Influence of Spacing, Nipping and Fruit Retention on Seed Yield and Seed Quality in Cucumber*

RAVIKUMAR, G.H., SHEKHAR GOUDA, M.**, VASUDEVAN, N. BASAVEGOWDA AND MAHADEVAREDDY

Regional Agricultural Research Station, Raichur-584 101, Karnataka (dr_ravikumargh@yahoo.co.in)

ABSTRACT An experiment on seed production in cucumber conducted during *kharif* indicated that closer spacing of 1.50m x 0.50m (S_2) recorded higher fruit yield (154.9 q ha⁻¹), seed setting (84.1%) and seed yield (76.6 kg ha⁻¹) though lower in fruit length (18.9 cm) and diameter (19.7 cm) as compared to wider spacing 1.50 x 0.75m (S_1). Unnipped (no nipping) treatment recorded higher number of filled seeds per fruit (115.6 fruit⁻¹), seed extraction (0.54%) seed setting per cent (81.9%) resulting in more seed yield (71.4 kg ha⁻¹) compared to nipping at 12th node (67.3 kg ha⁻¹) and spraying of CCC @ 100 ppm at 40 DAS (64.2 kg ha⁻¹). Retention of four fruits per vine (F_2), recorded significantly higher numbers of filled seeds per fruit (122.2 fruit⁻¹) seed setting percentage (83%) and seed yield (70 kg ha⁻¹) compared to retention of 2 fruits per vine (F_1). During summer similar trend was also observed, but the yield levels were relativity lower than *kharif*. The data clearly indicated that seed yield (86.5 kg ha⁻¹), seed quality and benefit cost ratio were higher (2.92) in *kharif* by adopting narrow spacing, no nipping and retention of four fruits per vine ($S_2N_1F_2$).

Keywords: Spacing, nipping, fruit retention, cucumber, Cucumis sativus L., seed production

Cucumber (Cucumis sativus L.) is warm season crop mainly grown in tropical and subtropical regions. It grows well at day temperatures between 20° C and 35° C and cannot tolerate frost and strong winds. Low temperature and short days stimulate development of female flowers. Dry warm and long growing season is essential for seed production and therefore, the northern part of Karnataka, Telengana region of Andhra Pradesh, Marathawada and Vidharbha regions of Maharashtra and eastern districts of Uttar Pradesh are best suited for seed production of cucumber [1]. Nipping is one of the technique to suppress the apical dominance in many indeterminate crops. By nipping the apical bud, the concentration of auxins accumulated in the tips is reduced and diverted to the lower part of plant thereby plant becomes more active physiologically resulting in production of more number of branches and fruits. Since the information on the influence of seasons coupled with nipping, plant density, fruit retention on seed yield and quality is meagre, the present investigation was carried out.

MATERIALS AND METHODS

The field experiment was carreid out at Regional Agricultural Research Station, Raichur during kharif 1999 and summer 1999-2000. It is situated in the north-eastern dry zone of the Karnataka state and it lies between 16° 15' N latitude and 77° 20' E longitude and at an altitude of 389 m above mean sea level. The soils of the experimental site was sandy clay loam (red soil). The experimental treatments consisted of 18 treatment combinations involving two levels of spacing (Main plot) (S₁-1.50 x 0.75m: S₂-1.50x0.50m), three levels of nipping-sub plots (N,-No nipping, N2-Nipping at 12th node and N2-CCC 100 ppm spray at 40 DAS) and three level of fruit retention sub-sub plots (F₁-2 fruits, F₂-4 fruits and F₃all fruits per vine). The plot size selected for the study was 7.50 m x 3.00 m. The experiment was conducted in split-split plot design with three replications. Cucumber cv. Pionsette was sown on 28-7-1999 and 2-12-1999 during kharif and summer seasons respectively. The basal dose (60:50:80 kg

** Department of Seed Science & Technology, Agriculture College, UAS, Dharwad.

^{*} Part of Ph.D. Thesis submitted by the Senior author to the University of Agricultural Sciences, Dharwad-5.

NPK ha-1) containing 50 per cent N, whole P and K was applied before sowing. The remaining 50 per cent N was applied at 20 days after sowing. Nipping of the main shoot was attended on 20th day after sowing and allowed two primary branches to grow laterally. The crop was well managed and protected from pests and diseases. The fruits were harvested when they turned yellow on 3-10-1999 and 3-4-2000 during kharif and summer seasons respectively and fruits were stored in ambient condition for 10 days post harvest ripening. Seeds were extracted by fermentation technique. There was not much difference in the temperature between crop growth periods of kharif and summer. However higher relative humidity was recorded in kharif due to precipitation during August, September and October in 1999, while relative humidity levels were low in January, February and March in 2000.

RESULTS AND DISCUSSION

The data presented in Table-1 indicate that during kharif cucumber planted in closer spacing of 1.50m x 0.50m (S₂) recorded significantly higher fruit yield (154.9 q ha⁻¹) than wider spacing (S₁). Higher fruit yield in S2 was mainly attributed to higher planting density (13,333 vines ha-1) as compared to S₁ (8,888 vines ha-1). This is in accordance with findings of Dhillon [2] in muskmelon and Reiners and Riggs [3] in pumpkin. Closer spacing (S2) recorded lower fruit length and diameter. This was due to competition in higher planting density and resulted higher fruit yield ha-1. Closer spacing (S2) recorded significantly higher seed setting per cent (84.1%) than wider spacing (65.7%). This is in accordance with findings of Den et al [4], who observed that pollen tube never reached distal half of the ovary in long fruitted cucumber. Closer spacing recorded significantly higher seed yield (76.6kg ha-1) than S₁ (58.7 kg ha-1). Higher seed yield in S2 was mainly attributed higher fruit yield and higher seed set per cent though fruit possessing lower length. This finding is in line with Pandita and Randhawa [5] who observed higher seed yield in muskmelon with planting density of 10,000 vines ha-1 compared to lower planting density (6,666 and 5000 vines ha-1). Similar trend was noticed in summer 1999-2000 (Table 2) with slightly declined yield levels compared to kharif.

Nipping the vine at 12^{th} node (N_2) produced significantly higer fruit yield ha⁻¹ (139 q ha⁻¹) than N_3 (132.2 q ha⁻¹) and was on par with N_1 (135.6 q ha⁻¹). Higher fruit yield in N_2 was attributed to efficient utilization of photosynthates near to fruit point. Lower fruit yield ha⁻¹ in N_1 and N_3 might be

due to distribution of leaves away from the fruiting point. Similar observations have been reported by Mangal and Yadava [6] in cucumber. No nipping recorded significantly higher percent seed set (81.9%) as compared to N_3 (76.1%) and N_2 (75.5%). Higher per cent seed set in N1 was mainly attributed to higher number of filled seeds (115 fruit-1) and lower number of unfilled seeds (31.3 fruit1) as compared to N₃ (110.6 and 36.3 fruit⁻¹ respectively) and N₂ (102.6 and 36.9 fruit1 respectively). No nipping produced significantly higher seed yield (71.4 kg ha-1) compared to N_2 (67.3 kg ha-1) and N_3 (64.2 kg ha-1). Higher seed yield in Nio was evidenced by higher seed attributes viz higher number of filled seeds, lower number of unfilled seeds per fruit and higher extraction (0.54%). Similar trend was noticed in summer 1999-2000 (Table 2) with slightly declined yield levels compared to kharif.

Retention of 2 fruits per vine (F1) recorded (Table 1) significantly higher fruit length (21.4 cm) and diameter (22.4 cm) as compared to retention of four (F_2) and retention of all fruits per vine (F_3) . Higher fruit length and diameter in F, was mainly attributed to diversion of more photosynthates towards the development of two fruits as compared to four fruits and all fruits per vine [7]. Retention of all fruits per vine recorded significantly higher fruit yield (144.7 q ha-1) compared to F₁ (119.7 q ha-1) but was on par with F₂ (142.3 q ha⁻¹). More fruit yield in F₃ and F₂ clearly indicates that there was, no much differences in retention of four or more than four fruits vine-1. Retention of four fruits per vine recorded significantly higher seed setting (83%) as compared to F_1 (73.7%) and F_3 (76.7%). Higher per cent seed set in F, mainly attributed to higher number of filled seeds (122.2 fruit-1) and lower number of unfilled seeds (28 fruit-1) as compared to F_1 (102.3 and 43.2 fruit respectively) and F_3 (104.2 and 35.2 fruit respectively). Retention of all fruits per vine (F3) recorded significantly higher seed yield (71.7 Kg ha⁻¹) compared to F₁ (60.8 kg ha⁻¹) but on par with F₂ (70 Kg ha⁻¹). Higher seed yield in F₂ and F₃ clearly indicates no much differences in seed yield when four or more than four fruits were retained per vine.

Among the seed quality characters F_1 recorded significantly higher germination (87.7%) test weight (2.4g), vigour index (2237) and seedling weight (18.64mg) compared to F_3 (82.6% 2.2g, 1950, 17.91 mg respectively) but was on par with F_2 (85.5%, 2.35g, 2124 and 18.40 mg respectively). This reflects that F_2 recorded higher seed yield and quality. Similar trend was noticed (Table 2) with respect to seed yield and quality character.

Table 1. Influence of spacing, nipping and fruit retention on fruit length (cm), fruit diameter (cm), fruit yield (q/ha), seed extraction (%), 100 seed weight (g) and seed yield (kg/ha), germination (%), root length (cm) and shoot length (cm) vigour index and seedling dry weight (mg) during Kharif 1999 in cucumber cv. Poinsette.

Treatments.	Fruit Length (cm)	Fruit Diameter (cm)	Fruit yield (q/ha)	Seed extraction (%)	No. seeds of fruit	No. of unfilled seeds/fruit	Seed setting (%)	100 seed weight (g)	Seed yield (kg/ha)	Germination (%)	Index	dry weight (mg)
Chacine (S)	1	2	6	4	rv	9	_	œ	6	10	11	12
S, (1.50r. × 0.75m)	19.6	20.5	116.3	0.51	120.7	63.0	65.7(54.15)*	2.37	58.7	*(967.96)*	2153	18.44
S ₂ (1.50 m × 0.50m)	18.9	19.7	154.9	0.50	0.86	38.0	84.1 (66.52)	2.32	9.92	84.9 (67.05)	2080	18.20
S.Em±	0.1	0.2	0.2	0.01	9.0	9.0	(0.23)	0.01	0.4	(980)	49	0.22
C.D. at 5%	0.4	NS	1.2	NS	3.5	3.5	(1.40)	NS	2.2	(NS)	NS	NS
Nipping (N'												
N, (No Nipping,	19.6	20.1	135.6	0.54	115.6	31.3	81.9(64.83)	2.33	71.4	85.4 (67.54)	2097	18.12
N ₂ (Nipping at 12th node) 19.1	de) 19.1	20.2	139.0	0.48	102.6	36.9	75.5 (60.32)	2.36	67.3	84.6(66.91)	2070	18.33
N, (CCC@100ppm)	19.0	19.9	132.2	0.48	110.6	36.3	76.1 (60.75)	2.34	64.2	86.1 (68.06)	2181	18.50
S.Em±	0.2	0.2	1.5	0.01	1.6	1.7	(0.72)	0.05	1.2	(96.0)	33	0.18
C.D. at 5%	NS	NS	4.9	0.03	5.3	5.3	(2.35)	NS	3.7	(NS)	NS	NS
Fruit retention (F)												
F ₁ (2 Fruits/vine)	21.4	22.4	119.7	0.51	102.3	43.2	73.7(59.13)	2.40	8.09	87.7(69.51)	2237	18.64
F ₂ (4 Fruits/vine)	19.4	20.1	142.3	0.50	122.2	28.0	83.0(65.66)	2.35	70.0	85.5 (67.66)	2124	18.40
F ₃ (All Fruits/vine)	17.0	17.7	144.7	0.49	104.2	35.2	76.7(61.12)	2.20	71.1	82.6(65.34)	1950	17.91
S.Em±	0.2	0.2	2.8	0.01	1.4	1.4	(0.61)	0.03	8.0	(0.77)	07	0.15
C.D. at 5%	0.5	0.5	8.2	0.03	4.1	4.1	(1.79)	010	,,		1	

NS-Non significant * Figures in parenthesis indicate angular transformed valves

Influence of spacing, nipping and fruit retention on fruit length (cm), fruit diameter (cm), fruit yield (q/ha), seed extraction (%), 100 seed weight (g) and seed yield (kg/ha), germination (%), root length (cm) and shoot length (cm) vigour index, and seedling dry weight (mg) summer 1999-2000 during in cucumber cv. Poinsette Table 2.

Freatments	Fruit Length D (cm)	Fruit Diameter (cm)	Fruit yield (q/ha)	Seed extraction (%)	No. of seeds fruit s	No of unfilled seeds/fruit	Seed setting (%)	100 seed weight (g)	Seed yield (kg/ha)	Germination (%)	Vigour Index	Seedling dry weight (mg)
	1	2	8	4	ıv	9	7	80	6	10	11	12
Spacing (S)												
S ₁ (1.50 m × 0.75m)	18.9	19.4	116.1	0.41	85.5	99.3	46.5(42.97)*	2.24	47.0	79.3 (62.93)*	16.76	15.93
$S_2(1.50 \text{m} \times 0.50 \text{m})$	18.7	19.2	130.4	0.47	75.7	61.2	54.9(47.84)	2.19	8.09	79.1(62.80)	16.05	15.38
S.Em±	0.1	0.2	1.5	0.03	1.40	1.4	(0.46)	0.02	0.4	(0.50)	31	0.19
C.D. at 5%	NS	NS	8.9	0.05	8.7	8.7	(2.85)	NS	2.5	(NS)	NS	25
Nipping (N)												
N, (No Nipping)	18.6	19.2	123.9	0.46	87.0	75.7	54.3 (47.48)	2.20	57.5	78.6 (62.44)	1652	14.86
N_2 (Nipping at 12 th node)	19.3	19.8	125.0	0.40	72.9	88.9	46.2 (42.81)	2.23	50.1	79.6 (63.15)	1685	15.04
N ₃ (CCC@100ppm)	18.7	19.1	120.9	0.45	80.3	76.2	51.6 (45.93)	2.22	54.2	80.3 (63.68)	1700	15.57
S.Em±	0.2	0.2	1.8	0.01	1.3	1.3	(0.42)	0.05	1.1	(0.28)	45	0.20
C.D. at 5%	NS	NS	NS	0.03	4.2	4.2	(1.38)	NS	3.6	(0.94)	NS	82
Fruit retention (F)												
F ₁ (2 Fruits/vine)	21.8	21.9	111.0	0.43	74.1	92.1	45.5(42.85)	2.26	47.0	81.2(64.27)	1774	15.72
F ₂ (4 Fruits/vine)	18.7	19.1	129.1	0.45	93.1	71.4	57.0(49.05)	2.22	57.6	79.4(63.01)	1658	15.36
F ₃ (All Fruits/vine)	16.1	16.8	129.7	0.44	73.1	77.3	49.5 (44.73)	2.10	57.1	77.0(61.32)	1492	14.39
S.Em±	0.2	0.2	3.5	0.02	1.9	1.9	(0.68)	0.04	1.1	(0.54)	8	0.27
C.D. at 5%	9.0	9.0	10.5	NS	5.5	5.5	(1.97)	0.10	3.1	(1.56)	113	0.77

NS-Non significant * Figures in parenthesis indicate angular transformed valves

1,736 1,739 5unmer Klairf 5unmer 5un		and summer	of cultiv	Total Cost of cultivation(Rs)	Seed	Seed yie!d(Kg/ha)	Gross retr	Gross return(Rs/ha)	Net Inc	Net Income(Rs/ha)	Benefit (Benefit Cost ratio
50 17,730 22,993 54,7 43.0 23,820 55,800 15,990 2,807 1,85 250 17,730 22,993 64.4 51.2 38,540 30,720 20,910 7,725 217 360 17,730 22,993 64.4 51.2 39,180 31,620 21,700 85377 214 350 17,830 22,943 60.8 46.1 36,460 22,860 18,650 4,567 20,4 350 17,830 22,843 62.0 46.1 36,460 24,300 19,620 5.47 20,4 350 17,830 22,843 62.0 46.1 36,400 24,300 15,07 20,4 10,7 350 17,830 23,903 50.4 40.5 30,240 24,300 15,07 10,4 10,4 350 17,830 22,843 73.0 30,240 30,240 15,040 15,040 15,040 15,040 15,040 15,040 11,04	Д Н Н Н 2		Kharif	Summer	Kharif	Summer	Kharif	Summer	Kharif	Summer	Kharif	Summer
550 17,736 22,943 64.4 51.2 38,440 30,720 20,910 77,725 21,7	т <u>,</u> т, л	250	17,730	22,993	54.7	43.0	32,820	25,800	15,090	2,807	1.85	1.12
- 17,480 22,443 65.3 32.7 39,180 31,620 21,700 8,877 224 550 17,830 22,993 38.1 31,680 22,860 13,850 -23.3 1,77 550 17,830 23,093 60.8 46.1 36,460 27,660 18,650 4,567 2.04 550 17,880 22,843 60.2 47.2 37,200 22,800 1,570 2.04 550 17,830 22,843 50.4 40.5 30,240 24,300 1,207 1,69 550 17,830 22,843 50.4 40.5 30,240 24,300 1,59 2.11 550 17,830 57.7 43,800 34,50 1,57 2.05 550 17,730 22,933 86.5 70.9 41,460 36,40 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540 1,540	r _e Z	250	17,730	22,993	64.4	51.2	38,640	30,720	20,910	7,725	2.17	1.33
550 17,830 23,093 52.8 38.1 31,680 22,860 18,650 13,630 177 4.567 17,890 17,830 17,830 18,630 4,567 12,049 17,790 17,830 18,630 18,630 18,630 18,630 18,630 18,640 18,630 18,630 18,640 18,640 18,630 18,640 18,740 18,641 18,641 18,640	N H	1	17,480	22,743	65.3	52.7	39,180	31,620	21,700	8,877	2.24	1.39
350 17,830 22,843 60.8 46.1 36,460 27,660 18,650 4,567 2.04 100 17,580 22,843 62.0 47.2 37,200 28,320 19,620 5,477 2.11 350 17,580 22,843 50.4 40.5 30,240 24,300 12,410 1,207 1.69 350 17,580 22,843 50.4 40.5 30,240 24,300 12,410 1,207 1.69 250 17,730 22,843 50.2 44,620 31,560 18,740 2.05 250 17,730 22,943 84.7 69.1 50,820 41,460 33,340 18,77 2.90 250 17,780 22,743 84.7 69.1 41,100 30,400 23,340 18,77 2.90 250 17,830 22,843 86.5 70.9 41,100 30,400 23,400 18,47 2.90 260 17,830 23,093 66.7 <td>1,2,1</td> <td>350</td> <td>17,830</td> <td>23,093</td> <td>52.8</td> <td>38.1</td> <td>31,680</td> <td>22,860</td> <td>13,850</td> <td>-233</td> <td>1.77</td> <td>-0.98</td>	1,2,1	350	17,830	23,093	52.8	38.1	31,680	22,860	13,850	-233	1.77	-0.98
100 17,580 22,843 62.0 47.2 37,200 28,320 19,620 5,477 2.11 350 17,830 23,093 50.4 40.5 30,240 24,300 12,410 1,207 1,69 350 17,830 23,093 57.7 51.7 34,620 30,240 16,790 7,627 1,94 100 17,580 22,943 60.2 52.6 36,120 34,520 16,790 7,627 1,94 250 17,730 22,943 73.0 57.7 43,800 34,520 16,790 7,627 1,94 250 17,730 22,943 86.5 70.9 51,900 42,540 34,170 19,547 2,95 350 17,830 23,093 86.5 50.0 41,140 33,340 18,717 2,90 350 17,830 23,093 80.5 60.7 48,300 36,420 30,470 13,317 2,30 360 17,830 23,093<	F_2	350	17,830	23,093	8.09	46.1	36,460	27,660	18,650	4,567	2.04	1.19
350 17,830 23,093 50.4 40.5 30,240 24,300 12,410 1,207 1.69 350 17,830 23,093 57.7 51.7 34,620 30,240 16,790 7,627 1.94 100 17,580 22,843 60.2 52.6 36,120 31,560 16,790 7,627 1.94 250 17,730 22,993 73.0 57.7 43,800 34,620 26,070 11,627 2.05 250 17,730 22,993 86.5 70.9 51,900 42,540 34,170 19,547 2.05 250 17,730 22,993 86.5 70.9 51,900 42,170 19,547 2.97 350 17,830 22,093 86.5 50.0 41,100 30,000 23,270 6,907 2.90 350 17,830 23,093 86.5 50.0 41,100 30,400 12,317 2.0 360 17,830 23,093 65.5 <td>Ħ_e</td> <td>100</td> <td>17,580</td> <td>22,843</td> <td>62.0</td> <td>47.2</td> <td>37,200</td> <td>28,320</td> <td>19,620</td> <td>5,477</td> <td>2.11</td> <td>1.23</td>	Ħ _e	100	17,580	22,843	62.0	47.2	37,200	28,320	19,620	5,477	2.11	1.23
350 17,830 23,093 57.7 51.7 34,620 30,720 16,790 7,627 1.94 100 17,580 22,843 60.2 52.6 36,120 31,560 18,540 577 1.94 250 17,730 22,993 73.0 57.7 43,800 42,540 34,170 11,627 247 250 17,730 22,993 86.5 70.9 51,900 42,540 34,170 19,547 2.97 250 17,480 22,743 84.7 69.1 50,820 41,460 33,340 19,547 2.90 350 17,830 23,093 68.5 50.0 41,100 30,000 23,270 6,907 2.30 350 17,830 22,843 79.4 58.6 47,640 35,40 21,470 8,647 2.70 350 17,830 23,093 76.1 45,660 38,940 27,800 14,477 2.36 360 17,580 22,843 </td <td>$S_1N_3F_1$</td> <td>350</td> <td>17,830</td> <td>23,093</td> <td>50.4</td> <td>40.5</td> <td>30,240</td> <td>24,300</td> <td>12,410</td> <td>1,207</td> <td>1.69</td> <td>1.05</td>	$S_1N_3F_1$	350	17,830	23,093	50.4	40.5	30,240	24,300	12,410	1,207	1.69	1.05
10. 17,580 22,943 60.2 52.6 36,120 31,560 18,540 8,717 2.05 250 17,730 22,993 73.0 57.7 43,800 34,620 26,070 11,627 2.47 250 17,730 22,993 86.5 70.9 51,900 41,540 34,170 19,547 2.92	Ħ _c	350	17,830	23,093	57.7	51.7	34,620	30,720	16,790	7,627	1.94	1.33
250 17,730 22,993 73.0 57.7 43,800 34,620 26,070 11,627 2.47 250 17,730 22,993 86.5 70.9 51,900 42,540 34,170 19,547 2.92	Пe	100	17,580	22,843	60.2	52.6	36,120	31,560	18,540	8,717	2.05	1.38
250 17,730 22,993 86.5 70.9 51,900 42,540 34,170 19,547 2.92 17,480 22,743 84.7 69.1 50,820 41,460 33,340 18,717 2.90 350 17,830 23,093 68.5 50.0 41,100 30,000 23,270 6,907 2.30 350 17,830 23,093 80.5 60.7 48,300 36,420 13,327 2.70 350 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 350 17,830 22,843 75.1 64.9 45,660 38,940 27,830 15,847 2.56 350 17,380 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56	$S_2N_1F_1$	250	17,730	22,993	73.0	57.7	43,800	34,620	26,070	11,627	2.47	1.50
— 17,480 22,743 84.7 69.1 50,820 41,460 33,340 18,717 2.90 350 17,830 23,093 68.5 50.0 41,100 30,000 23,270 6,907 2.30 350 17,830 22,843 79.4 58.6 47,640 35,160 30,470 13,327 2.70 50 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 50 17,830 23,093 76.1 64.9 45,660 38,940 27,830 15,847 2.56 50 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56	\overline{T}_{2}	250	17,730	22,993	86.5	70.9	51,900	42,540	34,170	19,547	2.92	1.85
550 17,830 23,093 68.5 50.0 41,100 30,000 23,270 6,907 2.30 550 17,830 22,843 80.5 60.7 48,300 36,420 30,470 13,327 2.70 150 17,580 22,843 79.4 58.6 47,640 35,160 30,060 12,317 2.70 50 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 50 17,830 23,093 76.1 64.9 45,660 38,940 27,830 15,847 2.56 50 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 7 17,580 36,23 45,180 37,320 27,600 14,477 2.56	H _e	1	17,480	22,743	84.7	69.1	50,820	41,460	33,340	18,717	2.90	1.82
550 17,830 23,093 80.5 60.7 48,300 36,420 36,420 30,470 13,327 2.70 100 17,580 22,843 79.4 58.6 47,640 35,160 30,060 12,317 2.70 50 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 50 17,830 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 60 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56	$S_2N_2F_1$	350	17,830	23,093	68.5	20.0	41,100	30,000	23,270	206'9	2.30	1.29
100 17,580 22,843 79.4 58.6 47,640 35,160 30,060 12,317 2.70 150 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 50 17,830 23,093 76.1 64.9 45,660 38,940 27,830 15,847 2.56 00 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 Kharif Summer Summer 37,320 27,600 14,477 2.56			17,830	23,093	80.5	2.09	48,300	36,420	30,470	13,327	2.70	1.57
50 17,830 23,093 65.5 52.9 39,300 31,740 21,470 8,647 2.20 50 17,830 23,093 76.1 64.9 45,660 38,940 27,830 15,847 2.56 00 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 Kharif Summer	F	100	17,580	22,843	79.4	58.6	47,640	35,160	30,060	12,317	2.70	1.53
50 17,830 23,093 76.1 64.9 45,660 38,940 27,830 15,847 2.56 00 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 Kharif Summer 5 5 5 5 5 5	$S_2N_3F_1$	350	17,830	23,093	65.5	52.9	39,300	31,740	21,470	8,647	2.20	1.37
00 17,580 22,843 75.3 62.2 45,180 37,320 27,600 14,477 2.56 Kharif Summer	\overline{F}_2	350	17,830	23,093	76.1	64.9	45,660	38,940	27,830	15,847	2.56	1.68
Kharif	F ₃	100	17,580	22,843	75.3	62.2	45,180	37,320	27,600	14,477	2.56	1.63
			Kharif	Summer						TOTAL PROPERTY.		

Among two seasons, *kharif* accounted for lesser cost of cultivation (Table 3) towards the plant protection chemicals being used for control of serpentine leaf miner, pumpkin beetle and fruit fly. Especially serpentine leaf minor was suppressed due to usual rains prevailed during the months of August, September and October. In summer, the cost of plant protection chemicals alone was Rs 5,263 ha⁻¹ against control of leaf miner due to more number sprays 9-10 times (once 5-6 days) during the crop growth.

The data reveal that the *kharif* season favoured help to get higher seed yield and resulted higher benefit cost ratio (2.92) by adopting narrow spacing, no nipping and retention of four fruits per vine $(S_2N_1F_2)$.

REFERENCES

 SESHADRI, V.S. (1990). Vegetable seed production in India. Problems, prospects and policies. Paper presented

- at international conference of Seed Science and Technology, New Delhi. Feb. 1990.
- DHILLON, N.P.S. (1994). F₁ hybrid seed production in muskmelon (*Cucumis melo* L) management of the male sterile population. Seed Sci. & Technol. 22(3): 601-605.
- REINERS, S. & D.I.M. RIGGS (1999). Plant population affects yield and fruit size of pumpkin Hort. Science 34(6): 1076-1078.
- 4. DEN. APM. NILS., MIOTAY. P. & APM. NIJS. DEN. (1991). Fruit and seed set in the cucumber (*Cucumis sativus* L) in relation to pollen tube growth sex type and parthenocapy. *Gartenbau-wissenschaft*, 56(2): 46-49.
- PANDITA, V.K. & K.S. RANDHAWA (1992). Seed production studies in muskmelon under different planting density and fertility levels. Seed Res. 20 (2): 144-146.
- MANGAL J.L.& A.N. YADAVA (1979). Effect of plant population and prunning on performance of cucumber. Punjab Horticultural Journal 19: 194-197.
- 7. HONNORATO.R., L. GUR. OVICH & R. PINA (1993). Absorption rates of N.P. and K in Cucumber for seed production. *Cienciae Investigation Agararia* 20(3): 169-172.