable insights for decision-making
in seed storage processes.

Forage grass (Urochloa brizantha)

De Medeiros et al. [2] utilized FT-NIR spectroscopy and
X-ray imaging coupled with machine learning to classify
seed quality for Urochloa brizantha. For data acquisition,
FT-NIR spectroscopy data and X-ray images were
collected individually from 200 seeds. Various machine
learning algorithms, including Linear Discriminant
Analysis (LDA), Partial Least Squares Discriminant
Analysis (PLS-DA) and Random Forest (RF), were
employed. Notably, individual models achieved an 82 per
cent accuracy for germination (FT-NIR) and 90 per cent
accuracy (X-ray) while for seed vigor; the accuracy was
61 per cent (FT-NIR) and 68 per cent (X-ray). Upon
combining the datasets, the integrated model
demonstrated 85 per cent accuracy for germination and
62 per cent for seed vigor. This comprehensive approach
effectively assessed seed germination, with X-ray data
and LDA exhibiting promise for the quality classification
of U. brizantha seeds.

Wheat

Fan et al. [3] utilized NIR spectroscopy and machine
learning for wheat seed vigor detection, analyzing 1152
samples with artificial ageing. They created four machine
learning models (SVM, ELM, RF, AdaBoost) and applied
PCA and SPA for spectral dimensional reduction. Of 1152
samples, 2/3 were used for calibration and 1/3 for
prediction. Data preprocessing involved SG second
derivative-method and SNV. The study focused on
classifying wheat kernels into three categories based on
vigor. The eight resulting models achieved high
accuracies, exceeding 84.0 per cent, with PCA-ELM and
SPA-RF reaching the highest at 88.9 per cent and 88.5
per cent, respectively. This research advances the
development of a rapid, non-destructive NIR-based
sorting system for assessing wheat kernel vigor, which
holds implications for plant breeders, wheat quality
inspectors, and processors.

Khatri et al. [8] addressed the critical need for recognizing
and authenticating wheat varieties in the grain supply
chain. Manual methods for seed inspection are
traditionally employed, but the researchers explored
machine learning and computer vision for automatic
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categorization. The dataset comprises 210 occurrences
of wheat kernels from three varieties: Kama, Rosa and
Canadian. Machine learning algorithms, including K-
nearest neighbor, classification and regression tree and
Gaussian Naive Bayes, were applied based on seven
physical features. Comparative analysis reveals
accuracies of 92%, 94% and 92% for KNN, decision and
Naive Bayes, respectively. The ensemble classifier,
combining these algorithms through hard voting, achieves
the highest accuracy of 95%. This approach offers a fast
and high-throughput solution for wheat variety
classification in seed inspection.

Alfalfa

Yang et al. [9] explored a novel method for the rapid and
accurate discrimination of alfalfa cultivars using
multispectral imaging combined with object-wise
multivariate image analysis. The conventional
approaches to identifying alfalfa cultivars are typically
labor-intensive and time-consuming. In this study, the
authors aimed to streamline the process by focusing on
the seed level, employing three multivariate analysis
techniques: principal component analysis (PCA), linear
discrimination analysis (LDA), and support vector
machines (SVM). Their approach integrated both
morphological and spectral traits of alfalfa seeds,
demonstrating that while seed morphological features
alone were insufficient for cultivar classification,
combining them with spectral data provided highly
accurate results. Specifically, the study achieved
classification accuracies of 91.53% using LDA and
93.47% with SVM for testing sets. This finding suggests
that multispectral imaging paired with multivariate analysis
offers a simple, robust, and nondestructive method to
effectively distinguish between alfalfa seed cultivars. This
method holds promise for producers, consumers, and
market regulators seeking more efficient and accurate
seed identification.

Wang et al. [10] developed a rapid, nondestructive
method for detecting seed aging and predicting seed
viability in alfalfa, addressing the limitations of traditional,
destructive techniques. The study employed multispectral
imaging to capture both morphological and spectral
characteristics of alfalfa seeds stored for various
durations. Using five multivariate analysis methods—
principal component analysis (PCA), linear discrimination
analysis (LDA), support vector machines (SVM), random
forest (RF), and normalized canonical discriminant
analysis (hnCDA)—they assessed the ability to distinguish
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between aged and viable seeds. Their findings showed
significant differences in light reflectance between 450
and 690 nm for non-aged and aged seeds. Among the
models, LDA demonstrated the highest accuracy (99.8—
100.0%) in differentiating aged seeds from non-aged
ones, outperforming SVM (87.4-99.3%) and RF (84.6—
99.3%). Additionally, LDA accurately distinguished dead
seeds from aged seeds with an accuracy of 97.6%,
compared to lower accuracies for RF (69.7%) and SVM
(72.0%). For predicting the germination of aged seeds,
nCDA achieved accuracies between 75.0% and 100.0%.
Overall, this study presents a nondestructive, rapid, and
high-throughput method for screening aged alfalfa seeds
with varying levels of viability, offering significant potential
for seed production and research.

Zhang et al. [11] utilized multispectral imaging and various
multivariate analysis methods, including LDA, SVM, RF,
and nCDA, to assess seed vigor in alfalfa seeds with
different maturity levels and harvest years. Alfalfa seeds
from varied harvest years (2004, 2008 and 2019) and
maturity stages (green ripe, yellow ripening and full ripe)
were harvested in 2021. Morphological and spectral
information from 19 wavelengths (ranging from 365 nm
to 970 nm) was collected through multispectral imaging.
Five multivariate analysis methods (principal component
analysis (PCA), linear discriminant analysis (LDA),
support vector machine (SVM), random forest (RF) and
normalized canonical discriminant analysis (nCDA)) were
utilized to analyze the morphological and spectral traits
of alfalfa seeds. The LDA model showcased exceptional
effectiveness, achieving 92.9% accuracy for maturity and
97.8% for harvest years, demonstrating high sensitivity,
specificity and precision. Through the integration of
multispectral imaging and these analyses, the study
successfully predicted seed viability and germination
percentages, presenting a rapid and non-destructive
approach to evaluating seed quality.

Maize

NIR hyperspectral imaging was evaluated by Williams
and Kucheryavskiy [12] to classify maize kernels into
three hardness categories: hard, medium and soft. Two
approaches, pixel-wise and object-wise, were tested for
their effectiveness in grouping kernels by hardness. In
pixel-wise classification, each pixel within the maize
kernels was assigned a hardness class. However, this
method led to significant misclassification. To improve
accuracy, a predefined threshold was introduced to
classify entire kernels based on the number of correctly
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predicted pixels. This approach yielded improved results,
with a sensitivity of 0.75 and a specificity of 0.97. Object-
wise classification classified whole kernels using two
feature extraction techniques viz., Score histograms and
Mean spectra. Score histograms technique was
particularly effective for classifying hard kernels, achieving
a sensitivity of 0.93 and a specificity of 0.97. Mean Spectra
method performed better for medium kernels, with a
sensitivity of 0.95 and a specificity of 0.93. Both the score
histogram and mean spectra methods were
recommended for classifying maize kernels on a
production scale due to their high accuracy in categorizing
kernel hardness.

Jatropha

Bianchini et al. [13] introduced a novel method for
automatic seed quality characterization by combining
multispectral and X-ray imaging technologies, reducing
human interference and enhancing objectivity. Utilizing
X-ray images to examine internal tissues, they applied
the normalized canonical discriminant analyses (nCDA)
algorithm on various seed lots of Jafropha curcas, a
globally significant oilseed plant. The developed
classification models, employing linear discriminant
analysis (LDA) on reflectance data and X-ray classes,
demonstrated high accuracy (>0.96). Reflectance at 940
nm and X-ray data effectively predicted quality traits such
as normal seedlings, abnormal seedlings and dead
seeds. The strong correlation between multispectral and
X-ray imaging proved valuable in assessing seed
physiological performance. This approach offers a rapid,
efficient, sustainable and non-destructive means of
characterizing seed quality, overcoming the inherent
subjectivity in conventional analyses. It presents a
promising avenue for more objective seed quality
assessments in the future.

Maize

Agelet et al. [14] evaluated the use of near-infrared
spectroscopy (NIRS), a fast and non-destructive
analytical method, to discriminate between maize kernels
with heat and frost damage, as well as to distinguish
viable and non-viable seeds. The current U.S. corn
grading system relies on time-consuming and inaccurate
visual inspections to assess kernel damage, making NIRS
a potentially valuable alternative. Four classification
algorithms (partial least squares discriminant analysis
(PLS-DA), soft independent modeling of class analogy
(SIMCA), k-nearest neighbors (K-NN) and least-squares
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support vector machines (LS-SVM)) were utilized to test
the feasibility of NIRS. The application of NIRS could be
highly valuable for seed breeders and germplasm-
preservation managers, as it offers a non-destructive
alternative to traditional viability tests, which require seeds
to be germinated. Heat-damaged maize kernels were
best discriminated using PLS-DA, achieving 99%
accuracy. Frost-damaged corn kernels could not be
reliably discriminated by NIRS. Distinguishing of non-
viable seeds from viable also proved unsuccessful.
Despite the promising results for heat-damaged kernels,
the inability to detect frost damage and seed viability
contradicts some prior studies, suggesting that further
analysis is required to determine the threshold of seed
damage necessary for NIRS detection. Overall, NIRS
shows potential in classifying seed damage based on
chemical and structural changes, although it may not
directly correlate with seed germination potential.

Ambrose et al. [15] investigated the potential of
hyperspectral imaging (HSI) to differentiate viable and
nonviable maize seeds. Utilizing optimized agronomic
practices and technological interventions, corn’s quantity
and quality were emphasized. Seed germination and
vigor were identified as crucial factors for high yield. Seed
viability, prone to loss during storage or processing,
necessitates testing for the prevention of losses. The
study applied HSI to corn samples, including a heat-
treated group and an untreated control group.
Hyperspectral images captured between 400 and 2500
nm were analyzed using Partial Least Squares
Discriminant Analysis (PLS-DA). The model achieved a
peak classification accuracy of 97.6% (calibration) and
95.6% (prediction) in the short-wave infrared (SWIR)
region. PLS-DA and binary images visually conveyed
treated and untreated corn seeds. In conclusion, the study
affirms the accuracy of HSI for non-destructive
classification of viable and nonviable seeds.

The Fourier transform near-infrared (FT-NIR) and Raman
spectroscopy techniques were used by Ambrose et al.
[16] for evaluating seed viability to investigate their
comparative advantages with regard to the maize viability
test and classification. In the study, white, yellow, and
purple corn seeds were analyzed using Fourier Transform
Near-Infrared (FT-NIR) and Raman spectroscopy to
assess seed viability. Atotal of 300 corn seeds from each
category were divided into two groups: one group was
heat-treated (via microwaving), and the other served as
the control. Spectral data from both treated and untreated
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seeds were collected using an FT-NIR spectrometer
(wavelength range of 1000-2500 nm) and a Raman
spectrometer (wavelength range of 170-3200 cm{"). The
samples were split into training (70%) and testing (30%)
sets for calibration and validation purposes. Principal
component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA) were applied to assess
the spectral data from FT-NIR and Raman spectroscopy.
FT-NIR spectroscopy demonstrated superior
performance, achieving 100% accuracy in correctly
classifying viable and non-viable seeds across all corn
categories, with a predictive ability of more than 95%.
Raman spectroscopy also performed well with PLS-DA,
though some seed samples overlapped when using PCA,
indicating lower classification accuracy compared to FT-
NIR. Analysis of Variance showed that the difference
between treated and untreated seeds was not statistically
significant (P < 0.05), suggesting that the heat treatment
did not produce significant spectral variations detectable
by either method. Overall, the study highlighted FT-NIR
spectroscopy as the more effective technique for
evaluating corn seed viability compared to Raman
spectroscopy.

Muskmelon

Kandpal et al. [17] employed a near-infrared (NIR)
hyperspectral imaging (HSI) system to predict viability
and vigor (germination periods) in muskmelon seeds.
Hyperspectral images, covering the spectral range of 948-
2494 nm, were acquired and subjected to a germination
test. Partial least-squares discriminant analysis (PLS-DA)
was utilized for classification in the study, focusing on
effective wavelengths selected through three key
techniques, Variable Importance in Projection (VIP),
Selectivity Ratio (SR) and significance Multivariate
Correlation (sMC). These methods selected 23, 18 and
19 optimal variables, respectively, from a set of 208
variables. The PLSDA-SR method achieved the highest
classification accuracy (94.6%) for the validation set,
indicating its effectiveness in determining the viability and
vigor of muskmelon seeds. The selected wavelengths
primarily represented chemical components related to
germination ability.

Castor

Olesen et al. [18] applied multispectral imaging to assess
seed quality in castor seeds. They categorized 120 seeds
into three visually distinct classes: yellow, grey, and black.
Images were captured at 19 different wavelengths
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ranging from 375 to 970 nm, and the mean intensity for
each seed was extracted from these images. A significant
difference between the three color classes was observed,
with the best separation occurring in the near-infrared
wavelengths. The study employed normalized canonical
discriminant analysis (nCDA), particularly focusing on a
feature termed “Region MSI mean,” which was crucial
for differentiating viable from dead seeds. This model
achieved 92% accuracy in distinguishing viable seeds
from dead ones. A validation set was also used, consisting
of seeds divided into two groups based on their
germination ability: 241 seeds were predicted to be viable,
while 59 were predicted to be non-viable. The model
accurately classified 96% of the seeds in the validation
set. These results demonstrate how multispectral imaging
can be an effective tool for predicting seed viability in
castor seeds based on seed coat color, providing a non-
destructive and efficient method for seed quality testing.

Tomato

Shrestha et al. [19] explored the potential of near-infrared
(NIR) spectroscopy for non-destructive classification of
viable and non-viable tomato seeds from two cultivars
using chemometrics. Principal component analysis (PCA)
revealed clustering of viable and non-viable seeds in each
cultivar and the pooled samples. However, PCA did not
exhibit a pattern of separation among early, normal and
late germinated seeds. Through partial least squares-
discriminant analysis (PLS-DA) and interval PLS-DA
(iPLS-DA), specific NIR spectral regions (1160-1170,
1383-1397, 1647-1666, 1860—1884 and 1915—-1940 nm)
were identified as crucial for classification. The iPLS-DA
model demonstrated higher sensitivity (0.94) and
specificity (0.94) compared to the PLS-DA model on
original spectra. The iPLS-DA model achieved a lower
classification error rate (6.29%) than the PLS-DA model
(13.10%). The study suggested positive relationships
between NIR regions related to protein-bound water,
protein, and carbohydrates with seed viability. Overall,
NIR spectroscopy shows promise for non-destructive
discrimination of viable and non-viable tomato seeds
using spectral information.

Cowpea

ElMasry et al. [20] explored the efficacy of computer vision
and multispectral imaging, supported by multivariate
analysis, for high-throughput classification of cowpea
(Vigna unguiculata) seeds. Utilizing an automated
germination system, continuous monitoring allows the
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identification of seed categories based on ageing, viability,
seedling condition, and germination speed. Linear
discriminant analysis (LDA) models demonstrate
significant accuracy, ranging from 62% to 97%. The
approach introduces a non-destructive, efficient, and
high-throughput method with potential applications in the
seed industry.

Chickpea

The ability of Artificial Neural Networks (ANN) in
classification of chickpea varieties was considered based
on morphological properties of seeds by Ghamari [21].
Experimentally, the seven morphological features of 400
seeds (including four varieties; Kaka, Piroz, lic and Jam)
were obtained. Using a combination of input variables, a
database consisting of 400 patterns was created for the
development of Artificial Neural Network (ANN) models.
Two types of ANN approaches viz., back propagation
algorithm (BP) and self-organizing map (SOM) were
compared for classification: supervised and unsupervised
learning. The results of this study showed that
unsupervised artificial neural network has a better
performance (with 79% accuracy and R2 = 0.8455) in
classification of chickpea varieties rather than supervised
artificial neural networks (with 73% accuracy and R2 =
0.8236).

Watermelon

Lohumi et al. [22] explored the use of Fourier transform
near-infrared (FT-NIR) spectroscopy to differentiate
between viable and nonviable watermelon seeds. The
FT-NIR reflectance spectra of seeds were recorded within
the wavelength range of 4,000 — 10,000 cm{ * (1,000 —
2,500 nm). To classify the seeds, the researchers
developed a partial least squares discriminant analysis
(PLS-DA) model. The PLS-DA model demonstrated
100% accuracy in classifying both viable and nonviable
seeds for both the calibration and validation sets. The
beta coefficient from the PLS-DA model indicated that
differences in chemical components, particularly lipids
and proteins within the seed membrane, played a critical
role in distinguishing seed viability. This study suggests
that FT-NIR spectroscopy can serve as an effective, non-
destructive tool for seed viability assessment. It opens
up possibilities for developing online sorting techniques
that could enhance seed production processes by rapidly
and accurately identifying viable seeds based on their
chemical characteristics.
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CHALLENGES

1. Data accessibility and quality

Ensuring the availability of high-quality, diverse datasets
is imperative for training accurate machine learning (ML)
and artificial intelligence (Al) models in seed science and
technology. Challenges may emerge concerning data
collection, standardization and privacy. Collaborative
efforts among stakeholders are necessary to address
these challenges. By establishing data-sharing protocols,
standardizing data formats and implementing privacy
safeguards, the seed science community can overcome
data-related obstacles and unlock the full potential of Al
and ML.

2. Regulatory considerations

Ethical and regulatory frameworks must be developed
to ensure the responsible adoption of Al and ML
technologies in seed science. Issues such as data privacy,
intellectual property rights and algorithmic bias require
careful consideration and transparent governance.
Policymakers, researchers and industry leaders must
collaborate to establish guidelines that protect data
privacy, promote fair use of intellectual property and
mitigate the risks of algorithmic bias. By adhering to
ethical standards and regulatory guidelines, the seed
science community can foster trust and confidence in Al
and ML technologies.

3. Interdisciplinary collaboration

Successful integration of Al and ML into seed science
and technology hinges on interdisciplinary collaboration.
Researchers, breeders, technologists, and policymakers
must work together to leverage diverse expertise and
perspectives. Interdisciplinary teams can address
complex challenges more effectively, drawing on insights
from fields such as genetics, agronomy, computer
science, and ethics. By fostering a culture of collaboration
and knowledge sharing, the seed science community can
harness the synergies of Al and ML to drive innovation
and address global food security challenges.

FUTURE PROSPECTS

Continued research and innovation in Al and ML promise
further advancements in seed science and technology.
As technology evolves, new opportunities will emerge to
enhance seed selection, breeding programs and crop
management strategies. Embracing sustainable practices
and addressing ethical considerations will be critical in
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shaping the future of agriculture. By prioritizing
sustainability, equity and ethical governance, the seed
science community can harness the transformative power
of Al and ML to create a more resilient and food-secure
future for generations to arrive.

CONCLUSION

To sum it up, artificial intelligence holds considerable
potential in seed science and technology. Multispectral
imaging analysis was successfully performed to predict
aged seeds and their germination. The findings suggest
that combining spectral data with morphological
characteristics through advanced multivariate analysis
techniques like LDA and nCDA can significantly enhance
the ability to classify seeds based on age and viability.
This approach not only improves the accuracy of seed
assessments but also provides valuable insights for seed
producers and researchers in optimizing seed quality
evaluation methods. In brief, review clearly shows that
multispectral imaging, together with multivariate analysis,
is a promising technique in predicting and nondestructive
testing of aged and viable seeds.
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